A NOTE ON A RENEWAL THEOREM

By Hirohisa Hatori

1. Let $X_{i}(i=1,2, \cdots)$ be independent random variables, having the finite mean values $E\left(X_{\imath}\right)=m_{\imath}>0(i=1,2, \cdots)$. When

$$
\lim _{n \rightarrow \infty} 1 \sum_{i=1}^{n} m_{\imath}=m
$$

exists, then it holds that

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\infty}^{T} d t \sum_{n=1}^{\infty} \operatorname{Pr}\left(t<S_{n} \leqq t+h\right)=\begin{gather*}
h \tag{1.1}\\
m
\end{gather*}
$$

where

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

with some restrictions. This problem is a renewal theorem in a wide sense and have been treated by Kawata [2] and the author [1] under somewhat different conditions. In the following, we shall extend this theorem in a sense under the assumptions which have been considered in [2].
2. In the first place, we shall prepare the following lemmas.

Lemma 1. Let $F(t)$ be a non-decreasing function,

$$
\begin{equation*}
\int_{-\infty}^{0} e^{-s_{0} t} d F(t)<+\infty \quad \text { for some } s_{0}>0 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-s t} d F(t) \sim{ }_{s^{r}}^{A} \quad \text { as } s \downarrow 0 \text { for some } r>0 \tag{2.2}
\end{equation*}
$$

Then

$$
F(t) \sim \underset{\Gamma(r+1)}{A t^{r}} \quad \text { as } t \rightarrow \infty .
$$

Proof. Since
Received September 27, 1959.

$$
0 \leqq \int_{-\infty}^{0} e^{-s t} d F(t) \leqq \int_{-\infty}^{0} e^{-s_{0} t} d F(t)<+\infty \quad \text { for } 0 \leqq s \leqq s_{0}
$$

by (2.1), we have

$$
\int_{0}^{\infty} e^{-s t} d F(t) \sim{ }_{s^{7}}^{A} \quad \text { for } s \downarrow 0 .
$$

Hence by a classical Tauberian theorem, it results that

$$
F(t) \sim \underset{\Gamma(r+1)}{A t r} \quad \text { as } t \rightarrow \infty .
$$

Lemma 2. Let $X_{2}(i=1,2, \cdots)$ be independent random variables such that $E\left(X_{i}\right)=m_{\imath}>0$. Suppose that the distribution function $F_{n}(x)$ of X_{n} satisfies

$$
\begin{equation*}
\int_{-\infty}^{0} e^{-s_{0} t} d F_{n}(x)<+\infty \quad \text { for some } s_{0}>0 \tag{2.3}
\end{equation*}
$$

and further that both of

$$
\begin{equation*}
\lim _{A \rightarrow \infty} \int_{A}^{\infty} x d F_{n}(x)=0 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{A \rightarrow \infty} \int_{-\infty}^{-A} e^{-s_{0} x} d F_{n}(x)=0 \tag{2.5}
\end{equation*}
$$

hold uniformly with respect to n. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\imath=1}^{n} m_{\imath}=m>0 \tag{2.6}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{s \downarrow 0} s^{\alpha+1} \sum_{n=1}^{\infty} n^{\alpha} \varphi_{n}(s)=\frac{\alpha!}{m^{\alpha+1}} \quad \text { for } \alpha=0,1,2, \cdots \tag{2.7}
\end{equation*}
$$

where

$$
\varphi_{n}(s)=\int_{-\infty}^{\infty} e^{-s x} d \sigma_{n}(x),
$$

$\sigma_{n}(x)$ being the distribution function of S_{n}.
Proof. Let ε be any given positive number. Under the conditions of this lemma, there exist an N and an $s_{2}<s_{0}$ such that

$$
\begin{equation*}
e^{-n s(m+2 \varepsilon)} \leqq \varphi_{n}(s) \leqq e^{-n s(m-2 \varepsilon)} \quad \text { for } n>N \text { and } 0 \leqq s \leqq s_{2} \tag{2.8}
\end{equation*}
$$

which has been given in the course of the proof of Lemma 2 in [2]. Hence we have

$$
\begin{aligned}
& s^{\alpha+1} \sum_{n=1}^{\infty}(n+\alpha)(n+\alpha-1) \cdots(n+1) \varphi_{n}(s) \\
< & s^{\alpha+1} \sum_{n=1}^{N}(n+\alpha)(n+\alpha-1) \cdots(n+1) C \\
& +s^{\alpha+1} \sum_{n=0}^{\infty}(n+\alpha)(n+\alpha-1) \cdots(n+1) e^{-n s(m-2 \varepsilon)} \\
= & s^{\alpha+1} \sum_{n=1}^{N}(n+\alpha)(n+\alpha-1) \cdots(n+1) C+\frac{s^{\alpha+1} \cdot \alpha!}{\left(1-e^{-s(m-2 \varepsilon)}\right)^{\alpha+1}}, \quad \text { for } \quad 0<s \leqq s_{2}
\end{aligned}
$$

where

$$
C=\sup _{\substack{0<s \leq 2 \\ n=1,2, \cdots, N}} \varphi_{n}(s) \leqq 1+\max _{n=1,2, \cdots, N} \int_{-\infty}^{0} e^{-s_{2} x} d \sigma_{n}(x)<+\infty
$$

Thus

$$
\varlimsup_{s \downarrow 0} s^{\alpha+1} \sum_{n=1}^{\infty}(n+\alpha)(n+\alpha-1) \cdots(n+1) \varphi_{n}(s) \leqq \frac{\alpha!}{(m-2 \varepsilon)^{\alpha+1}}
$$

and since ε is arbitrary, we get

$$
\varlimsup_{s \downarrow 0} s^{\alpha+1} \sum_{n=1}^{\infty}(n+\alpha)(n+\alpha-1) \cdots(n+1) \varphi_{n}(s) \leqq \begin{gather*}
\alpha! \tag{2.9}\\
m^{\alpha+1}
\end{gather*}
$$

On the other hand

$$
\begin{aligned}
& s^{\alpha+1} \sum_{n=1}^{\infty}(n+\alpha)(n+\alpha-1) \cdots(n+1) \varphi_{n}(s) \\
\geqq & s^{\alpha+1} \sum_{n=0}^{\infty}(n+\alpha)(n+\alpha-1) \cdots(n+1) e^{-n s(m+2 \varepsilon)} \\
& -s^{\alpha+1} \sum_{n=0}^{N}(n+\alpha)(n+\alpha-1) \cdots(n+1) \\
= & \frac{s^{\alpha+1} \cdot \alpha!}{\left(1-e^{-s(m+26}\right)^{\alpha+1}}-s^{\alpha+1} \sum_{n=0}^{N}(n+\alpha)(n+\alpha-1) \cdots(n+1) \quad \text { for } 0<s \leqq s_{2} .
\end{aligned}
$$

Hence

$$
\frac{\lim _{s \downarrow 0}}{} s^{\alpha+1} \sum_{n=1}^{\infty}(n+\alpha)(n+\alpha-1) \cdots(n+1) \varphi_{n}(s) \geqq \frac{\alpha!}{(m+2 \varepsilon)^{\alpha+1}}
$$

from which it results that

$$
\begin{equation*}
\frac{\lim }{s \downarrow 0} s^{\alpha+1} \sum_{n=1}^{\infty}(n+\alpha)(n+\alpha-1) \cdots(n+1) \varphi_{n}(s) \geqq \frac{\alpha!}{m^{\alpha+1}} \tag{2.10}
\end{equation*}
$$

(2.9) and (2.10) show that

$$
\begin{equation*}
\lim _{s \vee 0} s^{\alpha+1} \sum_{n=1}^{\infty}(n+\alpha)(n+\alpha-1) \cdots(n+1) \varphi_{n}(s)=\frac{\alpha!}{m^{\alpha+1}} . \tag{2.11}
\end{equation*}
$$

From (2.11) with $\alpha=0,1,2, \cdots$, we get (2.7).
Lemma 3. Let $\left\{a_{n}\right\}$ be a sequence of real numbers. If, in addition to the conditions of Lemma 2, we assume that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} a_{\imath}=a
$$

exists, then we have

$$
\begin{equation*}
\lim _{s \neq 0} s^{\alpha+1} \sum_{n=1}^{\infty} a_{n} n^{\alpha} \varphi_{n}(s)=\frac{a \cdot \alpha!}{m^{\alpha+1}} \quad \text { for } \alpha=0,1,2, \cdots \tag{2.12}
\end{equation*}
$$

Proof. Since, describing

$$
\frac{1}{n} \sum_{i=1}^{n} a_{\imath}=a+\varepsilon_{n}
$$

we have

$$
a_{n}=a+n \varepsilon_{n}-(n-1) \varepsilon_{n-1}, \quad \varepsilon_{n} \rightarrow 0 \quad(n \rightarrow \infty)
$$

and

$$
\sum_{n=1}^{\infty} a_{n} n^{\alpha} \varphi_{n}(s)=a \sum_{n=1}^{\infty} n^{\alpha} \varphi_{n}(s)+\sum_{n=1}^{\infty} n^{\alpha} \varphi_{n}(s)\left[n \varepsilon_{n}-(n-1) \varepsilon_{n-1}\right]
$$

it suffices to prove

$$
\begin{equation*}
\lim _{s \downarrow 0} s^{\alpha+1} \sum_{n=1}^{\infty} n^{\alpha} \varphi_{n}(s)\left[n \varepsilon_{n}-(n-1) \varepsilon_{n-1}\right]=0 . \tag{2.13}
\end{equation*}
$$

Noticing

$$
\sum_{n=1}^{\infty}\left|n^{\alpha} \varphi_{n}(s) \cdot n \varepsilon_{n}\right| \leqq \sup _{n=1,2, \ldots}\left|\varepsilon_{n}\right| \cdot \sum_{n=1}^{\infty} n^{\alpha+1} \varphi_{n}(s)<+\infty
$$

we get

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n^{\alpha} \varphi_{n}(s)\left[n \varepsilon_{n}-(n-1) \varepsilon_{n-1}\right] \\
= & \sum_{n=1}^{\infty} n \varepsilon_{n}\left[n^{\alpha} \varphi_{n}(s)-(n+1)^{\alpha} \varphi_{n+1}(s)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=1}^{\infty} n \varepsilon_{n} \varphi_{n}(s)\left[n^{\alpha}-(n+1)^{\alpha} f_{n+1}(s)\right] \\
& =\sum_{n=1}^{\infty} n \varepsilon_{n} \varphi_{n}(s) \cdot n^{\alpha}\left(1-f_{n+1}(s)\right)+\sum_{n=1}^{\infty} n \varepsilon_{n} \varphi_{n}(s)\left(n^{\alpha}-(n+1)^{\alpha}\right) f_{n+1}(s) \\
& =I_{1}+I_{2}
\end{aligned}
$$

say, where

$$
f_{n}(s)=\int_{-\infty}^{\infty} e^{-s x} d F_{n}(s), \quad 0 \leqq s \leqq s_{0}
$$

Now, for any given positive number ε, we choose an integer N such that

$$
\left|\varepsilon_{n}\right|<\varepsilon \quad \text { for } n>N
$$

Since there are positive constants C_{1} and s_{2} such that $m_{n}<C_{1}$ for $n=1,2$, ... and

$$
f_{n}(s)=1-s m_{n}+s \eta_{n}
$$

where

$$
\left|\eta_{n}\right|<\varepsilon\left(C_{1}+2\right) \equiv C_{2} \quad \text { for } \quad 0 \leqq s \leqq s_{2}
$$

uniformly with respect to n, which have been proved in the course of the proof of Lemma 2 in [2], we have

$$
\begin{array}{r}
\left|s^{\alpha+1} \cdot I_{1}\right|<s^{\alpha+2} \cdot\left(C_{1}+C_{2}\right) \cdot C \sum_{n=1}^{N} n^{\alpha+1}\left|\varepsilon_{n}\right|+\varepsilon\left(C_{1}+C_{2}\right) \cdot s^{\alpha+2} \sum_{n=N+1}^{\infty} n^{\alpha+1} \varphi_{n}(s) \\
\text { for } 0<s \leqq s_{2}
\end{array}
$$

where

$$
C=\sup _{\substack{0<s \leq s 2 \\ n=1,2, \cdots, N}} \varphi_{n}(s)<+\infty
$$

and hence

$$
\varlimsup_{s \downarrow 0}\left|s^{\alpha+1} \cdot I_{1}\right| \leqq \varepsilon\left(C_{1}+C_{2}\right)\left(\begin{array}{c}
(\alpha+1)! \\
m^{\alpha+2}
\end{array}\right.
$$

and since ε is arbitrary, we get

$$
\begin{equation*}
\lim _{s \downarrow 0} s^{\alpha+1} \cdot I_{1}=0 \tag{2.14}
\end{equation*}
$$

On the other hand,

$$
\left|s^{\alpha+1} \cdot I_{2}\right|<s^{\alpha+1}\left[1+\left(C_{1}+C_{2}\right) s\right] \cdot C \sum_{n=1}^{N} \alpha(n+1)^{\alpha} \cdot\left|\varepsilon_{n}\right|
$$

$$
\begin{aligned}
&+\left[1+\left(C_{1}+C_{2}\right) s\right] \varepsilon \cdot s^{\alpha+1} \sum_{n=N+1}^{\infty}\left(\alpha n^{\alpha}+\binom{\alpha}{2} n^{\alpha-1}+\cdots+n\right) \varphi_{n}(s) \\
& \text { for } 0<s \leqq s_{2} .
\end{aligned}
$$

Hence

$$
\varlimsup_{s \neq 0}\left|s^{\alpha+1} \cdot I_{2}\right| \leqq \alpha \cdot \varepsilon \frac{\alpha!}{m^{\alpha+1}},
$$

from which it results that

$$
\begin{equation*}
\lim _{s \downarrow 0} s^{\alpha+1} \cdot I_{2}=0 \tag{2.15}
\end{equation*}
$$

(2.14) and (2.15) give (2.12).
3. Theorem 1. If, in addition to the conditions of Lemma 3, we assume that $a_{n} \geqq 0(n=1,2, \cdots)$, then we have
(3.1) $\lim _{t \rightarrow \infty} \frac{1}{t^{\alpha+1}} \sum_{n=1}^{\infty} \alpha_{n} \cdot n^{\alpha} \operatorname{Pr}\left(S_{n} \leqq t\right)=\frac{a}{(\alpha+1) m^{\alpha+1}} \quad$ for $\alpha=0,1,2, \cdots$.

Proof. Describing

$$
H_{N}(t)=\sum_{n=1}^{N} a_{n} n^{\alpha} \operatorname{Pr}\left(S_{n} \leqq t\right),
$$

we have

$$
\int_{-\infty}^{\infty} e^{-s t} d H_{N}(t)=\sum_{n=1}^{N} a_{n} \cdot n^{\alpha} \int_{-\infty}^{\infty} e^{-s t} d \sigma_{n}(t)=\sum_{n=1}^{N} a_{n} n^{\alpha} \varphi_{n}(s)
$$

and so

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{-\infty}^{\infty} e^{-s t} d H_{N}(t) \tag{3.2}
\end{equation*}
$$

exists and is equal to

$$
\sum_{n=1}^{\infty} a_{n} \lambda^{\alpha} \varphi_{n}(s) \quad \text { for } 0<s \leqq s_{2}
$$

Since we know by (2.8) that there exists a constant C_{3} such that

$$
\varphi_{n}(s) \leqq C_{3} \quad \text { for } n=1,2, \cdots \text { and } 0<s \leqq s_{2},
$$

we have

$$
\int_{-\infty}^{\infty} e^{-s t} d H_{N}(t) \leqq C_{3} \sum_{n=1}^{N} a_{n} n^{\alpha}
$$

and

$$
\int_{-\infty}^{-A} e^{-s t} d H_{N}(t) \leqq C_{3} \sum_{n=1}^{N} a_{n} n^{\alpha} \quad \text { for any positive } A
$$

Taking σ less than s_{2} and $s=s_{2}$,

$$
\begin{aligned}
C_{3} \sum_{n=1}^{N} a_{n} \cdot n^{\alpha} & \geqq \int_{-\infty}^{-A} e^{-\left(s_{2}-\sigma\right) t} \cdot e^{-\sigma t} d H_{N}(t) \\
& \geqq e^{\left(s_{2}-\sigma\right) A} \int_{-\infty}^{-A} e^{-\sigma t} d H_{N}(t) \\
& \geqq e^{\left(s_{2}-\sigma\right) A} \int_{-B}^{-A} e^{-\sigma t} d H_{N}(t),
\end{aligned}
$$

which gives

$$
\int_{-B}^{-A} e^{-\sigma t} d H_{N}(t) \leqq e^{-\left(s_{2}-\sigma\right) A} C_{3} \cdot \sum_{n=1}^{N} \alpha_{n} n^{\alpha}
$$

Letting $\sigma \rightarrow 0$ and $B \rightarrow \infty$, we get

$$
H_{N}(-A) \leqq e^{-s_{2} A} C_{3} \cdot \sum_{n=1}^{N} a_{n} n^{\alpha}
$$

Therefore if $0<s \leqq s_{3}<s_{2}$,

$$
\lim _{t \rightarrow-\infty} e^{-s t} H_{N}(t)=0
$$

Thus we get by partial integration that for $0<s \leqq s_{3}$

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-s t} d H_{N}(t)=s \int_{-\infty}^{\infty} e^{-s t} H_{N}(t) d t \tag{3.3}
\end{equation*}
$$

Since $H_{N}(t)$ increases as $N \rightarrow \infty$ and tends to a non-decreasing function $H(t)$, the existence of the limit (3.2) and (3.3) show that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{-\infty}^{\infty} e^{-s t} H_{N}(t) d t=\int_{-\infty}^{\infty} e^{-s t} H(t) d t \tag{3.4}
\end{equation*}
$$

exists for $0<s \leqq s_{3} . \quad H(t)$ is equal to

$$
\sum_{n=1}^{\infty} a_{n} n^{\alpha} \operatorname{Pr}\left(S_{n} \leqq t\right)
$$

The existence of the right side integral shows that for $0<s \leqq s_{4} \leqq s_{3}$

$$
H(t)=o\left(e^{s t}\right) \quad \text { for }|t| \rightarrow \infty .
$$

Hence

$$
s \int_{-\infty}^{\infty} e^{-s t} H(t) d t=\int_{-\infty}^{\infty} e^{-s t} d H(t)
$$

exists and is equal to

$$
\sum_{n=1}^{\infty} a_{n} n^{\alpha} \varphi_{n}(s) \quad \text { for } 0<s \leqq s_{4}
$$

by (3.2), (3.3) and (3.4), so that we have by Lemma-3

$$
\int_{-\infty}^{\infty} e^{-s t} d H(t) \sim \underset{m^{\alpha+1} s^{\alpha+1}}{a \cdot \alpha!} \quad \text { as } s \downarrow 0 .
$$

Then, by Lemma 1, we get

$$
\lim _{t \rightarrow \infty} \frac{1}{t^{\alpha+1}} H(t)=\lim _{t \rightarrow \infty} \underset{t^{\alpha+1}}{1} \sum_{n=1}^{\infty} a_{n} n^{\alpha} \operatorname{Pr}\left(S_{n} \leqq t\right)=\begin{gathered}
a \\
(\alpha+1) m^{\alpha+1}
\end{gathered} .
$$

Corollary 1. If, in addition to the conditions of Lemma 3, we assume that $a_{n}(n=1,2, \cdots)$ are bounded from below, we have

$$
\lim _{t \rightarrow \infty} \frac{1}{t^{\alpha+1}} \sum_{n=1}^{\infty} a_{n} n^{\alpha} \operatorname{Pr}\left(S_{n} \leqq t\right)=\begin{gathered}
a \\
(\alpha+1) m^{\alpha+1}
\end{gathered} \quad \text { for } \alpha=0,1,2, \cdots .
$$

Proof. Since we can take a constant $c \geqq 0$ such that

$$
a_{\imath}+c \geqq 0 \quad \text { for } i=1,2, \cdots,
$$

we have

$$
\frac{1}{t^{\alpha+1}} \sum_{n=1}^{\infty} a_{n} n^{\alpha} \operatorname{Pr}\left(S_{n} \leqq t\right)=\frac{1}{t^{\alpha+1}} \sum_{n=1}^{\infty}\left(a_{n}+c\right) n^{\alpha} \operatorname{Pr}\left(S_{n} \leqq t\right)-\frac{c}{t^{\alpha+1}} \sum_{n=1}^{\infty} n^{\alpha} \operatorname{Pr}\left(S_{n} \leqq t\right)
$$

which converges to

$$
\underset{(\alpha+1) m^{\alpha+1}}{a+c}-\begin{gathered}
c \\
(\alpha+1) m^{\alpha+1}
\end{gathered}=\frac{a}{(\alpha+1) m^{\alpha+1}} \quad(t \rightarrow \infty) .
$$

Corollary 2. If, in addition to the conditions Lemma 2, we assume that $\left\{a_{n}\right\}$ is a sequence of real numbers and a_{n} can be expressed as the difference of b_{n} and c_{n} for $n=1,2, \cdots$, where b_{n} and c_{n} are bounded from below and have the properties that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} b_{i}=b \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} c_{i}=c
$$

exist, we have

$$
\lim _{t \rightarrow \infty} \frac{1}{t^{\alpha+1}} \sum_{n=1}^{\infty} a_{n} n^{\alpha} \operatorname{Pr}\left(S_{n} \leqq t\right)=\frac{a}{(\alpha+1) m^{\alpha+1}} \quad \text { for } \alpha=0,1,2, \cdots
$$

where $a=b-c$.
4. Taking $\sigma_{n}(t)$ as $a_{n} \operatorname{Pr}\left(S_{n} \leqq t\right)$ in the course of the proof of Theorem 2 in [1], we get the following

ThEOREM 2. Under the conditions of Theorem 1, we have

$$
\begin{align*}
& \lim _{T \rightarrow \infty} \frac{1}{T^{\alpha+1}} \int_{-\infty}^{T} d t \sum_{n=1}^{\infty} a_{n} n^{\alpha} \operatorname{Pr}\left(t<S_{n} \leqq t+h\right)=\frac{a h}{(\alpha+1) m^{\alpha+1}} \tag{4.1}\\
& \quad \text { for } \alpha=0,1,2, \cdots .
\end{align*}
$$

Corollary 3. Under the conditions of Corollary 2, we have

$$
\begin{array}{r}
\lim _{T \rightarrow \infty} \frac{1}{T^{\alpha+1}} \int_{-\infty}^{T} d t \sum_{n=1}^{\infty} a_{n} n^{\alpha} \operatorname{Pr}\left(t<S_{n} \leqq t+h\right)=\frac{a h}{(\alpha+1) m^{\alpha+1}} \\
\text { for } \alpha=0,1,2, \cdots .
\end{array}
$$

The proof follows easily from Theorem 2.
Remark. If $\alpha \geqq 0$ may be not necessarily an integer, we have in place of (3.1) and (4.1) that

$$
\lim _{t \rightarrow \infty} \frac{1}{T^{\alpha+1}} \sum_{n=1}^{\infty} a_{n} \cdot \frac{\Gamma(n+\alpha+1)}{n!} \operatorname{Pr}\left(S_{n} \leqq t\right)=\frac{a}{(\alpha+1) m^{\alpha+1}},
$$

and

$$
\lim _{T \rightarrow \infty} \frac{1}{T^{\alpha+1}} \int_{-\infty}^{T} d t \sum_{n=1}^{\infty} a_{n} \cdot \frac{\Gamma(n+\alpha+1)}{n!} \operatorname{Pr}\left(t<S_{n} \leqq t+h\right)=\frac{a h}{(\alpha+1) m^{\alpha+1}} .
$$

Corollary 4. Let $A_{i}(i=1,2, \cdots)$ be independent identically distributed random variables, having finite variances. Then, under the conditions of Lemma 2, we have

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T^{\alpha+1}} \int_{-\infty}^{T} d t \sum_{n=1}^{\infty} A_{n} n^{\alpha} \operatorname{Pr}\left(t<S_{n} \leqq t+h\right)=\frac{a h}{(\alpha+1) m^{\alpha+1}} . \tag{4.2}
\end{equation*}
$$

with probability 1, where $a=E\left\{X_{\imath}\right\}$.
Proof. Since the sequences $\left\{\max \left(A_{v}, 0\right)\right\}$ and $\left\{\max \left(-A_{v}, 0\right)\right\}$ of random variables obey respectively the the strong law of large numbers and A_{\imath} $=\max \left(A_{\imath}, 0\right)-\max \left(-A_{\imath}, 0\right)$, this theorem follows from Corollary 3.

In conclusion, the author expresses his sincerest thanks to Professors T. Kawata and K. Kunisawa who have given valuable advices.

References

[1] Hatori, H., Some theorems in an extended renewal theory, II. Kōdai Math. Sem. Rep. 12 (1960), 21-27.
[2] Kawata, T., A renewal theorem, Journ. Math. Soc. Japan 8 (1956), 118-126.

Department of Mathematics,
Tokyo Institute of Technology.

