ON THE HAHN-BANACH TYPE THEOREM AND THE JORDAN

 DECOMPOSITION OF MODULE LINEAR MAPPING OVER SOME OPERATOR ALGEBRASBy Masamichi Takesaki

Introduction.

In [6], Nachbin has shown the real Hahn-Banach extension property of $C_{R}(\Omega)$, the space of all real valued continuous functions over a compact stonean space Ω, and recently Hasumi has proved the generalization of this result to complex case in [4]. While $C(\Omega)$ is considered, not only as a Banach space, but as a commutative algebra, then the extension problem of a module linear mapping over $C(\Omega)$ comes into our consideration. The same problem has been treated by Nakai in [7] which was independently presented from ours.

On the other hand, Takeda and Grothendieck have shown the Jordan decomposition of self-adjoint linear functional on an operator algebra corresponding to the Jordan decomposition of real Radon measure on a locally compact space in [3] and [9], respectively.

In the present note we shall show the extension property of $C(\Omega)$ for module linear mappings over $C(\Omega)$ and the generalization of Takeda-Grothendieck's result for self-adjoint module linear mappings over $C(\Omega)$.

1. Let \boldsymbol{M} be a \boldsymbol{C}^{*}-algebra, \boldsymbol{M}^{*} the conjugate space of \boldsymbol{M} and $\boldsymbol{M}^{* *}$ the second conjugate space of \boldsymbol{M}. If π is a ${ }^{*}$-representation of \boldsymbol{M} on a Hilbert space H, then π is uniquely extended to the metric homomorphism $\widetilde{\pi}$ from $\boldsymbol{M}^{* *}$ onto the weak closure of $\pi(\boldsymbol{M})$ which is continuous for $\sigma\left(\boldsymbol{M}^{* *}, \boldsymbol{M}^{*}\right)$-topology and σ-weak topology of the weak closure of $\pi(\boldsymbol{M})$. Since \boldsymbol{M}^{*} is linearly spanned by the positive part of \boldsymbol{M}^{*} by Takeda-Grothendieck Theorem (cf. [3] and [9]), there exists the unique W^{*}-algebra such that it is isometric to $M^{* *}$ and its σ-weak topology coincides with $\sigma\left(\boldsymbol{M}^{* *}, \boldsymbol{M}^{*}\right)$-topology. Therefore this W^{*} algebra is called the universal enveloping algebra of M and denoted by \widetilde{M} in the following (cf. [10]).

Let E be a normed linear space, it is called a normed left (resp. right) M-module if the following conditions are satisfied:
(i) E is an algebraic left (resp. right) M-module,
(ii) For every $a \in M$ and $x \in E$

$$
\|a x\| \leqq\|a\|\|x\| \quad \text { (resp. }\|x a\| \leqq\|a\|\|x\|) \text {. }
$$

If E is a two-sided normed M-module, we call E a normed M-module simply.
Received June 27, 1959.

In the following we assume that E is a normed M-module.
For any $a \in \boldsymbol{M}$ we define an operator L_{a} (resp. R_{a}) on M^{*} as follows:

$$
\left\langle b, L_{a} \varphi\right\rangle=\langle a b, \varphi\rangle \quad\left(\text { resp. }\left\langle b, R_{a} \varphi\right\rangle=\langle b a, \varphi\rangle\right)
$$

for all $b \in M$ and $\varphi \in M^{*}$, where the inner product $\langle x, \varphi\rangle$ is the value of φ at x. Similarly an operator \mathfrak{R}_{a} (resp. \Re_{a}) is defined on the conjugate space E^{*} of a normed M-module E for every $a \in M$ as

$$
\left\langle x, \mathfrak{R}_{a} \varphi\right\rangle=\langle a x, \varphi\rangle \quad\left(\text { resp. }\left\langle x, \Re_{a} \varphi\right\rangle=\langle x a, \varphi\rangle\right)
$$

for all $x \in E$ and $\varphi \in E^{*}$. Then the following properties are easily verified:

$$
\begin{array}{ll}
\mathfrak{R}_{(\lambda a+\mu b)}=\lambda \mathbb{R}_{a}+\mu \mathfrak{Z}_{b} & \left(\text { resp. } \Re_{(\lambda a+\mu b)}=\lambda \Re_{a}+\mu \Re_{b}\right), \\
\mathfrak{Z}_{(a b)}=\mathfrak{Z}_{b} \mathfrak{Z}_{a} & \left(\text { resp. } \Re_{(a b)}=\Re_{a} \Re_{b}\right), \\
\mathfrak{Z}_{a} \Re_{b}=\Re_{b} \mathfrak{Z}_{a} &
\end{array}
$$

for all $a, b \in M$ and complex numbers λ, μ.
Next we define an element $\omega_{l}(x, \varphi)\left(\operatorname{resp} . \omega_{r}(x, \varphi)\right)$ of \boldsymbol{M}^{*} for every $x \in E^{* *}$ and $\varphi \in E^{*}$ as follows:

$$
\left\langle a, \omega_{l}(x, \varphi)\right\rangle=\left\langle x, \mathfrak{R}_{a} \varphi\right\rangle \quad\left(\text { resp. }\left\langle a, \omega_{r}(x, \varphi)\right\rangle=\left\langle x, \Re_{a} \varphi\right\rangle\right)
$$

for all $a \in \boldsymbol{M}$. Then one can easily verify that the mapping $(x, \varphi) \rightarrow \omega_{l}(x, \varphi)$ (resp. $\omega_{r}(x, \varphi)$) is bilinear on $E^{* *} \times E^{*}$ and satisfies the condition

$$
\left\|\omega_{l}(x, \varphi)\right\| \leqq\|x\|\|\varphi\| \quad\left(\operatorname{resp} .\left\|\omega_{r}(x, \varphi)\right\| \leqq\|x\|\|\varphi\|\right) .
$$

For any $a \in \widetilde{\boldsymbol{M}}$ and $x \in E^{* *}$ a functional $\left\langle a, \omega_{l}(x, \varphi)\right\rangle$ of E^{*} determines the unique element of $E^{* *}$ which is denoted by $a \cdot x$.

Lemma 1. $E^{* *}$ is a normed left $\tilde{\boldsymbol{M}}$-module with respect to the above product.

Proof. For every $a \in M$ and $x \in E^{* *}$ we have easily

$$
\|a \cdot x\| \leqq\|a\|\|x\| .
$$

Since $\omega_{l}(x, \varphi)$ is binear, we get

$$
\begin{aligned}
& (\lambda a+\mu b) \cdot x=\lambda a \cdot x+\mu b \cdot x, \\
& a \cdot(\lambda x+\mu y)=\lambda a \cdot x+\mu b \cdot y
\end{aligned}
$$

for all $a, b \in M, x, y \in E^{* *}$ and complex numbers λ, μ. If a and b belong to M, then we have

$$
(a b) \cdot x=a \cdot(b \cdot x)
$$

for all $x \in E^{* *}$. In fact, we have

$$
\begin{aligned}
\langle(a b) \cdot x, \varphi\rangle & =\left\langle a b, \omega_{l}(x, \varphi)\right\rangle=\left\langle x, \mathfrak{R}_{a b} \varphi\right\rangle=\left\langle x, \mathfrak{R}_{b} \mathfrak{R}_{a} \varphi\right\rangle=\left\langle b, \omega_{l}\left(x, \mathfrak{R}_{a} \varphi\right)\right\rangle \\
& =\left\langle b \cdot x, \mathfrak{R}_{a} \varphi\right\rangle=\left\langle a, \omega_{l}(b \cdot x, \varphi)\right\rangle=\langle a \cdot(b \cdot x), \varphi\rangle
\end{aligned}
$$

for all $\varphi \in E^{*}$. The mapping $a \rightarrow a \cdot x$ from $\widetilde{\boldsymbol{M}}$ into $E^{* *}$ is continuous for $\sigma\left(\widetilde{M}, M^{*}\right)$ and $\sigma\left(E^{* *}, E^{*}\right)$-topologies because if $\left\{a_{\alpha}\right\}$ is a directed sequence of $\widetilde{\boldsymbol{M}}$ converging to $a \in \widetilde{\boldsymbol{M}}$ for $\sigma\left(\widetilde{\boldsymbol{M}}, \boldsymbol{M}^{*}\right)$-topology we have

$$
\lim _{\alpha}\left\langle a_{\alpha} \cdot x, \varphi\right\rangle=\lim _{\alpha}\left\langle a_{\alpha}, \omega_{l}(x, \varphi)\right\rangle=\left\langle a, \omega_{l}(x, \varphi)\right\rangle=\langle a \cdot x, \varphi\rangle
$$

for all $\varphi \in E^{*}$. Hence we have $(a b) \cdot x=a \cdot(b \cdot x)$ for all $a, b \in \widetilde{\boldsymbol{M}}$ and $x \in E^{* *}$. This concludes the proof.

For any $a \in \tilde{\boldsymbol{M}}$ a functional $(x, \varphi) \rightarrow\left\langle\alpha, \omega_{r}(x, \varphi)\right\rangle$ is a bounded bilinear one of $E \times E^{*}$, which determines the bounded operator \Re_{a} on E^{*} such as

$$
\left\langle a, \omega_{r}(x, \varphi)\right\rangle=\left\langle x, \Re_{a} \varphi\right\rangle
$$

for all $x \in E$ and $\varphi \in E^{*}$. Putting ${ }^{t} \Re_{a} x=x \circ \alpha$ for all $x \in E^{* *}$ and $a \in \tilde{M}$, where ${ }^{t} \Re_{a}$ is the transpose of \Re_{a}, we have

Lemma 2. $E^{* *}$ is a normed right $\widetilde{\boldsymbol{M}}$-module with respect to the above product. ${ }^{1)}$

Proof. It suffices only to prove

$$
x \circ(a b)=(x \circ a) \circ b
$$

for all $a, b \in \widetilde{\boldsymbol{M}}$ and $x \in E^{* *}$. Clearly $x \circ(a b)=(x \circ a) \circ b$ for $a, b \in \boldsymbol{M}$ and $x \in E$. If x belongs to E, then the mapping $a \rightarrow x \circ a$ is continuous for $\sigma\left(\widetilde{M}, M^{*}\right)$ - and $\sigma\left(E^{* *}, E^{*}\right)$-topologies. For, if $\left\{a_{\alpha}\right\}$ is a directed sequence of $\widetilde{\boldsymbol{M}}$ converging to $a \in \widetilde{\boldsymbol{M}}$ for $\sigma\left(\widetilde{\boldsymbol{M}}, \boldsymbol{M}^{*}\right)$-topology, then we have

$$
\begin{aligned}
\lim _{\alpha}\left\langle x \circ a_{\alpha}, \varphi\right\rangle & =\lim _{\alpha}\left\langle x, \Re_{a_{\alpha}} \varphi\right\rangle=\lim _{\alpha}\left\langle\alpha_{\alpha}, \omega_{r}(x, \varphi)\right\rangle \\
& =\left\langle a, \omega_{r}(x, \varphi)\right\rangle=\left\langle x, \Re_{a} \varphi\right\rangle=\langle x \circ a, \varphi\rangle
\end{aligned}
$$

for all $\varphi \in E^{*}$. Hence we get $x \circ(a b)=(x \circ \alpha) \circ b$ for $x \in E$ and $a, b \in \widetilde{\boldsymbol{M}}$. Moreover, the mapping $x \rightarrow x \circ \alpha$ is $\sigma\left(E^{* *}, E^{*}\right)$-continuous for $a \in \widetilde{\boldsymbol{M}}$ because, if $\left\{x_{\alpha}\right\}$ is a directed sequence of $E^{* *}$ converging to $x \in E^{* *}$ for $\sigma\left(E^{* *}, E^{*}\right)$-topology, we have

$$
\lim _{\alpha}\left\langle x_{\alpha} \circ a, \varphi\right\rangle=\lim _{\alpha}\left\langle x_{\alpha}, \Re_{a} \varphi\right\rangle=\left\langle x, \Re_{a} \varphi\right\rangle=\langle x \circ a, \varphi\rangle
$$

for all $\varphi \in E^{*}$. Therefore we get $x \circ(a b)=(x \circ a) \circ b$ for all $a, b \in \widetilde{\boldsymbol{M}}$ and $x \in E^{* *}$. This concludes the proof.

1) In Lemma 1 and Lemma 2, the left and right products are defined nonsymmetrically, but this is not avoidable in order that we shall show below ($a \cdot x$) $\circ b=a \cdot(x \circ b)$.

By these lemmas we see that the second conjugate space $E^{* *}$ of a normed \boldsymbol{M}-module E is a normed left and right \widetilde{M}-module. Moreover, we have

Theorem 1. If E is a normed M-module, then the second conjugate space $E^{* *}$ of E is a normed \widetilde{M}-module with respect to the products in Lemma 1 and Lemma 2.

Proof. It suffices only to prove

$$
(a \cdot x) \circ b=a \cdot(x \circ b)
$$

for $a, b \in \widetilde{\boldsymbol{M}}$ and $x \in E^{* *}$. Suppose a belonging to \boldsymbol{M}, then the mapping $x \rightarrow a \cdot x$ is $\sigma\left(E^{* *}, E^{*}\right)$-continuous for, if $\left\{x_{\alpha}\right\}$ is a directed sequence of $E^{* *}$ converging to x for $\sigma\left(E^{* *}, E^{*}\right)$-topology, we have

$$
\begin{aligned}
\lim _{\alpha}\left\langle a \cdot x_{\alpha}, \varphi\right\rangle & =\lim _{\alpha}\left\langle a, \omega_{l}\left(x_{\alpha}, \varphi\right)\right\rangle=\lim _{\alpha}\left\langle x_{\alpha}, \mathfrak{R}_{a} \varphi\right\rangle \\
& =\left\langle x, \mathfrak{R}_{a} \varphi\right\rangle=\left\langle a, \omega_{l}(x, \varphi)\right\rangle=\langle a \cdot x, \varphi\rangle
\end{aligned}
$$

for all $\varphi \in E^{*}$. Therefore we get $(a \cdot x) \circ b=a \cdot(x \circ b)$ for all $a, b \in M$ and $x \in E^{* *}$.
On the other hand, the mapping $a \rightarrow a \cdot x$ is continuous for $\sigma\left(\widetilde{\boldsymbol{M}}, \boldsymbol{M}^{*}\right)$ - and $\sigma\left(E^{* *}, E^{*}\right)$-topologies and the mapping $x \rightarrow x \circ b$ is $\sigma\left(E^{* *}, E^{*}\right)$-continuous by the arguments in Lemma 1 and Lemma 2. Hence we have

$$
(a \cdot x) \circ b=a \cdot(x \circ b)
$$

for all $a, b \in \widetilde{M}$ and $x \in E^{* *}$. This concludes the proof.
In the following, we denote the second conjugate space $E^{* *}$ of a normed \boldsymbol{M}-module by \widetilde{E} as a normed $\widetilde{\boldsymbol{M}}$-module.

If we consider \boldsymbol{M}, itself, as a normed \boldsymbol{M}-module, then we have

$$
x y=x \cdot y=x \circ y
$$

for all $x, y \in \widetilde{\boldsymbol{M}}$. In fact, the mappings $y \rightarrow x y$ and $x \rightarrow x y$ are $\sigma\left(\widetilde{\boldsymbol{M}}, \boldsymbol{M}^{*}\right)$ continuous and coincide with the mappings $y \rightarrow x \cdot y$ and $x \rightarrow x \circ y$ for $x, y \in M$ respectively.

Furthermore, if we consider a Banach algebra B instead of a normed M-module, then the slight modification of the above arguments points out that the second conjugate space $B^{* *}$ of B becomes a Banach algebra in two different manners. But we shall omit the detail.

Next, we consider a certain linear mapping from a \boldsymbol{M}-module E into M. A linear mapping θ from E into a normed M-module F called a left (resp. right) M-linear mapping if

$$
\theta(a x)=a \theta(x) \quad(\text { resp. } \theta(x a)=\theta(x) a)
$$

for every $a \in \boldsymbol{M}$ and $x \in E$. If θ is two-sided M-linear, it is called M-linear simply. Combining this definition and Theorem 1, we have

Lemma 3. If θ is a bounded M-linear mapping from E into F, then the bitranspose ${ }^{\text {tt }} \theta=\widetilde{\theta}$ of θ is \widetilde{M}-linear.

Proof. From the proof of Lemma 2, the mapping $b \rightarrow x \circ b$ is $\sigma\left(\widetilde{\boldsymbol{M}}, \boldsymbol{M}^{*}\right)$ - and $\sigma\left(\widetilde{E}, E^{*}\right)$-continuous for $x \in E$. Hence we have $\theta(x \circ b)=\theta(x) \circ b$ for $x \in E$ and $b \in \widetilde{M}$. Using the $\sigma\left(\widetilde{E}, E^{*}\right)$-continuity of the mapping $x \rightarrow x \circ b$, we get

$$
\theta(x \circ b)=\theta(x) \circ b
$$

for all $x \in \widetilde{E}$ and $b \in \widetilde{\boldsymbol{M}}$. Moreover, the continuity of the mapping $a \rightarrow a \cdot x$ implies

$$
\theta(a \cdot x)=a \cdot \theta(x)
$$

for all $a \in \widetilde{M}$ and $x \in \widetilde{E}$. This concludes the proof.
Now we can state one of our main results in the following
Theorem 2. (Generalized Hahn-Banach Theorem) Let A be a commutative $A W^{*}$-algebra, E a normed A-module and V an invariant subspace of E, i.e. $a V b \subset V$ for a and $b \in A$. If θ is a bounded A-linear A-valued mapping on V, then θ can be extended to an A-linear \boldsymbol{A}-valued mapping θ_{0} on E preserving its norm. ${ }^{2)}$

Proof. At first, we recall that the second conjugate space E of E is a normed \tilde{A}-module by Theorem 1. Since the $\sigma\left(\widetilde{E}, E^{*}\right)$-closure \widetilde{V} of V is the second conjugate space of V, θ is uniquely extended to an \widetilde{A}-linear \widetilde{A}-valued mapping $\tilde{\theta}$ on \widetilde{V} by Lemma 3 as the bitranspose of θ. Let Ω be the spectrum space of \boldsymbol{A} and \boldsymbol{A}_{0} the space of all bounded complex valued functions on Ω, that is, $\boldsymbol{A}_{0}=l^{\infty}(\Omega)$, then \boldsymbol{A}_{0} becomes a subalgebra of \widetilde{A}. Hence \widetilde{E} is considered as a normed \boldsymbol{A}_{0}-module. For any fixed point $t \in \Omega$, put $\varphi_{t}={ }^{t} \theta\left(\sigma_{t}\right)$ where σ_{t} is the pure state of \boldsymbol{A} corresponding to $t,:$ then we have that $\varphi_{t} \in V^{*}$ and

$$
\begin{aligned}
\left\langle a \cdot x \circ b, \varphi_{t}\right\rangle & =\left\langle a \cdot x \circ b,{ }^{t} \theta\left(\sigma_{t}\right)\right\rangle=\left\langle\widetilde{\theta}(a \cdot x \circ b), \sigma_{t}\right\rangle=\left\langle a \widetilde{\theta}(x) b, \sigma_{t}\right\rangle \\
& =a(t) b(t)\left\langle\widetilde{\theta}(x), \sigma_{t}\right\rangle=a(t) b(t)\left\langle x, \varphi_{t}\right\rangle
\end{aligned}
$$

for all $a, b \in \boldsymbol{A}_{0}$ and $x \in \widetilde{V}$. Next, let e_{t} be the carrier projection of σ_{t} in $\widetilde{\boldsymbol{A}}$, then e_{t} belongs to A_{0} and we have

$$
\left\langle e_{t} \cdot x, \varphi_{t}\right\rangle=\left\langle x, \varphi_{t}\right\rangle, \quad\left\langle x \circ e_{t}, \varphi_{t}\right\rangle=\left\langle x, \varphi_{t}\right\rangle
$$

[^0]for all $x \in \widetilde{V}$ and $e_{t} a=\alpha(t) e_{t}$ for $a \in A_{0}$. Put $\widetilde{V_{t}}=e_{t} \cdot \widetilde{V}_{\circ} e_{t}$ and $\widetilde{E_{t}}=e_{t} \cdot \widetilde{E} \circ e_{t}$, then \widetilde{V}_{t} is an \boldsymbol{A}_{0}-invariant subspace of \widetilde{E}_{t} and one can consider φ_{t} as an element of $V_{t}{ }^{*}$. Let $\widetilde{\varphi}_{t}$ be an extension of φ_{t} to $\widetilde{E_{t}}$ by the usual Hahn-Banach Theorem and $\bar{\varphi}_{t}$ the element of \widetilde{E}^{*} which is defined by the equation
$$
\left\langle x, \bar{\varphi}_{t}\right\rangle=\left\langle e_{t} \cdot x \circ e_{t}, \widetilde{\varphi}_{t}\right\rangle
$$
for $x \in \tilde{L^{\prime}}$, we have
$$
\left\langle a \cdot x \circ b, \bar{\varphi}_{t}\right\rangle=\left\langle e_{t} \cdot a \cdot x \circ b \circ e_{t}, \widetilde{\varphi}_{t}\right\rangle=\left\langle a(t) b(t) e_{t} \cdot x \circ e_{t}, \widetilde{\varphi}_{t}\right\rangle=a(t) b(t)\left\langle x, \bar{\varphi}_{t}\right\rangle
$$
for all $a, b \in A_{0}$ and $x \in \widetilde{E}$. Consider the mapping $\bar{\theta}$ from \widetilde{E} to A_{0} such as $\bar{\theta}(x)(t)=\left\langle x, \bar{\varphi}_{t}\right\rangle$ for all $x \in \widetilde{E}$ and $t \in \Omega$, then we have
$$
\bar{\theta}(a \cdot x \circ b)=a \bar{\theta}(x) b
$$
for all $a, b \in A_{0}$ and $x \in \widetilde{E}$, for
\[

$$
\begin{aligned}
\bar{\theta}(a \cdot x \circ b)(t) & =\left\langle a \cdot x \circ b, \bar{\psi}_{t}\right\rangle=a(t) b(t)\left\langle x, \bar{\psi}_{t}\right\rangle \\
& =a(t) b(t) \bar{\theta}(x)(t)=[a \bar{\theta}(x) b](t) .
\end{aligned}
$$
\]

For $x \in \widetilde{V}$, we have

$$
\bar{\theta}(x)(t)=\left\langle x, \varphi_{t}\right\rangle=\left\langle e_{t} \cdot x \circ e_{t},\right\rangle=\left\langle e_{t} \cdot x \circ e_{t}, \varphi_{t}\right\rangle=\left\langle x, \varphi_{t}\right\rangle=\widetilde{\theta}(x)(t),
$$

so that $\bar{\theta}$ coincides with $\tilde{\theta}$ on \tilde{V}. Moreover, we have

$$
\begin{aligned}
\|\bar{\theta}\| & =\sup [\|\bar{\theta}(x)\|:\|x\| \leqq 1]=\sup [|\bar{\theta}(x)(t)|:\|x\| \leqq 1, t \in \Omega] \\
& =\sup \left[\left|\left\langle x, \bar{\varphi}_{t}\right\rangle\right|:\|x\| \leqq 1, t \in \Omega\right]=\sup \left[\left\|\bar{\varphi}_{t}\right\|: t \in \Omega\right] \\
& =\sup \left[\left\|\varphi_{t}\right\|: t \in \Omega\right]=\sup \left[\left|\left\langle x, \varphi_{t}\right\rangle\right|: x \in V\|x\| \leqq 1, t \in \Omega\right] \\
& =\sup [|\theta(x)(t)|: x \in V\|x\| \leqq 1, t \in \Omega] \\
& =\sup [\|\theta(x)\|: x \in V\|x\| \leqq 1]=\|\theta\| .
\end{aligned}
$$

Hence we get $\|\bar{\theta}\|=\|\theta\|$.
Now, there exists a projection π of norm one from \boldsymbol{A}_{0} to \boldsymbol{A} by NachbinHasumi Theorem [4] and [6]. Put $\theta_{0}(x)=\pi[\bar{\theta}(x)]$ for $x \in E$, then θ_{0} is required one. In fact, we have

$$
\begin{aligned}
\theta_{0}(a x b) & =\pi\left[\bar{\theta}_{0}(a x b)\right]=\pi[a \bar{\theta}(x) b]=a \pi[\bar{\theta}(x)] b \quad \text { (cf. [11]) } \\
& =a \theta_{0}(x) b \quad \text { for all } a, b \in \boldsymbol{A} \text { and } x \in E, \\
\theta_{0}(x)= & \pi[\bar{\theta}(x)]=\pi[\theta(x)]=\theta(x) \quad \text { for } x \in V
\end{aligned}
$$

and $\|\theta\| \leqq\left\|\theta_{0}\right\|=\|\pi \cdot \bar{\theta}\| \leqq\|\bar{\theta}\|=\|\theta\|$. This concludes the proof.
Connecting with this theorem, we consider a W^{*}-algebra \boldsymbol{M} with its commutative W^{*}-subalgebra \boldsymbol{A} as a normed \boldsymbol{A}-module, then the σ-weak continuities of θ and θ_{0} come into our consideration. However, it can be shown that there
exists no σ-weakly continuous projection of norm one from the full operator algebra M on an infinite dimensional Hilbert space to its commutative W^{*} subalgebra which contains no non-zero minimal projection (cf. [12]).
2. Let \boldsymbol{M} be a C^{*}-algebra and \boldsymbol{N} its C^{*}-subalgebra, then \boldsymbol{M} becomes a normed N-module. If θ is a bounded positive N-linear N-valued mapping on \boldsymbol{M} such that $\theta(a)=a$ for every $a \in \boldsymbol{N}$, then θ is called an expectation from \boldsymbol{M} to \boldsymbol{N}. If \boldsymbol{M} and \boldsymbol{N} contain units respectively, then the characterization of a mapping from \boldsymbol{M} to \boldsymbol{N} to be an expectation is given as $\theta\left(I_{M}\right)=I_{N},\|\theta\| \leqq 1$ and $\theta(a)=a$ for all $a \in N$ in [11], where I_{M} and I_{N} are units of M and N, respectively. In other words, the expectation is a generalized state, i.e. it is an operator valued state (cf. [8]). In this section, we shall prove the generalization of Takeda-Grothendieck's Theorem.

Lemma 4. Let \boldsymbol{M} be a W^{*}-algebra, \boldsymbol{N} a finite W^{*}-subalgebra of \boldsymbol{M} and θ a bounded *-preserving σ-weakly continuous N-linear N-valued mapping on M, then there exist two positive σ-weakly continuous \boldsymbol{N}-linear \boldsymbol{N}-valued mappings θ^{+}and θ^{-}on \boldsymbol{M} such as $\theta=\theta^{+}-\theta^{-}$.

Proof. At first, we recall that we have

$$
\left\|\varphi_{1}-\varphi_{2}\right\|=\left\|\varphi_{1}\right\|+\left\|\varphi_{2}\right\|
$$

for σ-weakly continuous positive linear functionals φ_{1} and φ_{2} on \boldsymbol{M} if and only if the carrier projections of φ_{1} and φ_{2} are orthogonal each other by [3]. Hence putting

$$
\left\langle u^{-1} x u, \varphi\right\rangle=\left\langle x, \varphi_{u}\right\rangle
$$

for self-adjoint $\varphi \in M^{*}$ and unitary $u \in M$, we have

$$
\varphi_{u}=\left(\varphi_{u}\right)^{+}-\left(\varphi_{u}\right)^{-}=\left(\varphi^{+}\right)_{u}-\left(\varphi^{-}\right)_{u}
$$

and

$$
\left\|\varphi_{u}\right\|=\|\varphi\|=\left\|\left(\varphi_{u}\right)^{+}\right\|+\left\|\left(\varphi_{u}\right)^{-}\right\|=\left\|\left(\varphi^{+}\right)_{u}\right\|+\left\|\left(\varphi^{-}\right)_{u}\right\| .
$$

That is, $\left(\varphi_{u}\right)^{+}=\left(\varphi^{+}\right)_{u}$ and $\left(\varphi_{u}\right)^{-}=\left(\varphi^{-}\right)_{u}$.
(1) Case of \boldsymbol{N} to be countably decomposable: From our assumption for N it has a faithful trace τ. Putting $\varphi=^{t} \theta(\tau)$, we have

$$
\left\langle x, \varphi_{u}\right\rangle=\left\langle u^{-1} x u, \varphi\right\rangle=\left\langle\theta\left(u^{-1} x u\right), \tau\right\rangle=\left\langle u^{-1} \theta(x) u, \tau\right\rangle=\langle\theta(x), \tau\rangle=\langle x, \tau\rangle
$$

for all $x \in M$ and unitary $u \in \boldsymbol{N}$, so that $\varphi_{u}=\varphi$. Hence $\left(\varphi^{+}\right)_{u}=\varphi^{+}$and $\left(\varphi^{-}\right)_{u}=\varphi^{-}$ for unitary $u \in N$ from our above remark. Let e and f be the carrier projections of φ^{+}and φ^{-}respectively, we have

$$
\begin{aligned}
& {\left[x \in M:\left\langle x^{*} x, \varphi^{+}\right\rangle=0\right]=\boldsymbol{M}(I-e),} \\
& {\left[x \in M:\left\langle x^{*} x, \varphi^{-}\right\rangle=0\right]=\boldsymbol{M}(I-f)}
\end{aligned}
$$

and

$$
L_{e} \varphi=\varphi^{+}, \quad L_{f} \varphi=-\varphi^{-}
$$

The invariancy of φ^{+}and φ^{-}with respect to unitary of \boldsymbol{N} implies that

$$
u^{-1} \boldsymbol{M}(I-e) u=\boldsymbol{M}(I-e) \quad \text { and } \quad u^{-1} \boldsymbol{M}(I-f) u=\boldsymbol{M}(I-f)
$$

for unitary u of N. Hence we have

$$
u^{-1} e u=e \quad \text { and } \quad u^{-1} f u=f
$$

so that e and f belong to N^{\prime} which is the commutator of N.
Now if we put $\theta^{+}(x)=\theta(e x)$ and $\theta^{-}(x)=-\theta(f x)$, this is a desired decomposition. In fact, we have clearly

$$
\theta=\theta^{+}-\theta^{-}
$$

For any $a, b \in N$ and $x \in M$, we have

$$
\theta^{+}(a x b)=\theta(e a x b)=\theta(a e x b)=a \theta(e x) b=a \theta^{+}(x) b
$$

and

$$
\theta^{-}(a x b)=-\theta(f a x b)=-\theta^{-}(a f x b)=-a \theta(f x) b=a \theta^{-}(x) b
$$

For any fixed positive element x of \boldsymbol{M} and every positive a of \boldsymbol{N}, we have

$$
\begin{aligned}
\left\langle a \theta^{+}(x), \tau\right\rangle & =\langle a \theta(e x), \tau\rangle=\left\langle a^{1 / 2} \theta(e x) a^{1 / 2}, \tau\right\rangle=\left\langle\theta\left(e a^{1 / 2} x a^{1 / 2}\right), \tau\right\rangle \\
& =\left\langle e a^{1 / 2} x a^{1 / 2}, \varphi\right\rangle=\left\langle a^{1 / 2} x a^{1 / 2}, \varphi^{+}\right\rangle \geqq 0
\end{aligned}
$$

and similarly $\left\langle a \theta^{-}(x), \tau\right\rangle \geqq 0$, so that $\theta^{+}(x)$ and $\theta^{-}(x)$ are positive in N. Therefore θ^{+}and θ^{-}are positive.
(2) General case: There exists a family $\left\{z_{\alpha}\right\}$ of orthogonal central projections of N such that $\sum_{\alpha} z_{\alpha}=I$ and each $N z_{\alpha}$ is countably decomposable. Suppose θ_{α} to be the restriction of θ on $z_{\alpha} M z_{\alpha}$, there exist projections e_{α} and f_{α} in $\left(\boldsymbol{N} z_{\alpha}\right)^{\prime} \cap z_{\alpha} \boldsymbol{M} z_{\alpha}$ such that $\theta_{\alpha}\left(e_{\alpha} x\right)$ and $-\theta_{\alpha}\left(f_{\alpha} x\right)$ are positive mappings and

$$
\theta_{\alpha}(x)=\theta_{\alpha}\left(e_{\alpha} x\right)-\theta_{\alpha}\left(f_{\alpha} x\right)
$$

by the arguments in case (1). Putting $\sum_{\alpha} e_{\alpha}=e$ and $\sum_{\alpha} f_{\alpha}=f, \theta^{+}(x)=\theta(e x)$ and $\theta^{-}(x)=-\theta(f x)$ are desired ones. In fact, we have

$$
\begin{aligned}
\theta(x) & =\theta\left(\left(\sum_{\alpha} z_{\alpha}\right) x\left(\sum_{\alpha} z_{\alpha}\right)\right)=\sum_{\alpha, \alpha^{\prime}} \theta\left(z_{\alpha} x z_{\alpha^{\prime}}\right)=\sum_{\alpha, \alpha^{\prime}} z_{\alpha} \theta(x) z_{\alpha^{\prime}} \\
& =\sum_{\alpha} z_{\alpha} \theta(x)=\sum_{\alpha} z_{\alpha} \theta(x) z_{\alpha}=\sum_{\alpha} \theta_{\alpha}\left(z_{\alpha} x z_{\alpha}\right) \\
& =\sum_{\alpha}\left[\theta_{\alpha}\left(e_{\alpha} x\right)+\theta_{\alpha}\left(f_{\alpha} x\right)\right]=\sum_{\alpha}\left[\theta\left(e_{\alpha} x\right)+\theta\left(f_{\alpha} x\right)\right]=\theta(e x)+\theta(f x)
\end{aligned}
$$

For any positive $x \in \boldsymbol{M}, z_{\alpha} x z_{\alpha}$ is positive so that $\theta_{\alpha}\left(e_{\alpha} x\right)$ and $-\theta_{\alpha}\left(f_{\alpha} x\right)$ are positive. Hence $\theta(e x)$ and $-\theta(f x)$ are positive. Finally, we have

$$
\theta^{+}(a x b)=\theta(e a x b)=\theta(a e x b)=a \theta(e x) b=a \theta^{+}(x) b
$$

and similarly

$$
\theta^{-}(a x b)=a \theta^{-}(x) b
$$

for all $a, b \in \boldsymbol{N}$ and $x \in \boldsymbol{M}$. This concludes the proof.
Lemma 5. Let \boldsymbol{A} be a commutative $A W^{*}$-algebra and \boldsymbol{M} a C^{*}-algebra, with a unit, containning A. If θ is a positive \boldsymbol{A}-linear A-valued mapping on \boldsymbol{M}, then there exist a positive element a of \boldsymbol{A} and an expectation θ_{0} such that $\theta(x)=a \theta(x)$.

Proof. Suppose Ω to be the spectrum space of A, Ω is a stonean space. Putting $\theta(I)=a$ and $G=[t \in \Omega: a(t)>0], G$ is an open subset of Ω. Let e be the characteristic function of the closure of G, then e is a projection of \boldsymbol{A}. Putting $\theta_{0}{ }^{\prime}(x)(t)=\theta(x)(t) / a(t)$ for $t \in G$ and $x \in e M e$, the function $\theta_{0}{ }^{\prime}(x)(t)$ is bounded and continuous on G because of the mapping $x \rightarrow \theta_{0^{\prime}}(x)(t)$ to be a state on $e M e$, which implies

$$
\left|\theta_{0}^{\prime}(x)(t)\right| \leqq\|x\| .
$$

Hence it is uniquely extended to a continuous function on the closure of G by [2], i. e. $\theta_{0}{ }^{\prime}(x)$ is considered as an element of $\boldsymbol{A} e$. This $\theta_{0}{ }^{\prime}$ is an expectation from $e \boldsymbol{M} e$ to $\boldsymbol{A} e$, and $\theta(x)=a \theta_{0}{ }^{\prime}(x)$ for $x \in e \boldsymbol{M} e$. Now there exists an expectation $\theta_{0}{ }^{\prime \prime}$ from $(I-e) \boldsymbol{M}(I-e)$ to $\boldsymbol{A}(I-e)$ by Nachbin-Hasumi's Theorem. Putting $\theta_{0}(x)=\theta_{0}{ }^{\prime}(e x e)+\theta_{0}{ }^{\prime \prime}((I-e) x(I-e))$ for $x \in M, \theta_{0}$ is the expectation which is $\theta(x)=a \theta_{0}(x)$ for $x \in M$. This concludes the proof.

Combining these lemmas, we get
Theorem 3. Let \boldsymbol{A} be a commutative $A W^{*}$-algebra and \boldsymbol{M} a C^{*}-algebra, with unit, containning \boldsymbol{A}. If θ is a bounded ${ }^{*}$-preserving \boldsymbol{A}-linear \boldsymbol{A}-valued mapping on \boldsymbol{M}, then there exist two positive elements a_{1} and a_{2} and two expectations θ_{1} and θ_{2} such that

$$
\theta=a_{1} \theta_{1}-a_{2} \theta_{2}
$$

Proof. Considering their universal enveloping algebras $\widetilde{M}, \widetilde{A}$ and the bitranspose $\tilde{\theta}={ }^{t t} \theta$ of θ, there exist σ-weakly continuous positive $\widetilde{\boldsymbol{A}}$-linear \widetilde{A}-valued mapping $\widetilde{\theta}^{+}$and $\widetilde{\theta}^{-}$such that

$$
\tilde{\theta}=\widetilde{\theta}^{+}-\widetilde{\theta}^{-}
$$

by Lemma 4. There exists a projection π of norm one from $\tilde{\boldsymbol{A}}$ to \boldsymbol{A} by Nachbin-Hasumi's Theorem. Putting $\theta^{+}(x)=\pi\left[\tilde{\theta}^{+}(x)\right]$ and $\theta^{-}(x)=\pi\left[\tilde{\theta}^{-}(x)\right]$ for $x \in \boldsymbol{M}, \theta^{+}$and θ^{-}become positive \boldsymbol{A}-linear A-valued mapping on \boldsymbol{M} such that

$$
\theta=\theta^{+}-\theta^{-}
$$

Applying Lemma 5 to θ^{+}and θ^{-}respectively, we obtain

$$
\theta^{+}=a_{1} \theta_{1} \quad \text { and } \quad \theta^{-}=a_{2} \theta_{2}
$$

where α_{1} and α_{2} are positive element of A and θ_{1} and θ_{2} are expectations from \boldsymbol{M} to \boldsymbol{A}. Thus we have

$$
\theta=a_{1} \theta_{1}-a_{2} \theta_{2}
$$

This concludes the proof.

REFERENCES

[1] Dixmier, J., Les algèbres d'opérateurs dans l'espace hilbertien. Paris (1957).
[2] Dixmier, J., Sur certain considerés par M. H. Stone. Summa Brasil. 68 (1951), 185-202.
[3] Grothendieck, A., Un resultat sur le dual d'une C^{*}-algèbre. Journ. Math. 36 (1957), 97-108.
[4] Hasumi, M., The extension property of complex Banach spaces. Tôhoku Math. Journ. 10 (1958), 135-142.
[5] Kaplansky, I., Projections in Banach algebra. Ann. Math. 53 (1951), 235249.
[6] Nachbin, L., A theorem of Hahn-Banach type for linear transformations. Trans. Amer. Math. Soc. 68 (1950), 28-46.
[7] Nakai, M., Some expectations in $A W^{*}$-algebras. Proc. Japan Acad. 34 (1958), 411-416.
[8] Nakamura, M., and T. Turumaru, Expectations in an operator algebra. Tôhoku Math. Journ. 6 (1954), 182-188.
[9] Takeda, Z., Conjugate space of operator algebras. Proc. Japan Acad. 30 (1954), 90-94.
[10] Takesaki, M., On the conjugate space of operator algebra. Tôhoku Math. Journ. 10 (1958), 195-203.
[11] Tomiyama, J., On the projection of norm one in W^{*}-algebras. Proc. Japan Acad. 33 (1957), 608-612.
[12] Tomiyama, J., On the projection of norm one in W^{*}-algebras, III. Tôhoku Math. Journ. 11 (1959), 125-129.

Department of Mathematics, Tokyo Institute of Technology.

[^0]: 2) We call a commutative C^{*}-algebra $\boldsymbol{A} A W^{*}$-algebra if the self-adjoint part of \boldsymbol{A} becomes a conditionally complete vector lattice with respect to the usual ordering of operators. Then the characterization of a commutative C^{*}-algebra \boldsymbol{A} to be $A W^{*}$-algebra is given as follows: the closure of any open set in the spectrum space Ω of \boldsymbol{A} becomes open again. And such a compact space is called stonean space (cf. [2] and [5]).
