ON THE HAHN-BANACH TYPE THEOREM AND THE JORDAN DECOMPOSITION OF MODULE LINEAR MAPPING OVER SOME OPERATOR ALGEBRAS

By Masamichi Takesaki

Introduction.

In [6], Nachbin has shown the real Hahn-Banach extension property of $C_R(\Omega)$, the space of all real valued continuous functions over a compact stonean space Ω , and recently Hasumi has proved the generalization of this result to complex case in [4]. While $C(\Omega)$ is considered, not only as a Banach space, but as a commutative algebra, then the extension problem of a module linear mapping over $C(\Omega)$ comes into our consideration. The same problem has been treated by Nakai in [7] which was independently presented from ours.

On the other hand, Takeda and Grothendieck have shown the Jordan decomposition of self-adjoint linear functional on an operator algebra corresponding to the Jordan decomposition of real Radon measure on a locally compact space in [3] and [9], respectively.

In the present note we shall show the extension property of $C(\Omega)$ for module linear mappings over $C(\Omega)$ and the generalization of Takeda-Grothendieck's result for self-adjoint module linear mappings over $C(\Omega)$.

1. Let M be a C^* -algebra, M^* the conjugate space of M and M^{**} the second conjugate space of M. If π is a *-representation of M on a Hilbert space H, then π is uniquely extended to the metric homomorphism $\tilde{\pi}$ from M^{**} onto the weak closure of $\pi(M)$ which is continuous for $\sigma(M^{**}, M^*)$ -topology and σ -weak topology of the weak closure of $\pi(M)$. Since M^* is linearly spanned by the positive part of M^* by Takeda-Grothendieck Theorem (cf. [3] and [9]), there exists the unique W^* -algebra such that it is isometric to M^{**} and its σ -weak topology coincides with $\sigma(M^{**}, M^*)$ -topology. Therefore this W^* -algebra is called the universal enveloping algebra of M and denoted by \tilde{M} in the following (cf. [10]).

Let E be a normed linear space, it is called a *normed left* (resp. *right*) *M*-module if the following conditions are satisfied:

(i) E is an algebraic left (resp. right) M-module,

(ii) For every $a \in M$ and $x \in E$

 $||ax|| \le ||a|| ||x||$ (resp. $||xa|| \le ||a|| ||x||$).

If E is a two-sided normed *M*-module, we call E a normed *M*-module simply.

Received June 27, 1959.

In the following we assume that E is a normed M-module.

For any $a \in M$ we define an operator L_a (resp. R_a) on M^* as follows:

$$\langle b, L_a \varphi \rangle = \langle ab, \varphi \rangle$$
 (resp. $\langle b, R_a \varphi \rangle = \langle ba, \varphi \rangle$)

for all $b \in M$ and $\varphi \in M^*$, where the inner product $\langle x, \varphi \rangle$ is the value of φ at x. Similarly an operator \mathfrak{L}_a (resp. \mathfrak{R}_a) is defined on the conjugate space E^* of a normed *M*-module *E* for every $a \in M$ as

$$\langle x, \mathfrak{L}_a \varphi \rangle = \langle ax, \varphi \rangle \quad (ext{resp.} \langle x, \mathfrak{R}_a \varphi \rangle = \langle xa, \varphi \rangle)$$

for all $x \in E$ and $\varphi \in E^*$. Then the following properties are easily verified:

$$\begin{split} \mathfrak{L}_{(\lambda a+\mu b)} &= \lambda \mathfrak{L}_{a} + \mu \mathfrak{L}_{b} \qquad (\text{resp. } \mathfrak{R}_{(\lambda a+\mu b)} = \lambda \mathfrak{R}_{a} + \mu \mathfrak{R}_{b}), \\ \mathfrak{L}_{(ab)} &= \mathfrak{L}_{b} \mathfrak{L}_{a} \qquad (\text{resp. } \mathfrak{R}_{(ab)} = \mathfrak{R}_{a} \mathfrak{R}_{b}), \\ \mathfrak{L}_{a} \mathfrak{R}_{b} &= \mathfrak{R}_{b} \mathfrak{L}_{a} \end{split}$$

for all $a, b \in M$ and complex numbers λ, μ .

Next we define an element $\omega_l(x, \varphi)$ (resp. $\omega_r(x, \varphi)$) of M^* for every $x \in E^{**}$ and $\varphi \in E^*$ as follows:

$$\langle a, \omega_l(x, \varphi) \rangle = \langle x, \mathfrak{L}_a \varphi \rangle \quad (\text{resp.} \langle a, \omega_r(x, \varphi) \rangle = \langle x, \mathfrak{R}_a \varphi \rangle)$$

for all $a \in M$. Then one can easily verify that the mapping $(x, \varphi) \rightarrow \omega_l(x, \varphi)$ (resp. $\omega_r(x, \varphi)$) is bilinear on $E^{**} \times E^*$ and satisfies the condition

$$\|\omega_l(x,\varphi)\| \leq \|x\| \|\varphi\| \qquad (\text{resp. } \|\omega_r(x,\varphi)\| \leq \|x\| \|\varphi\|).$$

For any $a \in \tilde{M}$ and $x \in E^{**}$ a functional $\langle a, \omega_l(x, \varphi) \rangle$ of E^* determines the unique element of E^{**} which is denoted by $a \cdot x$.

LEMMA 1. E^{**} is a normed left \hat{M} -module with respect to the above product.

Proof. For every $a \in M$ and $x \in E^{**}$ we have easily

$$||a \cdot x|| \leq ||a|| ||x||.$$

Since $\omega_l(x, \varphi)$ is binear, we get

$$(\lambda a + \mu b) \cdot x = \lambda a \cdot x + \mu b \cdot x,$$

 $a \cdot (\lambda x + \mu y) = \lambda a \cdot x + \mu b \cdot y$

for all $a, b \in M$, $x, y \in E^{**}$ and complex numbers λ , μ . If a and b belong to M, then we have

$$(ab) \cdot x = a \cdot (b \cdot x)$$

for all $x \in E^{**}$. In fact, we have

 $\mathbf{2}$

HAHN-BANACH TYPE THEOREM AND JORDAN DECOMPOSITION

$$egin{aligned} &\langle (ab)\cdot x, \, arphi
angle = \langle \, ab, \, \omega_l(x, \, arphi)
angle = \langle \, x, \, \mathfrak{L}_{ab} arphi
angle = \langle \, x, \, \mathfrak{L}_b \mathfrak{L}_a arphi
angle = \langle \, b, \, \omega_l(x, \, \mathfrak{L}_a arphi)
angle \ &= \langle \, b\cdot x, \, \mathfrak{L}_a arphi
angle = \langle \, a, \, \omega_l(b\cdot x, \, arphi)
angle = \langle \, a\cdot (b\cdot x), \, arphi
angle \end{aligned}$$

for all $\varphi \in E^*$. The mapping $a \to a \cdot x$ from \widehat{M} into E^{**} is continuous for $\sigma(\widetilde{M}, M^*)$ and $\sigma(E^{**}, E^*)$ -topologies because if $\{a_{\alpha}\}$ is a directed sequence of \widetilde{M} converging to $a \in \widetilde{M}$ for $\sigma(\widetilde{M}, M^*)$ -topology we have

$$\lim_{\alpha} \langle a_{\alpha} \cdot x, \varphi \rangle = \lim_{\alpha} \langle a_{\alpha}, \omega_{l}(x, \varphi) \rangle = \langle a, \omega_{l}(x, \varphi) \rangle = \langle a \cdot x, \varphi \rangle$$

for all $\varphi \in E^*$. Hence we have $(ab) \cdot x = a \cdot (b \cdot x)$ for all $a, b \in \widetilde{M}$ and $x \in E^{**}$. This concludes the proof.

For any $a \in \tilde{M}$ a functional $(x, \varphi) \rightarrow \langle a, \omega_r(x, \varphi) \rangle$ is a bounded bilinear one of $E \times E^*$, which determines the bounded operator \Re_a on E^* such as

$$\langle a, \omega_r(x, \varphi)
angle = \langle x, \Re_a \varphi
angle$$

for all $x \in E$ and $\varphi \in E^*$. Putting ${}^t\mathfrak{N}_a x = x \circ a$ for all $x \in E^{**}$ and $a \in \widehat{M}$, where ${}^t\mathfrak{N}_a$ is the transpose of \mathfrak{N}_a , we have

LEMMA 2. E^{**} is a normed right \widetilde{M} -module with respect to the above product.¹⁾

Proof. It suffices only to prove

$$x \circ (ab) = (x \circ a) \circ b$$

for all $a, b \in \widetilde{M}$ and $x \in E^{**}$. Clearly $x \circ (ab) = (x \circ a) \circ b$ for $a, b \in M$ and $x \in E$. If x belongs to E, then the mapping $a \to x \circ a$ is continuous for $\sigma(\widetilde{M}, M^*)$ - and $\sigma(E^{**}, E^*)$ -topologies. For, if $\{a_{\alpha}\}$ is a directed sequence of \widetilde{M} converging to $a \in \widetilde{M}$ for $\sigma(\widetilde{M}, M^*)$ -topology, then we have

$$egin{aligned} \lim_lpha ig< x \circ a_lpha, arphi ig> &= \lim_lpha ig< x, \, \Re_{a_lpha} arphi ig> &= \lim_lpha ig< a_lpha, \, \omega_r(x, \, arphi) ig> \ &= ig< x, \, \Re_a arphi ig> &= ig< x \circ a, \, arphi ig> \end{aligned}$$

for all $\varphi \in E^*$. Hence we get $x \circ (ab) = (x \circ a) \circ b$ for $x \in E$ and $a, b \in \widetilde{\mathcal{M}}$. Moreover, the mapping $x \to x \circ a$ is $\sigma(E^{**}, E^*)$ -continuous for $a \in \widetilde{\mathcal{M}}$ because, if $\{x_a\}$ is a directed sequence of E^{**} converging to $x \in E^{**}$ for $\sigma(E^{**}, E^*)$ -topology, we have

$$\lim_{\alpha} \langle x_{\alpha} \circ a, \varphi \rangle = \lim_{\alpha} \langle x_{\alpha}, \Re_{a} \varphi \rangle = \langle x, \Re_{a} \varphi \rangle = \langle x \circ a, \varphi \rangle$$

for all $\varphi \in E^*$. Therefore we get $x \circ (ab) = (x \circ a) \circ b$ for all $a, b \in \widetilde{M}$ and $x \in E^{**}$. This concludes the proof.

¹⁾ In Lemma 1 and Lemma 2, the left and right products are defined non-symmetrically, but this is not avoidable in order that we shall show below $(a \cdot x) \circ b = a \cdot (x \circ b)$.

By these lemmas we see that the second conjugate space E^{**} of a normed M-module E is a normed left and right \widetilde{M} -module. Moreover, we have

THEOREM 1. If E is a normed M-module, then the second conjugate space E^{**} of E is a normed \tilde{M} -module with respect to the products in Lemma 1 and Lemma 2.

Proof. It suffices only to prove

$$(a \cdot x) \circ b = a \cdot (x \circ b)$$

for $a, b \in \widetilde{M}$ and $x \in E^{**}$. Suppose a belonging to M, then the mapping $x \to a \cdot x$ is $\sigma(E^{**}, E^*)$ -continuous for, if $\{x_{\alpha}\}$ is a directed sequence of E^{**} converging to x for $\sigma(E^{**}, E^*)$ -topology, we have

$$egin{aligned} \lim_{lpha} \left\langle a \cdot x_{lpha}, \varphi
ight
angle &= \lim_{lpha} \left\langle a, \omega_l(x_{lpha}, \varphi)
ight
angle &= \lim_{lpha} \left\langle x_{lpha}, \mathfrak{L}_a \varphi
ight
angle \ &= \left\langle a, \omega_l(x, \varphi)
ight
angle &= \left\langle a \cdot x, \varphi
ight
angle \end{aligned}$$

for all $\varphi \in E^*$. Therefore we get $(a \cdot x) \circ b = a \cdot (x \circ b)$ for all $a, b \in M$ and $x \in E^{**}$.

On the other hand, the mapping $a \to a \cdot x$ is continuous for $\sigma(\tilde{M}, M^*)$ - and $\sigma(E^{**}, E^*)$ -topologies and the mapping $x \to x \circ b$ is $\sigma(E^{**}, E^*)$ -continuous by the arguments in Lemma 1 and Lemma 2. Hence we have

$$(a \cdot x) \circ b = a \cdot (x \circ b)$$

for all $a, b \in \widetilde{M}$ and $x \in E^{**}$. This concludes the proof.

In the following, we denote the second conjugate space E^{**} of a normed **M**-module by \tilde{E} as a normed \tilde{M} -module.

If we consider M, itself, as a normed M-module, then we have

$$xy = x \cdot y = x \circ y$$

for all $x, y \in \tilde{M}$. In fact, the mappings $y \to xy$ and $x \to xy$ are $\sigma(\tilde{M}, M^*)$ continuous and coincide with the mappings $y \to x \cdot y$ and $x \to x \circ y$ for $x, y \in M$ respectively.

Furthermore, if we consider a Banach algebra B instead of a normed M-module, then the slight modification of the above arguments points out that the second conjugate space B^{**} of B becomes a Banach algebra in two different manners. But we shall omit the detail.

Next, we consider a certain linear mapping from a *M*-module *E* into *M*. A linear mapping θ from *E* into a normed *M*-module *F* called a left (resp. right) *M*-linear mapping if

$$\theta(ax) = a\theta(x)$$
 (resp. $\theta(xa) = \theta(x)a$)

for every $a \in M$ and $x \in E$. If θ is two-sided *M*-linear, it is called *M*-linear simply. Combining this definition and Theorem 1, we have

4

LEMMA 3. If θ is a bounded *M*-linear mapping from *E* into *F*, then the bitranspose ${}^{\iota\iota}\theta = \widetilde{\theta}$ of θ is \widetilde{M} -linear.

Proof. From the proof of Lemma 2, the mapping $b \to x \circ b$ is $\sigma(\tilde{M}, M^*)$ - and $\sigma(\tilde{E}, E^*)$ -continuous for $x \in E$. Hence we have $\theta(x \circ b) = \theta(x) \circ b$ for $x \in E$ and $b \in \tilde{M}$. Using the $\sigma(\tilde{E}, E^*)$ -continuity of the mapping $x \to x \circ b$, we get

$$\theta(x \circ b) = \theta(x) \circ b$$

for all $x \in \tilde{E}$ and $b \in \tilde{M}$. Moreover, the continuity of the mapping $a \to a \cdot x$ implies

$$\theta(a \cdot x) = a \cdot \theta(x)$$

for all $a \in \widetilde{M}$ and $x \in \widetilde{E}$. This concludes the proof.

Now we can state one of our main results in the following

THEOREM 2. (Generalized Hahn-Banach Theorem) Let A be a commutative AW^* -algebra, E a normed A-module and V an invariant subspace of E, i.e. $aVb \subset V$ for a and $b \in A$. If θ is a bounded A-linear A-valued mapping on V, then θ can be extended to an A-linear A-valued mapping θ_0 on E preserving its norm.²⁾

Proof. At first, we recall that the second conjugate space E of E is a normed \tilde{A} -module by Theorem 1. Since the $\sigma(\tilde{E}, E^*)$ -closure \tilde{V} of V is the second conjugate space of V, θ is uniquely extended to an \tilde{A} -linear \tilde{A} -valued mapping $\tilde{\theta}$ on \tilde{V} by Lemma 3 as the bitranspose of θ . Let Ω be the spectrum space of A and A_0 the space of all bounded complex valued functions on Ω , that is, $A_0 = l^{\infty}(\Omega)$, then A_0 becomes a subalgebra of \tilde{A} . Hence \tilde{E} is considered as a normed A_0 -module. For any fixed point $t \in \Omega$, put $\varphi_t = {}^t \theta(\sigma_t)$ where σ_t is the pure state of A corresponding to t, then we have that $\varphi_t \in V^*$ and

$$egin{aligned} &\langle a\!\cdot\!x\!\circ\!b,\,arphi_t
angle = \langle a\!\cdot\!x\!\circ\!b,\,{}^t heta(\sigma_t)
angle = \langle heta(a\!\cdot\!x\!\circ\!b),\,\sigma_t
angle = \langle a heta(x)b,\,\sigma_t
angle \ = a(t)b(t)\langle \widetilde{ heta}(x),\,\sigma_t
angle = a(t)b(t)\langle x,\,arphi_t
angle \end{aligned}$$

for all $a, b \in A_0$ and $x \in \widetilde{V}$. Next, let e_t be the carrier projection of σ_t in \widetilde{A} , then e_t belongs to A_0 and we have

$$\langle e_t \cdot x, \varphi_t \rangle = \langle x, \varphi_t \rangle, \quad \langle x \circ e_t, \varphi_t \rangle = \langle x, \varphi_t \rangle$$

²⁾ We call a commutative C*-algebra $A A W^*$ -algebra if the self-adjoint part of A becomes a conditionally complete vector lattice with respect to the usual ordering of operators. Then the characterization of a commutative C*-algebra A to be $A W^*$ -algebra is given as follows: the closure of any open set in the spectrum space Ω of A becomes open again. And such a compact space is called stonean space (cf. [2] and [5]).

for all $x \in \widetilde{V}$ and $e_t a = a(t)e_t$ for $a \in A_0$. Put $\widetilde{V}_t = e_t \cdot \widetilde{V} \circ e_t$ and $\widetilde{E}_t = e_t \cdot \widetilde{E} \circ e_t$, then \widetilde{V}_t is an A_0 -invariant subspace of \widetilde{E}_t and one can consider φ_t as an element of V_t^* . Let $\widetilde{\varphi}_t$ be an extension of φ_t to \widetilde{E}_t by the usual Hahn-Banach Theorem and $\overline{\varphi}_t$ the element of \widetilde{E}^* which is defined by the equation

$$\langle x, \overline{\varphi}_t
angle = \langle e_t \cdot x \circ e_t, \widetilde{\varphi}_t
angle$$

for $x \in \widetilde{E}$, we have

$$\langle a \cdot x \circ b, \bar{\varphi}_t \rangle = \langle e_t \cdot a \cdot x \circ b \circ e_t, \widetilde{\varphi}_t \rangle = \langle a(t)b(t)e_t \cdot x \circ e_t, \widetilde{\varphi}_t \rangle = a(t)b(t) \langle x, \bar{\varphi}_t \rangle$$

for all $a, b \in A_0$ and $x \in \widetilde{E}$. Consider the mapping $\overline{\theta}$ from \widetilde{E} to A_0 such as $\overline{\theta}(x)(t) = \langle x, \overline{\varphi}_t \rangle$ for all $x \in \widetilde{E}$ and $t \in \Omega$, then we have

$$\overline{\theta}(a \cdot x \circ b) = a \overline{\theta}(x) b$$

for all $a, b \in A_0$ and $x \in \widetilde{E}$, for

$$ar{ heta}(a\cdot x\circ b)(t)=\langle a\cdot x\circ b,\, ar{arphi}_t\,
angle=a(t)b(t)\langle x,\, ar{arphi}_t\,
angle \ =a(t)b(t)ar{ heta}(x)(t)=[\,aar{ heta}(x)b](t).$$

For $x \in \widetilde{V}$, we have

$$\widehat{\theta}(x)(t) = \langle x, \varphi_t \rangle = \langle e_t \cdot x \circ e_t, \rangle = \langle e_t \cdot x \circ e_t, \varphi_t \rangle = \langle x, \varphi_t \rangle = \widehat{\theta}(x)(t),$$

so that $\overline{\theta}$ coincides with $\overline{\theta}$ on \widetilde{V} . Moreover, we have

$$\begin{split} \|\overline{\theta}\| &= \sup\left[\|\overline{\theta}(x)\|: \|x\| \leq 1\right] = \sup\left[|\overline{\theta}(x)(t)|: \|x\| \leq 1, t \in \Omega\right] \\ &= \sup\left[|\langle x, \overline{\varphi}_t \rangle|: \|x\| \leq 1, t \in \Omega\right] = \sup\left[\|\overline{\varphi}_t\|: t \in \Omega\right] \\ &= \sup\left[\|\varphi_t\|: t \in \Omega\right] = \sup\left[|\langle x, \varphi_t \rangle|: x \in V \|x\| \leq 1, t \in \Omega\right] \\ &= \sup\left[|\theta(x)(t)|: x \in V \|x\| \leq 1, t \in \Omega\right] \\ &= \sup\left[\|\theta(x)\|: x \in V \|x\| \leq 1\right] = \|\theta\|. \end{split}$$

Hence we get $\|\overline{\theta}\| = \|\theta\|$.

Now, there exists a projection π of norm one from A_0 to A by Nachbin-Hasumi Theorem [4] and [6]. Put $\theta_0(x) = \pi[\overline{\theta}(x)]$ for $x \in E$, then θ_0 is required one. In fact, we have

$$\begin{aligned} \theta_0(axb) &= \pi [\overline{\theta}_0(axb)] = \pi [a\overline{\theta}(x)b] = a\pi [\overline{\theta}(x)]b \quad \text{(cf. [11])} \\ &= a\theta_0(x)b \quad \text{for all } a, b \in A \text{ and } x \in E, \\ \theta_0(x) &= \pi [\overline{\theta}(x)] = \pi [\theta(x)] = \theta(x) \quad \text{for } x \in V \end{aligned}$$

and $\|\theta\| \leq \|\theta_0\| = \|\pi \cdot \overline{\theta}\| \leq \|\overline{\theta}\| = \|\theta\|$. This concludes the proof.

Connecting with this theorem, we consider a W^* -algebra M with its commutative W^* -subalgebra A as a normed A-module, then the σ -weak continuities of θ and θ_0 come into our consideration. However, it can be shown that there exists no σ -weakly continuous projection of norm one from the full operator algebra M on an infinite dimensional Hilbert space to its commutative W^* -subalgebra which contains no non-zero minimal projection (cf. [12]).

2. Let M be a C^* -algebra and N its C^* -subalgebra, then M becomes a normed N-module. If θ is a bounded positive N-linear N-valued mapping on M such that $\theta(a) = a$ for every $a \in N$, then θ is called an expectation from M to N. If M and N contain units respectively, then the characterization of a mapping from M to N to be an expectation is given as $\theta(I_M) = I_N$, $\|\theta\| \leq 1$ and $\theta(a) = a$ for all $a \in N$ in [11], where I_M and I_N are units of M and N, respectively. In other words, the expectation is a generalized state, i.e. it is an operator valued state (cf. [8]). In this section, we shall prove the generalization of Takeda-Grothendieck's Theorem.

LEMMA 4. Let M be a W*-algebra, N a finite W*-subalgebra of M and θ a bounded *-preserving σ -weakly continuous N-linear N-valued mapping on M, then there exist two positive σ -weakly continuous N-linear N-valued mappings θ^+ and θ^- on M such as $\theta = \theta^+ - \theta^-$.

Proof. At first, we recall that we have

$$\|\varphi_1 - \varphi_2\| = \|\varphi_1\| + \|\varphi_2\|$$

for σ -weakly continuous positive linear functionals φ_1 and φ_2 on M if and only if the carrier projections of φ_1 and φ_2 are orthogonal each other by [3]. Hence putting

$$\langle u^{-1}xu, \varphi \rangle = \langle x, \varphi_u \rangle$$

for self-adjoint $\varphi \in M^*$ and unitary $u \in M$, we have

$$\varphi_u = (\varphi_u)^+ - (\varphi_u)^- = (\varphi^+)_u - (\varphi^-)_u$$

and

$$\|\varphi_u\| = \|\varphi\| = \|(\varphi_u)^+\| + \|(\varphi_u)^-\| = \|(\varphi^+)_u\| + \|(\varphi^-)_u\|.$$

That is, $(\varphi_u)^+ = (\varphi^+)_u$ and $(\varphi_u)^- = (\varphi^-)_u$.

(1) Case of N to be countably decomposable: From our assumption for N it has a faithful trace τ . Putting $\varphi = {}^{t}\theta(\tau)$, we have

$$\langle x, \varphi_u \rangle = \langle u^{-1}xu, \varphi \rangle = \langle \theta(u^{-1}xu), \tau \rangle = \langle u^{-1}\theta(x)u, \tau \rangle = \langle \theta(x), \tau \rangle = \langle x, \tau \rangle$$

for all $x \in M$ and unitary $u \in N$, so that $\varphi_u = \varphi$. Hence $(\varphi^+)_u = \varphi^+$ and $(\varphi^-)_u = \varphi^$ for unitary $u \in N$ from our above remark. Let e and f be the carrier projections of φ^+ and φ^- respectively, we have

$$[x \in M: \langle x^*x, \varphi^+ \rangle = 0] = M(I - e),$$

$$[x \in M: \langle x^*x, \varphi^- \rangle = 0] = M(I - f)$$

and

$$L_e arphi = arphi^+$$
, $L_f arphi = - arphi^-$.

The invariancy of φ^+ and φ^- with respect to unitary of N implies that

$$u^{-1}M(I-e)u = M(I-e)$$
 and $u^{-1}M(I-f)u = M(I-f)$

for unitary u of N. Hence we have

$$u^{-1}eu = e$$
 and $u^{-1}fu = f$,

so that e and f belong to N' which is the commutator of N.

Now if we put $\theta^+(x) = \theta(ex)$ and $\theta^-(x) = -\theta(fx)$, this is a desired decomposition. In fact, we have clearly

$$\theta = \theta^{+} - \theta^{-}.$$

For any $a, b \in N$ and $x \in M$, we have

$$\theta^+(axb) = \theta(eaxb) = \theta(aexb) = a\theta(ex)b = a\theta^+(x)b$$

and

$$\theta^{-}(axb) = -\theta(faxb) = -\theta^{-}(afxb) = -a\theta(fx)b = a\theta^{-}(x)b.$$

For any fixed positive element x of M and every positive a of N, we have

$$\langle a heta^+(x), au
angle = \langle a heta(ex), au
angle = \langle a^{1/2} heta(ex)a^{1/2}, au
angle = \langle heta(ea^{1/2}xa^{1/2}), au
angle$$

= $\langle ea^{1/2}xa^{1/2}, heta
angle = \langle a^{1/2}xa^{1/2}, heta^+
angle \ge 0$

and similarly $\langle a\theta^-(x), \tau \rangle \ge 0$, so that $\theta^+(x)$ and $\theta^-(x)$ are positive in N. Therefore θ^+ and θ^- are positive.

(2) General case: There exists a family $\{z_{\alpha}\}$ of orthogonal central projections of N such that $\sum_{\alpha} z_{\alpha} = I$ and each Nz_{α} is countably decomposable. Suppose θ_{α} to be the restriction of θ on $z_{\alpha}Mz_{\alpha}$, there exist projections e_{α} and f_{α} in $(Nz_{\alpha})' \cap z_{\alpha}Mz_{\alpha}$ such that $\theta_{\alpha}(e_{\alpha}x)$ and $-\theta_{\alpha}(f_{\alpha}x)$ are positive mappings and

$$\theta_{\alpha}(x) = \theta_{\alpha}(e_{\alpha}x) - \theta_{\alpha}(f_{\alpha}x)$$

by the arguments in case (1). Putting $\sum_{\alpha} e_{\alpha} = e$ and $\sum_{\alpha} f_{\alpha} = f$, $\theta^{+}(x) = \theta(ex)$ and $\theta^{-}(x) = -\theta(fx)$ are desired ones. In fact, we have

$$\begin{split} \theta(x) &= \theta((\sum_{\alpha} z_{\alpha})x(\sum_{\alpha} z_{\alpha})) = \sum_{\alpha,\alpha'} \theta(z_{\alpha} x z_{\alpha'}) = \sum_{\alpha,\alpha'} z_{\alpha} \theta(x) z_{\alpha'} \\ &= \sum_{\alpha} z_{\alpha} \theta(x) = \sum_{\alpha} z_{\alpha} \theta(x) z_{\alpha} = \sum_{\alpha} \theta_{\alpha}(z_{\alpha} x z_{\alpha}) \\ &= \sum_{\alpha} \left[\theta_{\alpha}(e_{\alpha} x) + \theta_{\alpha}(f_{\alpha} x) \right] = \sum_{\alpha} \left[\theta(e_{\alpha} x) + \theta(f_{\alpha} x) \right] = \theta(ex) + \theta(fx). \end{split}$$

For any positive $x \in M$, $z_{\alpha}xz_{\alpha}$ is positive so that $\theta_{\alpha}(e_{\alpha}x)$ and $-\theta_{\alpha}(f_{\alpha}x)$ are positive. Hence $\theta(ex)$ and $-\theta(fx)$ are positive. Finally, we have

$$\theta^+(axb) = \theta(eaxb) = \theta(aexb) = a\theta(ex)b = a\theta^+(x)b$$

8

and similarly

$$\theta^{-}(axb) = a\theta^{-}(x)b$$

for all $a, b \in N$ and $x \in M$. This concludes the proof.

LEMMA 5. Let A be a commutative AW*-algebra and M a C*-algebra, with a unit, containing A. If θ is a positive A-linear A-valued mapping on M, then there exist a positive element a of A and an expectation θ_0 such that $\theta(x) = a\theta(x)$.

Proof. Suppose Ω to be the spectrum space of A, Ω is a stonean space. Putting $\theta(I) = a$ and $G = [t \in \Omega: a(t) > 0]$, G is an open subset of Ω . Let e be the characteristic function of the closure of G, then e is a projection of A. Putting $\theta_0'(x)(t) = \theta(x)(t)/a(t)$ for $t \in G$ and $x \in eMe$, the function $\theta_0'(x)(t)$ is bounded and continuous on G because of the mapping $x \to \theta_0'(x)(t)$ to be a state on eMe, which implies

 $|\theta_0'(x)(t)| \leq ||x||.$

Hence it is uniquely extended to a continuous function on the closure of G by [2], i. e. $\theta_0'(x)$ is considered as an element of Ae. This θ_0' is an expectation from eMe to Ae, and $\theta(x) = a\theta_0'(x)$ for $x \in eMe$. Now there exists an expectation θ_0'' from (I-e)M(I-e) to A(I-e) by Nachbin-Hasumi's Theorem. Putting $\theta_0(x) = \theta_0'(exe) + \theta_0''((I-e)x(I-e))$ for $x \in M$, θ_0 is the expectation which is $\theta(x) = a\theta_0(x)$ for $x \in M$. This concludes the proof.

Combining these lemmas, we get

THEOREM 3. Let A be a commutative AW*-algebra and M a C*-algebra, with unit, containing A. If θ is a bounded *-preserving A-linear A-valued mapping on M, then there exist two positive elements a_1 and a_2 and two expectations θ_1 and θ_2 such that

$$\theta = a_1\theta_1 - a_2\theta_2.$$

Proof. Considering their universal enveloping algebras \widetilde{M} , \widetilde{A} and the bitranspose $\widetilde{\theta} = {}^{tt}\theta$ of θ , there exist σ -weakly continuous positive \widetilde{A} -linear \widetilde{A} -valued mapping $\widetilde{\theta}^+$ and $\widetilde{\theta}^-$ such that

 $\widetilde{\theta} = \widetilde{\theta}^{\scriptscriptstyle +} - \widetilde{\theta}^{\scriptscriptstyle -}$

by Lemma 4. There exists a projection π of norm one from \widetilde{A} to A by Nachbin-Hasumi's Theorem. Putting $\theta^+(x) = \pi[\widetilde{\theta}^+(x)]$ and $\theta^-(x) = \pi[\widetilde{\theta}^-(x)]$ for $x \in M, \ \theta^+$ and θ^- become positive A-linear A-valued mapping on M such that

$$\theta = \theta^+ - \theta^-.$$

Applying Lemma 5 to θ^+ and θ^- respectively, we obtain

$$\theta^+ = a_1 \theta_1$$
 and $\theta^- = a_2 \theta_2$

where a_1 and a_2 are positive element of A and θ_1 and θ_2 are expectations from M to A. Thus we have

$$\theta = a_1\theta_1 - a_2\theta_2.$$

This concludes the proof.

References

- [1] DIXMIER, J., Les algèbres d'opérateurs dans l'espace hilbertien. Paris (1957).
- [2] DIXMIER, J., Sur certain considerés par M. H. Stone. Summa Brasil. 68 (1951), 185-202.
- [3] GROTHENDIECK, A., Un resultat sur le dual d'une C*-algèbre. Journ. Math. 36 (1957), 97-108.
- [4] HASUMI, M., The extension property of complex Banach spaces. Tôhoku Math. Journ. 10 (1958), 135-142.
- [5] KAPLANSKY, I., Projections in Banach algebra. Ann. Math. 53 (1951), 235-249.
- [6] NACHBIN, L., A theorem of Hahn-Banach type for linear transformations. Trans. Amer. Math. Soc. 68 (1950), 28-46.
- [7] NAKAI, M., Some expectations in AW*-algebras. Proc. Japan Acad. 34 (1958), 411-416.
- [8] NAKAMURA, M., AND T. TURUMARU, Expectations in an operator algebra. Tôhoku Math. Journ. 6 (1954), 182-188.
- [9] TAKEDA, Z., Conjugate space of operator algebras. Proc. Japan Acad. 30 (1954), 90-94.
- [10] TAKESAKI, M., On the conjugate space of operator algebra. Tôhoku Math. Journ. 10 (1958), 195-203.
- [11] TOMIYAMA, J., On the projection of norm one in W*-algebras. Proc. Japan Acad. 33 (1957), 608-612.
- [12] TOMIYAMA, J., On the projection of norm one in W*-algebras, III. Tôhoku Math. Journ. 11 (1959), 125-129.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.

10