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1. Introduction.

Chevalley and Kakutani showed that if DI and D2 are plane domains with
no A#-removable boundary points, then they are conformally equivalent if and
only if the rings B(Dί) and B(D2) of all bounded analytic functions on ΏI and
D2l respectively, are algebraically isomorphic (cf. [5]).

It is well known that two compact Hausdorff spaces are homeomorphic if
and only if the Banach algebras of all real valued continuous functions on
these spaces are isometric as Banach spaces, where the norm is defined by
"sup" (the Theorem of Banach-Stone, cf. [1]), and also if and only if these
Banach algebras are isomorphic as algebras (the Theorem of Gelfand-Kolmo-
goroίf, cf. [4]).

If we define a norm in B(Dj) by "sup", then B(Dj) appear as Banach
spaces with the unit (j = 1, 2). This suggests us an analogous question for the
above mentioned rings of analytic functions: If B(Dι) and B(D2) are isometric
as Banach spaces, are DI and D2 conformally equivalent?

This question will be solved in general form as the main Theorem of this
paper which will be stated in terms of Banach algebras, say, let B± (resp. B2)
be a commutative Banach algebra with the unit satisfying a norm condition || x2 \\
= \\x\\2 for all x^Bi (resp. B2), then BI and B2 are algebraically isomorphic
if and only if they are isometric as Banach spaces. Then a Banach-Stone type
theorem for analytic functions is a direct corollary of the main theorem. In the
course of the proof, the representation theory of Banach algebras and the
Krein-Milman's theorem which asserts that any weakly* compact convex subset
of the conjugate space of a Banach space has sufficiently many extreme points,
play naturally essential role.

The author wishes to express his hearty thanks to Professor H. Umegaki,
Mr. M. Takesaki and Professor M. Ozawa for their many suggestive discussions
in presenting this paper.

2. Main theorems.

In the present paper we assume that any algebra and its subalgebras
have always the unit.
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THEOREM 1. Let Bι and B2 be commutative Banach algebras with the
unit satisfying a norm condition \\ x2 \\ = \\ x ||2 for all x e B3 (j = 1, 2), then
BI and B2 are algebraically isomorphic if and only if Bί and B2 are iso-
metric as Banach spaces.

As is well known, each maximal ideal M of Bί (resp. B2) uniquely deter-
mine an algebraic homomorphism %M of Bί (resp. B2) onto the complex number
field. Furthermore the space of all % ,̂ which is weak* compact and will be
called the character space of Bί (resp. B2), is homeomorphic to the maximal
ideal space of BI (resp. B2). Therefore, in the following we identify the
maximal ideal space and the character space of Bί (resp. B2) and denote it
by Γί (resp. Γ2) (cf., e.g. [6]).

Now by the norm condition we have for any b^Bj (j = l, 2)

|| 6 1| = lim (|| b IΓ)2~" = lim (|| b*n \\)*~n = sup{| %(6) | : χ e Γ,}.
n->co w-»oo

If φ is the algebraic isomorphism of Bί onto B2, then there is one-to-one
mapping φ' of Γ2 onto Λ defined by %(06) = 0'%(δ) for all b<=Bι and all
%eΓ2, and therefore

|| φb || = sup{%(06): X e Γ2} - sup{0'%(6): % e Γ2}

Thus the necessity of the theorem is proved.
Next, let Bj(Γj) be the Gelfand representations of Bj (j = 1, 2) and C(Γj)

be the #*-algebras of all complex valued continuous functions on Γ j , then BJ9

identified with Bj(Γj), are subalgebras of C(Γy) (j = 1, 2). Furthermore, C(Γj)
are isometrically isomorphic as 5*-algebras to certain commutative C*-algebras
with the unit on some Hubert spaces, respectively (cf. e.g. [7]). Therefore,
the proof of sufficiency is reduced to the following theorem:

THEOREM 2. Let Ai (resp. A2) be a commutative C*-algebra with the unit
on some Hilbert space Hi (resp. H2) and Bί (resp. B2) be uniformly closed
but not necessarily self-adjoint subalgebra of AI (resp. A2) also with the
unit. If Bί and B2 are isometric as Banach spaces, then Bί and B2 are
algebraically isomorphic. Ώ

Before passing to the proof of the Theorem 2, we shall give several lemmas
for operator algebras in next section and the proof of the theorem will be
given in section 4.

3. Some lemmas.

Let A be C*-algebra with the unit I, B a closed linear subspace of A
with the unit but not necessarily self-adjoint, and A* (resp. B*) the conjugate
space of A (resp. B) as Banach space. Let "UΆ (resp. UBY' denote the unit

1) Here, the induced isomorphism is in general different from the given isometry.
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sphere of A* (resp. B*) and "EA (resp. EB)" the set of all extreme points of
UA (resp. UB). An element σ of UA (resp. Z75) is said to be the state of A
(resp. 5), if cr satisfies the condition that <r(I) = 1. Let "S^ (resp. SB)" be
the set of all states of A (resp. B), which will be called the state space of A
(resp. 5), then SA (resp. SB) is convex and weakly* compact and hence by the
Krein-Milman's theorem SA (resp. SB) contains extreme points. Denote by " ΩA

(resp. ΩB)" the set of all extreme points of SA (resp. SB) An element of ΩA

(resp. ΩB) is called a pure state and ΩA (resp. ΩB) the pure state space of A
(resp. 5).

REMARK 1. Any state σ^SB is a restriction of certain state σ' e SA on
B. Indeed, by the Hahn-Banach's extention theorem a can be extended to σr

on A and a' satisfies the condition that || σ' \\ = 1 and #'(/) = 1, and hence by
the Bohnenblust-Karlin's theorem [2], <s' is a positive linear functional in A
with || σ' || = 1, i.e. a state of A in the usual sense.

LEMMA 1. // μ is any element of EB, then there exists an element μ of
EA such that the restriction of μ on B is μ.

Proof. For any element μ<=EB, let Fμ = {<r:σ&UA, and σ — μ on B}.
By the Hahn-Banach's theorem we extend μ^EB to μ' e UA, which belongs to
Fμ, so that Fμ is non-empty. Furthermore, Fμ is clearly a weakly* compact
and convex subset of A*, hence there exists an extreme point μ of Fμ by the
Krein-Milman's theorem. We now show that μ is an extreme point of UA i.e.
an element of EA. Assume that 2μ = v + p, where v and p are elements of
UA not belonging to Fμ. Let μ be restricted to B and VB, PB denote the re-
strictions of v and p on B, then 2μ = VB -+- pB holds on B, but μ is an element
of EB, so μ, vB and ^B must coincide in view of the extremity of μ. It con-
tradicts the assumption that v, p^Fμ. (Similarly, the case where one of v, p
is in Fμ.) Thus μ is an element of EA This concludes the proof.

LEMMA 2. // ω is an element of ΩB, then there exists an element ω of
ΩA whose restriction on B is ω.

Proof. For any element ω e ΩB, let Fω — {μ : μ is a state of A which
coincides with ω on B}, and following the same process as in the proof of
Lemma 1, we can complete the proof.

In the following, we assume that the C*-algebra A considered is com-
mutative.

LEMMA 3. Any element μ^EA is represented as μ = λω by a complex
number λ with \λ \ = 1 and ω e QA> and therefore it satisfies \ μ(I) \ = 1.

Proof. This follows from the proof of Arens-Kelley's lemma (cf. Lemma
3.2 [1]) under a little modification for the present complex case. We give
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another proof in footnote.2)

LEMMA 4. // A is commutative and B is its subalgebra, then any ele-
ment ω of ΩB is multiplicative, i.e. ω(xy) = ω(x)ω(y) for any x, y e B.

Proof. If ω is extended to ω as Lemma 2, then ω is a pure state of A,
which is multiplicative. Thus ω, the restriction of ω on B, is multiplicative.
This concludes the proof.

REMARK 2. As is well known, the maximal ideal space ΓA of a commu-
tative C*-algebra A coincides with the pure state space ΩA of A. Therefore,
noticing that ΓA is defined by algebraical terms and that ΩA is defined by
metrical terms, we may be convinced, glancing at the relation ΓA = ΩA, that
the commutative C*-algebras are algebraically isomorphic if and only if they
are isometric as Banach spaces. But for a uniformly closed subalgebra B of
A which is not self-adjoint we have in general ΩB^ΓB.^ Therefore, there
is no such simple relation for not self-adoint subalgebras as in the case of
C*-algebras.

By above mentioned lemmas, we are able to concider another representa-
tion of B different from the Gelfand's one, if -B is a not necessarily self-

adjoint uniformly closed subalgebra of a commutative C*-algebra A. Let C(ΩB)

be the algebra of all complex valued continuous functions on ΩB, where ΩB is
the weak* closure of ΩB in ΓB, then B is imbedded into C(ΩB) in isometrically iso-
morphic manner, which will be called the Ω ̂ representation of B. When B is
self-adjoint, ^-representation of B coincides with the usual Gelfand's repre-
sentation.

In this paper, when ^-representation of B will be considered, B and its
^-representation will be always identified.

2) Let ΩA= {λω: \ λ |= 1, ω e ΩA}, then the bipolar ΩA

QO of ΩA coincides with UA,

where ^the definitions of polar and bipolar are in the sense of Bourbaki [3]. For, the

polar ΩA° of ΩA is ΣA, the unit sphere of A, and ΣA° = UA, which imply ΩA

QQ = UA.

Furthermore, ΩA™ = K(ΩA),t}& closed convex hull of ΩA, (cf. chap. IV, §1, Prop. 3 [3]).

Therefore EA = ΩAt since ΩA is weak* compact (cf. chap. II, Prop. 4 [3]). This con-
cludes the proof.

3) For example, let A be the ring of all functions that are analytic inside of the

unit sphere {z; |z|^l} of complex plane and continuous on the unit sphere. Let B be

the ring of all functions / which are restrictions of /<Ξ A on the unit circle {z; |z| = l}
as their domain. Then B c (7, where C is the ring of all complex valued continuous
functions on the unit circle. Clearly C is a C*-algebra and B is its uniformly closed
and not self-adjoint subalgebra. Therefore, ΩC and Γc coincide with the unit circle,
but ΓB is the unit sphere (cf. pp. 182-183 [7]), hence ΩC^ΓB. Any element of ΩB

can be extended on C but any element of ΓB - Ωc is not the extension of any element
of ΩB. Thus
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4. Proof of Theorem 2.

First we prove the case where the isometry θ of B^ onto B2 preserves the
unit. Under the same notations as in Theorem 2 we have:

THEOREM 3. // B± and B2 are isometric as Banach spaces and the iso-
metry θ preserves the unit, i.e. Θ(I) = I, then θ is also an algebraical
isomorphism between B± and B2.

Proof. If we define the transpose θ' of θ by μ(θx) = θ'μ(x) for all x e Bi
and μ^B2*, then θ' is an isometry of B2* onto Bi* and θr carries the pure
state space Ω2 of B2 onto Ωι of B± in one-to-one manner, because θ preserves
the unit. By Lemma 4 any element of Ω3 (j = 1, 2) is multiplicative, so that

ω(θ(xy)) = θ'ω(xy) = θ'ω(x)θ'ω(y)

= ω(θx)ω(θy) = ω(θxθy)

for any ω e Ω2 and any x, y e B! Therefore, considering ^-representation, we
have θ(xy) = θ(x)θ(y), which implies multiplicativity of θ. Thus θ is an alge-
braical isomorphism, because 6 preserves the unit by assumption. This con-
cludes the proof.

Proof of Theorm 2. Let 6 be the given isometry of BI onto B2. If we
can construct from the given isometry θ an isometry Θ0 of BI onto B2 which
preserves the unit, then by Theorem 3 the proof will be completed.

First we show that 0(1) is unitary. Let θ' be the transpose of 0, then θ'
is an isometry of J52* onto B^*, and therefore carries the pure state space Ω2

of B2 into the extreme point space J5Ί of Blt So, we have by Lemma 2 and
Lemma 3,

for any ω^Ω2. Considering in ^-representation, 0(1) is unitary.

In the following part we consider B2 in ^-representation. Put u = θ(I),
00 = u~lθ and Bs = u~1B2. Then Bs is a uniformly closed linear subspace of

C=C(Ω2) and has the unit. Θ0 is an isometry of BI onto Bs preserving the
unit. If we show that B3 = B2, the proof is finished.

We shall prove that if ωι, ω2 e Ωc are such that a>ι = ω2 on B%, then
MI = ω2. Notice that any element x e C has the form

x = limyΣJΪ! xϊ,vyitV = Hmy Σ^ (^~1^,y)*(^-12/ί,y),

where xl)V, yi)V^B2 and the limit is of uniform sense. Then,

(ϋl(x) = lim.Σ^ ω ι v y < l , ) = limy Σ^ ωiί^'^t, J^i^"1^, „),

Since ^"^.v, u'^i^^B^ and ίθι = ω2 on 53, the right hand sides of the above
equalities are equal. Thus α>ι = ω2 in Ωc, which implies that ω e ̂ 8, the pure
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state space of Bs, has unique extension property to an element of Ωc. Hence
we can regard as ΩzaΩc.

For any element ω e Ω2, regarded as an element of Ωc, ω(u~1x) = ω(u)ω(x)
on BS, and therefore ω, restricted on B3, is a state of J53. Moreover, we
shall show that ω is a pure state of B5. Considering ω as an element of Ωc,
we have for any x^B2,

( * ) ω(x) = ω(xu~lu) = ω(xu~l)ω(u) = ω(u~1x)ω(u~1).

We assume that ω is not a pure state of BB, then 2ω = σ + σ', where σ and σf

are states of B3, and hence by (*) for any x e B2,

= 2ω(u~1x)2ω(u~1)

= σ(u~1x)σ(u~1)+σ(u 1x)σf(u *)

Put <rι(aO = <T(M 1x)σ(u 0, <r2(») = <r(te ^X^ 0* <fz(x) = σ'(u 1x)σ(u J) and
= σ'(u~1x)σ'(u~1) for any x<^B2, then ^ ( '̂ = 1,2,3,4) are elements of the
unit sphere of J52*, moreover states of B2 and 4ω = #1 + <r2 H- <rβ + 0"4 on ^2,
which contradicts the extremity of ίt>. Therefore ω e ̂ 3, and J22 c J23. Ana-
logously we have Ωz c $2, hence Ω% = Ω2.

Now if we take a?, y & BI, then for any ω e ̂ 3,

= Θ0'ω(xy) = θQ

= ω(βQx)(ϋ(UQy) = ω(θ0(x)θ0(y)),

where θd is the transpose of 00» and hence

Thus J53 is an algebra and so u~1xu~1y^BQί which implies xu~ly^Bz. In
particular putting x =y = I, u'1 <= B2 and hence B2 = B3. This concludes the
proof.

5. An application to rings of analytic functions.

Let A (resp. Z)2) be a plane domain with no A£-removable boundary
points and J5(A) (resp. B(D2)) be the ring of all bounded analytic functions
in DI (resp. D2), then the Theorem of Che valley and Kakutani [5] is stated as
follows: A and D2 are conformally equivalent if and only if B(D1) and
B(D2) are algebraically isomorphic.

Moreover, if we define a norm of / in B(Dj) by [| / II = sup{ [/(«)(: z^Dj}
(j = 1, 2), then B(D^ are commutative Banach algebras satisfying the norm
condition ||/2|| = ||/||2. Therefore, by Theorem 1 J5(A) and B(D2) are algebrai-
cally isomorphic if and only if they are isometric as Banach spaces. Thus we
have obtained the following:

THEOREM 4. The following assertions are mutually equivalent:
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(1) A and D2 are conformally equivalent,
(2) B(Dί) and B(D2) are algebraically isomorphic,
(3) B(Dί) and B(D2) are isometric as Banach spaces.

REMARK 3. When A (resp. A) is not assumed to satisfy the above con-
dition, let A' (resp. AO be the smallest plane domain with no A#-removable
boundary points containing A (resp. A), then by Rudin [8] the assertion (1)
in the above theorem is to be replaced by

(I') A' and A' α?"β conformally equivalent.
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