A NOTE ON THE DIRECT PRODUCT OF OPERATOR ALGEBRAS

By Masamichi Takesaki

In [10], [11] and [2], Turumaru and Misonou have introduced the notion of the direct product of C^* -algebras and that of W^* -algebras, respectively. They are defined as follows.

Let M_1 and M_2 be C^* -algebras on Hilbert spaces H_1 and H_2 respectively. Then the C^* -direct porduct of M_1 and M_2 is the uniform closures of the algebraical direct product $M_1 \odot M_2$ on the direct product Hilbert space $H_1 \otimes H_2$ and denoted by $M_1 \otimes_{\alpha} M_2$ in [9]. If M_1 and M_2 are W^* -algebras on Hilbert spaces H_1 and H_2 , their W^* -direct product is the weak closure of $M_1 \odot M_2$ on $H_1 \otimes H_2$ and denoted by $M_1 \otimes M_2$ in [2]. These two notions generally do not coincide each other. Precisely speaking, it can be shown that if M_1 and M_2 are W^* -algebras whose C^* -direct product $M_1 \otimes_{\alpha} M_2$ coincides with the W^* direct product $M_1 \otimes M_2$, then either M_1 or M_2 is finite dimensional matrix algebra¹⁾. In the following we shall prove this result under slightly general conditions.

In the C*-direct product $M_1 \bigotimes_{\alpha} M_2$, the cross-norm α of $\sum_{i=1}^n a_i \otimes b_i$ is given in [10] as follows

$$\alpha(\sum_{i=1}^{m} a_i \otimes b_i) = \sup \frac{\langle (\sum_{j=1}^{m} x_j^* \otimes y_j^*) (\sum_{i=1}^{m} a_i^* \otimes b_i^*) (\sum_{i=1}^{n} a_i \otimes b_i) (\sum_{j=1}^{m} x_j \otimes y_j), \varphi \otimes \psi \rangle}{\langle (\sum_{j=1}^{m} x_j^* \otimes y_j^*) (\sum_{j=1}^{m} x_j \otimes y_j), \varphi \otimes \psi \rangle}$$

where φ and ψ run over all states of M_1 and M_2 respectively and $\sum_{j=1}^{m} x_j \otimes y_j$ runs over all non-zero elements of $M_1 \odot M_2^{(2)}$. On the other hand, Schatten [4] defined the cross-norm λ of the direct product of Banach spaces E and Fas follows

$$\lambda(\sum_{i=1}^{m} a_i \otimes b_i) = \sup\{|\sum_{i=1}^{m} < a_i, \varphi > < b_i, \psi > |; \varphi \in E^*, \|\varphi\| \leq 1, \psi \in F^*, \|\psi\| \leq 1\}.$$

In particular, when E and F are C^* -algebras M_1 and M_2 , we have generally $\lambda \leq \alpha$. The necessary and sufficient condition that α -norm coincides with λ -norm is that either M_1 or M_2 is commutative (cf. [5]).

Now we state our main theorem.

THEOREM. If M_1 and M_2 are C*-algebras whose C*-direct product $M_1 \hat{\otimes}_{\alpha} M_2$

2) In the following, we write always $||\sum_{i=1}^{n} x_i \otimes y_i||$ in stead of $\alpha(\sum_{i=1}^{n} x_i \otimes y_i)$.

Received June 4, 1959.

¹⁾ The author expresses his hearty thanks for Prof. M. Nakamura who has suggested this result to him.

is an AW*-algebra, then both M_1 and M_2 are AW*-algebras and either M_1 or M_2 satisfies the finite chain condition, i.e. one of them is finite dimensional matrix algebra over the complex number field.

Proof. For an arbitrary state ψ_0 of M_2 , put the mapping θ_{ϕ_0} from $M_1 \odot M_2$ to M_1 such as $\theta_{\phi_0}(\sum_{i=1}^n x_i \otimes y_i) = \sum_{i=1}^n \langle y_i, \psi_0 \rangle x_i$ for every $\sum_{i=1}^n x_i \otimes y_i \in M_1 \odot M_2$. Then we have

$$\begin{split} \| \theta_{\psi_0} (\sum_{i=1}^n x_i \otimes y_i) \| &= \| \sum_{i=1}^n \langle y_i, \psi_0 \rangle x_i \| \\ &= \sup\{ |\sum_{i=1}^n \langle y_i, \psi_0 \rangle \langle x_i, \varphi_0 \rangle |; \ \varphi \in M_1^*, \ \| \varphi \| \leq 1 \} \\ &\leq \sup\{ |\sum_{i=1}^n \langle x_i, \varphi \rangle \langle y_i, \varphi \rangle |; \ \varphi \in M_1^*, \ \| \varphi \| \leq 1, \ \psi \in M_2^*, \ \| \psi \| \leq 1 \} \\ &= \lambda (\sum_{i=1}^n x_i \otimes y_i) \leq \| \sum_{i=1}^n x_i \otimes y_i \| \end{split}$$

so that θ_{ϕ_0} is uniformly continuous on $M_1 \odot M_2$. Hence θ_{ϕ_0} is extended to the mapping from $M_1 \widehat{\otimes}_{\alpha} M_2$ to M_1 . Furthermore, if I is the unit of $M_1 \widehat{\otimes}_{\alpha} M_2$, then $\langle \theta_{\phi_0}(I), \varphi \rangle = \langle I, \varphi \otimes \psi_0 \rangle = 1$ for every state φ of M_1 , for $\varphi \otimes \psi_0$ is a state of $M_1 \widehat{\otimes}_{\alpha} M_2$. Hence the state space of M_1 is $\sigma(M_1^*, M_1)$ -compact, so that M_1 has the unit which coincides with $\theta_{\phi_0}(I)$ by [5; Theorem 1]. Similarly M_2 has a unit. Thus, identifying M_1 and $M_1 \otimes I, M_1$ is considered to be a subalgebra of $M_1 \widehat{\otimes}_{\alpha} M_2$ and θ_{ϕ_0} an expectation from $M_1 \widehat{\otimes}_{\alpha} M_2$ to M_1 in the sense of [3] (projection of norm one in the sense of [8]). Therefore M_1 is an AW^* algebra by [8; Theorem 5]. Similarly M_2 is also an AW^* -algebra. This completes the first part of our demonstrations.

Next we assume that both M_1 and M_2 do not satisfy the finite chain condition, i.e. there exist infinite families $\{e_n\}$ and $\{f_n\}$ of orthogonal projections in M_1 and M_2 respectively. Let A_1 and A_2 be AW^* -subalgebras of M_1 and M_2 generated by $\{e_n\}$ and $\{f_n\}$, there exist expectations θ_1 and θ_2 from M_1 and M_2 onto A_1 and A_2 respectively by [1; Theorem 2] and [8; Theorem 1]. Assuming the following two lemmas, we shall meet a contradiction.

LEMMA 1. There exists an expectation θ from $M_1 \bigotimes_{\alpha} M_2$ onto $A_1 \bigotimes_{\alpha} A_2$ such that $\theta(x \bigotimes y) = \theta_1(x) \bigotimes \theta_2(y)$.

LEMMA 2. $A_1 \bigotimes_{\alpha} A_2$ is not AW^* -algebra.

By Lemma 1 and [8; Theorem 5] $A_1 \otimes_{\alpha} A_2$ is an AW^* -algebra, but this is impossible by Lemma 2. Therefore either M_1 or M_2 satisfies finite chain condition. This finishes the proof of the theorem.

Now we shall prove the lemmas.

Proof of Lemma 1. Put $\theta(\sum_{i=1}^{n} x_i \otimes y_i) = \sum_{i=1}^{n} \theta_1(x_i) \otimes \theta_2(y_i)$ for $\sum_{i=1}^{n} x_i \otimes y_i \in M_1 \odot M_2$. By [7; Proposition 2] the cross-norm α on $A_1 \otimes_{\alpha} A_2$ coincides with λ -norm. Hence we get

$$\begin{split} \| \theta(\sum_{i=1}^{n} x_i \otimes y_i) \| &= \|\sum_{i=1}^{n} \theta_1(x_i) \otimes \theta_2(y_i) \| = \lambda(\sum_{i=1}^{n} \theta_1(x_i) \otimes \theta_2(y_i)) \\ &= \sup\{|\sum_{i=1}^{n} < \theta_1(x_i), \, \varphi > < \theta_2(y_i), \, \psi > |; \, \varphi \in A_1^*, \, \|\varphi\| \leq 1, \, \psi \in A_2^*, \, \|\psi\| \leq 1\} \\ &= \sup\{|\sum_{i=1}^{n} < x_i, \, {}^t \theta_1(\varphi) > < y_i, \, {}^t \theta_2(\psi) > |; \, \varphi \in A_1^*, \, \|\varphi\| \leq 1, \, \psi \in A_2^*, \, \|\psi\| \leq 1\} \end{split}$$

MASAMICHI TAKESAKI

 $\leq \sup\{|\sum_{i=1}^{m} \langle x_{i}, \varphi \rangle \langle y_{i}, \psi \rangle|; \varphi \in M_{1}^{*}, \|\varphi\| \leq 1, \psi \in M_{2}^{*}, \|\psi\| \leq 1\} \\ = \lambda(\sum_{i=1}^{m} x_{i} \otimes y_{i}) \leq \|\sum_{i=1}^{m} x_{i} \otimes y_{i}\|$

for every $\sum_{i=1}^{n} x_i \otimes y_i \in M_1 \odot M_2$. That is, θ is uniformly continuous and of norm one. Therefore θ is extended to the projection of norm one from $M_1 \bigotimes_{\alpha} M_2$ onto $A_1 \bigotimes_{\alpha} A_2$ such as $\theta(x \otimes y) = \theta(x) \otimes \theta_2(y)$. By [8; Theorem 1] θ is an expectation from $M_1 \bigotimes_{\alpha} M_2$ onto $A_1 \bigotimes_{\alpha} A_2$. This completes the proof.

REMARK. If either A_1 or A_2 is commutative, then general bounded linear mappings θ_i from M_i to A_i (i = 1, 2) have common extension θ from $M_1 \bigotimes_{\alpha} M_2$ to $A_1 \bigotimes_{\alpha} A_2$ such as $\theta(x \bigotimes y) = \theta_1(x) \bigotimes \theta_2(y)$ with the bound $\|\theta_1\| \cdot \|\theta_2\|$ by the above arguments. Moreover in the case of M_i and A_i to be W^* -algebras (i = 1, 2) and θ_i to be σ -weakly continuous, considering their conjugate spaces and transposed mappings, the above mapping θ becomes σ -weakly continuous mapping from W^* -product $M_1 \bigotimes M_2$ to $A_1 \bigotimes A_2$.

Recently, J. Tomiyama has proved Lemma 2 without the assumption of commutativity for A_1 or A_2 .

Proof of Lemma 2. The spectrum space of A_1 is the Čech's compactification of the set of all integers and by \mathcal{Q} . By the argument in [7; Proposition 2] $A_1 \hat{\otimes}_{\alpha} A_2$ is the algebra of all A_2 -valued continuous functions on \mathcal{Q} , i.e. $A_1 \hat{\otimes}_{\alpha} A_2 \cong C_{A_2}(\mathcal{Q})$. Put $p_n = \sum_{i=1}^m e_i \otimes f_n$, then $\{p_n\}$ is a family of monotone increasing sequence of projections in $A_1 \hat{\otimes}_{\alpha} A_2$. If $A_1 \hat{\otimes}_{\alpha} A_2$ is an AW^* -algebra, then $\{p_n\}$ has the least upper bound projection p in $A_1 \hat{\otimes}_{\alpha} A_2$. Considering the function-representations of p_n and p in $C_{A_2}(\mathcal{Q})$ as

$$p_n = \{f_1, f_2, \cdots, f_n, 0, 0, \cdots\}$$

and

$$p = \{a_1, a_2, \cdots, a_n, \cdots\},\$$

the equality $p = 1.u.b. p_n$ implies $a_n = f_n$, $n = 1, 2, \cdots$. Hence the bounded function $\{f_1, f_2, \cdots, f_n, \cdots\}$ on the space of integers is necessarily extended to the whole space \mathcal{Q} preserving its continuity. That is, for any $\varepsilon > 0$ and $t \in \mathcal{Q}$, there exists a neighborhood U of t such that $|| p(t_1) - p(t_2) || < \varepsilon$ for every pair $t_1, t_2 \in U$. But this is impossible because, choosing an ideal point of compactification as t and $\varepsilon = 1/2$, every neighborhood U of t contains two distinct integers n_1 and n_2 , so that $|| p(n_1) - p(n_2) || = || f_{n_1} - f_{n_2} || > \varepsilon$. Therefore $\{p_n\}$ has not the least upper bound in $A_1 \bigotimes_{\alpha} A_2$, that is, $A_1 \bigotimes_{\alpha} A_2$ is not an AW^* algebra. This completes the proof.

Our theorem, in particular, induces the following Wada's Theorem [13] as

COROLLARY. If the cartesian product space of two locally compact spaces Ω_1 and Ω_2 is a stonian space, then Ω_1 and Ω_2 are both stonian spaces and either Ω_1 or Ω_2 is a finite set.

180

Proof. Assuming M_1 and M_2 in our theorem to be commutative, one can easily see that the conclusion of this Corollary is nothing but the change of the statement in our theorem by the terminology of those spectrum spaces of C^* -algebras M_1 and M_2 .

References

- [1] HASUMI, M., The extension property of complex Banach spaces. Tôhoku Math. Journ. 10 (1958), 135-142.
- [2] MISONOU, Y., On the direct product of W*-algebras. Tôhoku Math. Journ.
 6 (1954), 205-209.
- [3] NAKAMURA, M. AND J. TURUMARU, Expectations in an operator algebra. Tôhoku Math. Journ. 6 (1954), 182-188.
- [4] SCHATTEN, R., Theory of cross-spaces. Princenton (1950).
- [5] SEGAL, I. E., Two-sided ideals in operatar algebras. Ann. Math. 51 (1950), 293-298.
- [6] TAKESAKI, M., On the direct product of W*-factors. Tôhoku Math. Journ. 10 (1958), 116-119.
- [7] TAKESAKI, M., A note on the cross-norm of the direct product of operator algebras. Kōdai Math. Sem. Rep. 10 (1958), 137-140.
- [8] TOMIYAMA, J., On the projection of norm one in W*-algebras. Proc. Japan Acad. 33 (1957), 608-612.
- [9] TOMIYAMA, J., On the product projetion of norm one in direct product of operator algebras. To appear.
- [10] TURUMAU, T., On the direct product of operator algebras, II. Töhoku Math. Journ. 5 (1953), 1-7.
- [11] WADA, J., Stonian space and the second conjugate spaces of AM-spaces. Osaka Math. Journ. 9 (1947), 195-200.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.