
ON SOME LOCAL PROPERTIES OF FIBRED SPACES

BY K. YANO AND E. T. DAVIES

One of the most fruitful ideas in differential geometry is the idea ex-
ploited by E. Cartan of attaching a space to every point of a certain base
space B. The attached space in Cartan's work is usually a homogeneous
space F such that every point of F is equivalent to any other point under
the action of a certain (structure) group G which operates transitively in F.
The notion of connection as developed by Cartan consists of the establishment
of a correspondence between the spaces F attached to two infinitely near
points and the connection is called euclidean, aίfine, or protective according as
the group G is the orthogonal, affine or the protective group. This conception
of Cartan's has led to the modern notion of a fibre bundle developed mainly
by Ehresmann, Chern and Lichnerowicz to whose fundamental works we refer.
The homogeneous space Fp attached to a certain point P of the base space B
is called the fibre. The spaces Fp attached to points of the base space are
all homeomorphic to a certain type fibre F. The so-called bundle space E to
which this leads is a leaved manifold whose dimension is the sum of the
dimensions of the base space and of the fibre. Compound manifolds of a very
similar kind have also been extensively treated by Wagner [25] but his point
of view is somewhat different. In fibre bundle theory the three spaces E, B
and F are differentiate manifolds. The fibres homeomorphic to the type fibre
F are holonomic subspaces of the bundle space E and in local coordinates can
be expressed by finite equations satisfied by the local coordinates of E in that
region. The tangent space to E at any point can then be decomposed into
two complementary spaces, one of which is tangent to the fibre and the other
is a non-holonomic subspace (or a non-integrable distribution in the termino-
logy of Chevalley [4]) transversal to the fibre. It has now become customary
to refer to a vector tangent to the fibre as a 'vertical' vector, and a vector
belonging to the complementary transversal distribution as a 'horizontal'
vector. The notion of connection is now often formulated in terms of these
complementary subspaces of E.

In this paper the authors take the general space E to be a Riemannian
space, or a space with a euclidean connection, or a space of paths. The
fibres are differentiate subspaces of E which can be expressed locally in the
form /(£) = x where ξ are local coordinates in E. If a geometric object de-
fined in E can be expressed locally in terms of x only that geometric object
will be said to be induced in the base space.
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The paper as a whole is written in the classical tradition with systematic
use made of the ideas and techniques of the Tensor Calculus. A general re-
ference may be made to Schouten's book Ricci-Calculus [21] for the tech-
niques used.

In the first paragraph we examine the conditions in order that the base
vectors of the horizontal distribution at any point shall be invariant for dis-
placement along the fibre. This is followed by the investigation of the condi-
tions in order that a tensor field and an affine connection may be induced in
the base space. In the fourth and fifth paragraphs the fibred space E is sup-
posed to be endorsed with a system of paths and the conditions for induction
are given. This is followed by the cooresponding investigation for the metric
tensor of E and for motions in E. We examine in the seventh paragraph
some special results which may be obtained by taking a privileged system of
coordinates in E which enable us to obtaine some interesting sidelights on the
theory of connections and of the holonomy group. Conditions are also given
in order that the fibres at two infinitely near points shall be isometric. This
part of the theory leads naturally to the discussion of spaces in which the
fundamental tensors are dependent not only on position but also upon a certain
element of support. Accordingly in the final paragraph we give a treatment
of Finsler spaces as a fibred space when we assume that E is the tangent
bundle of the base space. We obtain the euclidean connection in Finsler space
as the connection induced in the horizontal distribution where the E is sup-
posed to be a metric space with torsion.

Let E be a differentiate manifold Xmλn of dimension m + n, and of class
Cr (r ̂  4). Let an equivalence relation R divide E into equivalence classes
F(P) (the fibres), and let E/R be the base space X. The Xm+n is assumed to
be covered by a system of coordinate neighbourhoods UA with local coordi-
nates ξκAD where A belongs to a set M. For an arbitrary point P0 in Xm+n

there exists a neighbourhood £7(P0) and a subset of coordinate neighbour-
hoods UB(ξs)9 £cJVcMsuch that the union U F(P) for PeZ7(P0) is covered
by the union U UB(ζjs) and such that if a point P lies in the intersection
UBI Π UB2 of two coordinate neighbonrhoods of the set UB then the portion of
the fibre F(P) in UBl Π UB2 is represented by n independent equations

(1.1) a^/tei) and xϊa=fa(ξij

of class Cr in the respective coordinate neighbourhoods and such that there
exist relations

(1.2) χ\

1) The convention with regard to indices will be as follows: Greek indices run
from 1 to m-r-n, Latin indices α, 6, c, d, e run from 1 to m, and Latin indices h, ί, j, k,

I run from m + l to m + n.
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of class Cr with a non-vanishing Jacobian in the domain considered.
We rewrite (1.1) and (1.2) in the forms

(1.3) xh=fh(ξ ) and &*'=/*'(£•')

and

(1.4) x*' = xh'(x).

Now the fibres are m-dimensional submanifolds determined by n equations

α jr\ γfi — γh(£\ — fh(£\•o; Jo — x (ς)—j (ς),

where fh(ξ) are of class Cr and the rank of the matrix whose elements are

(1.6) Ch

λ = θΛ^ = ~

is n.
Since the the rank of the matrix (Chχ) is n, we may regard Chι as n

linearly independent co variant vectors in Xm+n, and we choose m co variant
vectors Ba

λ, which, together with Ch

λl form a base for covariant vectors in
the whole fibred space Xm+n This will determine a dual base of m + n con-
travariant vectors which we denote by (Ba

κ, Cικ}. Between these two bases
there exist well known relations

(1.7) Bb*B λ = δb, B 6 'Cj-0, CSB^ = Q, d*C λ- «,

If we define

we have two tensors defined in the whole space and which are called ' projec-
tion tensors' (See Schouten [21], Walker [24], Yano [31]).

The vectors of the base (Ba

κ

t CVO are so chosen that Ba

κ are tangent to
the fibre Fx. In view of current terminology in fibre bundle theory, we shall
refer to a vector in the tangent space to Fx as ' vertical' and to a vector in
the non-integrable 'distribution' spanned by the Cf as 'horizontal'.

Defining

we can consider the effect of interchanging the order of these operators. If
we put

we have, for any funtion f ( ξ κ )

(1.12) (XcXb - XbXc)f= Ωcb

a:

with corresponding results for the interchanging of operators corresponding
to indices c and i, and j and i (See Yano and Davies [32]).

In our particular case we have, in view of the definition (1.6) of Cht
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so that
Γ (XcXb — XbXc)f — ΩcbaXaf >

(1.14) I

where

(1.15)

The first of the equations (1.13) shows that the system of partial differen-
tial equations

(1.16) Xaf=0

is completely integrable, with the n independent solutions xh=fh(ξ) con-
sidered in (1.5).

Any function of the xh only is therefore a solution of the system (1.16)
and any solution of (1.16) is expressible in terms of xh only (Goursat [13]).

We shall need the Lie derivatives (See Yano [30]) of the base vectors with
respect to the vectors Bc

κ. From the definition of the Lie derivative we have
immediately

r
1
I

£ BS = BsdμBt,κ - Bt,«8μBG

κ = ΩΛ

aBa',B°
£ C^κ = Boμdμd

κ - CiμdμBc

κ = Ωcί

aBaκ
(1.17)

and using (1.7)

(1.18)

We note therefore that the d* forming a base for the horizontal distri-
bution will have its Lie derivative zero for any vector of the base Ba

κ of the
fibre provided that ΩCΐ

a = 0.
Hence
The horizontal distribution is invariant for any displacement along the

fibre if Ωc^a = 0.

In this paragraph, we examine the conditions under which a tensor field
in the fibre space Xm+n induces a tensor field in the base space Xn.

If /(£) is a scalar defined in Xm+n, we know that it induces a scalar in
Xn if and only if

For our purpose it is convenient to write this in the form

(2.1) £/=0.
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Passing to the case of a contra variant vector field vκ(ξ) we know that it
has a component in the horizontal distribution given by vh = Chχvλ.

Under a transformation of ξ in Xm+n, the vh undergoes the transformation

Λrfc'
Λ / l/t*/ T,

v = ̂ ~^v
dxh

and consequently vκ induces a contra variant vector field in the base space Xn

if and only if

Xcv
h = £vh = 0.

EC

Since the Lie derivative of Chχ vanishes, we can say that vκ induces a
contravariant vector field in Xn if and only if

(2.2) £vh = CΛι(£vλ) = Q.
Sβ Bc

If we assume Ωcτa = 0 in which case the Lie derivative of d* also va-
nishes, the argument just used can apply to a tensor of any order. The order
of the operation of Lie derivative and projection on the horizontal distribution
can be interchanged and hence we can state: — The necessary and suffi-
cient condition that a tensor field such as Tχκ(ξ) in the fibred space Xm+n in-
duces tensor field T%

h in the base space Xn, is that

(2.3) £Γ t

Λ = C«W£2V) = 0.
Bc BC

In particular consider the exterior differential form

(2.4) w = wh...λpdξ*ι Λ dξ*2 Λ Λ dξλ*.

By writing down the differentials dξ* in terms of their components (dx)a

— Baίdξλ and dxh — Chχdξλ where a bracket round the dx indicates that it is
not an exact differential, we can write (2.4) in a form

w = terms containing (dx)a + wίr..τpdx^ Λ dx12 Λ Λ dxlp

where

We may therefore state that the form w in Xm+n induces a form w in the
base space Xn if the coefficients wιm...lp are functions of xh only which we
express as

(2.5) £ wiv..*p = C^i C<p

ip(£ w *!...**) = 0.
BG BG

If an affine connection with coefficients Πκ

μt(ξ) is defined in the fibred
space Xm+n the projection tensors B and C enable us to define connections in
the fibre F and in the horizontal distribution Xm+n respectively. The well
known method (Yano and Davies [32]) can be used to define four sets of con-
nection parameters as well as four sets of Euler-Schouten curvature tensors
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relating to F and Xm+n as follows.—
The covariant differential of

v' = Ba

κva + Ch

fvh

will be

dv* = Ba

κt(dx)c(Xcv
a +Γa

c*v* +Π^) + dx'(X,va

(8Λ) + Ch

κ\_(dx)c(Xcv
h +Γha>vb +ΓCV)

where

are connection paramters, and

Γ«, = - Be"CiΨμB*λ9 Γa

όi = -

are Euler-Schouten curvature tensors.
Assuming that the contravariant vector field v"(ξ) in Xm+n induces a con-

travariant vector field vh(x) in the base space Xn, we wish to examine the
condition in order that the connection defined in the fibred space can define a
connection in the base space Xn leading to a set of connection parameters
depending only upon the variables xh.

We first assume that the contravariant vector field vκ is in the horizontal
distribution so that va = 0. We further assume that the displacement dξκ is
also in the horizontal distribution so that (dx)a = 0. In that case, we imme-
diately deduce from (3.1) that

(3.4) C W = (XjVh +Γjίv
ί)dxJ

where Γ% are defined in (3.2) in terms of the connection parameters of Xm+n

and of the projection tensors.
Under a transformation of the coordinates ξ in Xm+n the Γ*ί(ξ) undergo

the transformation

'i' — ~7Γ~Γ o~T/~o~ί7 Π7 "7Γ^XΛ \ dx3 σx* oxj dx

and consequently Γ#(f ) induces an affine connection in the base space if and
only if

(3.6) XcΓίi = £ Γ* = 0.
BC

But we have

Sc Bc B

by virtue of (1.18). On the other hand, we have

(3.7) £ Ϊ7 Wλ -Pμ£wλ=-(£ Πκ

μλ} wκ
7? /? 7?
-°C -"0 °C

for a general covariant vector wλ (Yano [30]). Thus
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£ Γ}i = - CfCftPμ £ Ch

λ - (£ Πκ

μι)C\~]
BG * Bc BG

from which

(3.8) £Γh

όi = CfCi*Ch

κ(£πκ

μλ}
BO Bc

by virtue of (1.18). Thus
An affine connection Πκ

μλ(ξ) of the βbred space for a vector and displace-
ment both in the horizontal distribution induces an affine connection in the
base space if and only if

(3.9) £ Γji = C*Ci*Ch

κ(£ Πκ

μλ) = 0.
EC Bc

Similarly we get from (3.3)
An affine connection Uκ

μλ(ξ) of the fibred space for a general vector vκ

and a displacement in the horizontal distribution induces an affine connec-
tion in the base space if and only if

(3.ιo) r% = o, £ r% = eye* W£ n;>) = o.
BG *c

An affine connction Π*μλ(ξ) of the fibred space for a vector vκ in the
distribution and a general displacement induces an affine connction in the
base space if and only if

(3.11) Γi - 0, £ Γ% = C/CVCΛ.(£ 77;a) = 0.
BO BC

An affine connction ΠμΛ(ξ) of the fibred space for a general vector vκ

and a general displacement induces an affine connction in the base space
if and only if

(3.12) Γh

jb = 0, Γi - 0, £ Γjt = C/C^C\(£ 77^) - 0.

§4.

We next consider that there is given in Xm+n a system of paths defined
by the system of equations

(4.1) {- Γ"tμJi(ι£~) ^ — 0

dt^ dt dt

in which the coefficients Γμλ(ξ) are symmetrical and t is an affine parameter
on the path.

The solutions ξκ = ξκ(t) of (4.1) induce curves

in the base space Xn, and the question arises whether the curves induced in
Xn are paths in Xn.

From (4.2), on using the fact that

_„, dξ*
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and differentiating, we have

^<^>ff.
Expressing dξ'/dt in terms of its two components

de - R j (dxY ,r>
dx>l

Ί, — J Ja 77 Γ UΛ r~
αί α£ α£

(4.3) gives us

(A Λ\ * Λ Λ * dχJ
(4.4; — —

2 ,, , o ,. 7 —αί at at at dt dt dt dt

Since we are concerned with finding the conditions in order that we may
obtain an induced system of paths in Xn, we need to take account of the fact
that the parameter t will not in general be a privileged parameter on the paths
in Xn, so that we must write down the conditions under which (4.4) takes on
the form

(A κ\ d2χh j_ /r* fv\dχJ dχl Λdχh

(4 5) Ίw + Γόi(x}~dt Ίΰ = φ~dΐ
We must therefore express the condition in order that (4.4) may have the

form (4.5).
The term Γcb(dx)c/dt (dx)b/dt could not contribute to a term of the form

φdxh/dt since the (dx)a/dt are arbitrary, we deduce that Γ% = 0 identically,
which means that the fibres must be totally geodesic.

Considering further the terms

Γh (dxγ dx* . Γh dx* (dχ)b

" dt dt^ίόbdt dt
they can provide a term φ dxh/dt provided φ is of the form 2φc (dx)c/dt, so
that we must have

iπrΛ _ TΓ h

^h (by means of the symmetry of Γh).
= ψA

Finally since the 'Γfc and the Γ% must be coefficients relating to the same
paths, they must be related by a relation

in which we assume that T depends only on the xh while the functions oc-
curring on the right will depend on ξκ.

The fact that the Tji are to be functions of xh only can therefore be ex-
pressed in the form

or equivalently
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Hence, the system of paths in the fibred space Xm+n induces a system of
paths in the base space if and only if

Γϊύ = 0, Γίt = φcdϊ, Γh

jb = φbd\
(4'6) C/CWft .( £ Γκ

μλ) = 3h

jPlc + δϊpjc.
BC

It will be convenient for future purposes to express these conditions under
a different form.

By expressing the 7μC
hλ in terms of its components obtained by contract-

ing with the B and C tensors, using the conditions expressed in (4.6) and
writing ψλ = Bc

λφc, we have

(4.7) 7β\ = φμC
h2 + ψιCh

μ + C'μCWίi.

The covariant derivative of the equation Ba

λChλ — 0 will lead in a similar
way to an expression for FμBa

κ in the form

(4.8) FμBaκ = φc

μaBc

κ-3κ

μ<pa

which is an equivalent form of the condition of the first line of (4.6), for if
FμBa

κ has the form (4.8), we have

from which we can conclude ΓZύ = Q and Γ%=Γlj =
From (4.8) by further covariant derivation and using relations already

obtained, it is possible to express the Lie derivative of the connection coeffi-
cients in the form

(4.9) £ Γκ

μλ = dκ

μψλc + δlφμe + Ba'φΐλ.
EC

Conversely if the covariant derivative of Ba

κ has the form (4.8) and the
Lie derivative of Γϊ* has the form (4.9), the equation (4.6) is also satisfied.
Thus (4.8) and (4.9) are necessary and sufficient condition in order that a
system of paths in Xm+n induce a system of paths in the base space Xn.

Some interesting interpretations can be given to these conditions in the
case where the fibre is one-dimensional. Let Bκ denote the unique vector Ba

κ

so that our frame now becomes

(5*,CV) and (Bλ,C
hϊ).

The conditions (4.8) and (4.9) for the induction of paths in the base space
then become

(4.10) {7μB
κ = adκ

μ + φμB
κ, £ Γκ

μ, = δκ

μpλ + d\pμ + B*pμλ
J5

where a is a scalar, φμ and pμ vectors and pμχ a tensor.
We can give a geometrical interpretation to the first of equations (4.10)

as follows.
The point ξκ — a~lBK lies in the tangent space to Xm+n at the point ξκ.

Its absolute differential is by definition

δ(ξ' - a~lBK) = dξκ + a~2daBK - a~13BK
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which, on using (4.10) becomes

so that the vector field Bκ is tangent to the locus of the point ξκ — a~1BK.
Therefore the field Bκ is then said to be ' torse-forming ' (Yano [27]).

We may also interpret the second equation of (4.10). Consider a curve in
the fibred space Xm+n whose osculating plane contains the direction Bκ. It is
called a subpath with respect to the vector field Bκ (Yano [28]). Subpaths
are given by difϊerntial equations of the form

If we consider an infinitesimal transformation fξκ = ξκ + sBK and express
the fact that this transformation transforms subpths into subpaths, we obtain
the second of equations (4.10).

An important special case of equations (4.10) has already been the object
of study by Schouten and his collaborators (Schouten and Haantjes [22]). It
is the case in which they reduce to

(5.1) PμB* = adκ

μ + βμB
κ, £ Πκ

μ* = 0.
B

In this case the infinitesimal transformation '£* = ξ" + ε Bκ becomes an infini-
tesimal collineation.

In this paragraph we shall consider some applications of (5.1). We con-
sider a vector field v* in Xm+n whose component in the direction Bκ we denote
by v°, so that

(5.2) v* = BκvQ + (Ch

κvh)

and we suppose thrt vκ induces a scalar v° and a contravariant vector field vh

in Xn, so that

£ v° = £ vh = 0 and consequently £ vκ = 0.
B E B

By writing down the special forms which the various connection para-
meters and Euler-Schouten curvature tensors introduced in §2 take when
m = 1, we have on using (5.1)

(5.2) Γ0°o = l, ΓSo = 0, Π0 = 0, Γj0 = oj.

The symmetry of the Γ's in the lower indices enables us to conclude
further that

(5.3) Γ8, = 0, Γfc = 3ϊ.

Moreover from the second of (5.1) and the results of §3, we have

(5.4) £ΓJ, = 0, £Γfc = 0,
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so that Γjί and Γ& are functions of &fc only and hence Γ§i is a tensor and
are coefficients of a symmetric affine connection in the base space XΏ.

Now suppose we choose

Bλ = Bλ + pλ

for which

(5.5) £ PΛ = 0 and Bλpχ — 0.
B

The matrix (I?*, d") inverse to (B^ Chχ) will be given by

(5.6) Ciκ = Ciκ-piBκ with pί = Cί

2pλ.

Denoting by a bar the functions relating to this new frame, we have

which indicates that Γjt and Γ% may be interpreted as components of a pro-
jective connection (Yano and Takano [34]).

§6.

In this section we shall assume that the fibred space Xm+n is a Riemannian
space with a metric tensor Gμι(ξ) defining the distance between two near
points by

(6.1) d# = Gμffidξ"dξ*.

We define the covariant vectors Chι as in (1.6) and take the vectors Ba

λ

to be orthogonal with respect to the metric defined in (6.1), so that

(6.2) G»λBa

μC
h

λ = 0.

Correspondingly the vectors of the dual matrix (Ba

κ, dκ) will satisfy the con-
dition of orthogonality

(6.3)

If we write down the dξκ in terms of its components in the fibre and in the
horizontal distribution as

dξf = Ba'ω
a + Ci'dx*

where ωa = Baιdξλ is not an exact differential, then ds2 can be written as the
sum dsi2 + ds22 where

(6.4) (a) d81* = gJι(&dx>dxi, (b) ds2

2=gcύ(ξ)ωcω\

We shall now examine under what condition the gjί = GμχCjμCi* are functions
of x only and therefore can be regarded as the components of a metric tensor
which has been induced in the base space Xn. The condition for this is evi-
dently Xagji = Q, which, when written in terms of Lie derivation can be
written
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(£ GpύCfd1 + Gμί(£ Cfyd1 + G^C/(£ <V) = 0.
Ba sa Ba

But if we take account of the table (1.17) and of the equation (6.3) we imme-
diately conclude that g^ will depend upon x only provided

(6.5) (£Gμϊ)CfCί = Q.
sa

On using covariant derivation and the van der Waerden-Bortolotti operator
(Schouten [21], p. 254) with respect to the connection parameters appropriate
to Riemannian geometry, we may easily modify (6.5) to the form

6.6) Gμ&fDsBa* = - GμiBsDvdS = flr«6Γ&o = 0.

The condition has therefore been expressed in terms of the Euler-Schouten
curvature tensor Γji introduced in table (3.3).

A metric will therefore be induced in the base space if and only if the
horizontal distribution is geodesic at every point (Schouten [21], 263).

Let us now consider whether a vector field vκ(ξ) which defines a motion
in the fibred space can induce a motion in the base space. The vector v*(ζ)
is therefore assumed to be a Killing vector so that P^VK — 0. We further
assume that a vector field vh(x) is induced in the base space in accordance
with (2.2). The vector vh(x) will be a Killing vector in the base space provided

(6.7) P</Vi>=0.

On using the fact that Vi = dλvλ and the definition of the operator D already
used, we immediately obtain

(6.8) P<jVi> = Γfa>va + CfCiΦiμVK

so that (6.6) immediately ensures that a Killing vector will be induced from a
Killing vector in the fibred space. We may therefore state that

A motion in the fibred space Xm+n will induce a motion in the base
space Xn provided (a) the Killing vector vκ(ξ) induces a vector field vh(x)
and (b) the horizontal distribution is totally geodesic.

o n

In this section we use a special coordinate system in Xm+n. Recalling that
the fibres are given by xh=fh(ξ) and that in the intersection of two coordi-
nate neighbourhoods (ξκ) and (f*') there is induced a transformation of the x
coordinates given by (1.4), we now proceed to introduce m functions of class Cr

(7.1) 1̂  = ̂ (0

such that the Jacobian matrix (dιya, dχxh) is of maximum rank m+n. This
will enable us to express ξf as

(7.2) £ = W,»Λ)

so that on taking a fixed set of values xl for xh, we obtain the parametric
equations of the fibre FXQ as a subspace of dimension m of the Xm+n. If we
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can take Ba

κ to be daζ
κ and they can be taken as m independent contra-

variant vectors tangent to the fibre and hence vertical vectors in the sense
used. We may also take Ch

κ to be dhξ
κ, and in fact the relations (1.7) are all

satisfied if we take

(7.3) Ba = daξ', Ch

κ = Qhξ
κ,

The same relations will also be satisfied if, for (V and Ba

λ we take the
slightly more general expressions

(7.4) CV = diξ - 5ΛTΛ B-λ = 9λy« + C W

where Γl

a are functions of y and x which are not determined for the moment.
Let us determine them by demanding that the C^κ given in (7.4) are ortho-
gonal to Ba

κ with respect to the metric Gμt, so that equation (6.3) is satisfied.
We can therefore decompose dξκ into components in accordance with either of
the two sets (7.3) or (7.4) as

dξ* = daξ
κdya + Q£'dx% or dξκ = Ba

κωa

where

(7.5) ωa = Ba

λdξλ = dya

Writing down the two corresponding expressions for Gμχdξμdξλ will give

(7.6) Γl

a = gabGμλdbξ^i^.

The coordinates y and x introduced in this section are employed by Muto
[18] under the name of favourable coordinates. The law of transformation
appropriate to them is

(7.7) ya' = ya'(y, x), xh' = xh'(x)

and for this transformation of coordinates, demanding that the equation ωa = 0
has invariant significance is equivalent to having the following law of trans-
formation for the functions Γl

a

In terms of favourable coordinates the table of base vectors is taken on the
special form

Bα* = («,0), C, = (-Λβ,«),

B«λ = (da

blΓ«), CΛ, = (0,Λ).

The equation ωa = 0 is interpreted by Muto as establishing a correspondence
between points in the neighbouring fibres Fx and Fx+dx. Both the equation
ωa = Q and the transformation (7.7) appear also in Wagner ([25], p. 159) in
a similar theory. A curve ya = ya(t), xh = xh(t) in Xm+n satisfying dya/dt
+ Γ%dxz/dt = Q is called an allowed curve by Muto. It is a curve which is
normal to the fibre at every point. In Wagner's terminology the equations
ωa = Q determine a linear connection in the 'compound' manifold Xm+n and
this connection is of zero curvature if the exterior derivative of ωa also
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vanishes. In our notation the vanishing of the exterior derivative of ωa is
expressed as

(7.10) β3ι = XLίΠι = 0 with Xl = di-Γϊθb.

If Γ1 is linear in y, and expressible as Γcl—Γϊϊ(x)yb we obtain

(7.11) Ω% = yύRβ,b

a

with R representing the usual formation from the three index Γ's. More
generally if Γ*(x, y) = ybdbΓ

ai = ybΓt% then the equation (7.11) still holds with
the E representing the combination djΓib — ΓejdeΓib + ΓajeΓ

eit, — j/i where j/ί
represents the terms obtained from those written down by interchanging j
and ί. The integrability condition of the horizontal distribution therefore de-
pends on the curvature of the connection defined by the correspondence esta-
blished by 'allowed' or 'horizontal' curves. The close relationship of all this
with the group of holonomy is developed by both Muto [18] and by Ishihara
[15]. Its relation to the problem of the decomposability of a Riemannian
space of dimension m + n has been treated by Walker [23].

An interesting particular case of the transformation (7.7) is obtained by
taking

(7.12) ya' =

In terms of this transformation, defining Γίt = ObΓ^ and jΓ& ? — d^Γί we easily
verify that the latter is a tensor whose vanishing would imply that Γίb are
functions of x only, and hence that Γ"i are linear in ya.

The correspondence between fibres Fx and Fx+dx will be an isometry pro-
vided the distance (in terms of the metric assumed given in Xm+n) between
two points in Fx is equal to the distance between the corresponding points in
Fx+dχ. Since the fibres are holonomic subspaces of Xm+n which in this case
may be assumed to be Riemannian, we may refer to studies which have been
made on the subject ([18], p. 291) in which it is proved that if ds and ds are
the distances between near points in Fx and Fx+dx respectively, the difference
is expressed in the form

ds2-ds2 = (£gba)dyύdya

Gi

with

£ 9ba = — 2Γba
Gi

so that the fibres will be isometric provided they are geodesic subspaces of
the Xm+n

If the equations Xτf=§ are completely integrable, the horizontal distribu-
tion is holonomic, and •£?#* = 0. In that case we may take the functions
ya = φa(ξ) of (7.1) to be the m independent solutions of Xlf=Q, and it will
follow that the appropriate expressions to take for Ch

κ and Ba

λ are those
given in (7.4) rather than (7.3). In other words if the horizontal distribution
is integrable we can choose a coordinate system of the fibred space in such a
way that ΓΪ = 0.
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§8. Finsler spaces.

Let us assume the existence of a vector field Bκ(ξ) at every point of Xm+n,
and let us assume further that it is tangent to the fibre at every point, so
that we may also write it as

(8.1) B* = Ba'y
a.

Let us put

(8.2) GμχB'B* = L2 = 2F=gcby
cyb

for the square of the length of the vector at any point, and let us impose the
condition that

(8.3) FλB" = Ba

κBa

λ = Bl

then we have

(8.4) BλdλF = BΨλF = B»BΨμBλ = 2F.

Defining Xc = Bc

λdλ, Xτ = dλdλ, dλ = d/dξλ, Dc and.A as the corresponding
derivatives of van der Waerden-Bortolotti, we can write the condition (8.4)
in the form

(8.5) yaXaF = 2F = gcby
cyb

and we deduce also

(8.6) XaF=DaF = gaby
b

and

(8.7) DbDaF = gba = XbXaF - ΓίaXdF.

By using the definition of F and (8.3) we also obtain

(8.8) XjF=DjF=0.

If we write DCB
K in two different ways, we obtain

Bc

κ = Cj'Γίay* + Ba'Pcϋ"
from which we deduce

(8.9) (a) Fcy
a = da

c, (b) ΓLya = Q.

Similarly by writing DiB* in two different ways we obtain

Cfi

κnay
a + Ba

κl7jya = 0
so that

(8.10) (a) rjv* = 0, (b) Γjay
a = 0.

Finally the metric tensors gύa and g^ in the fibre and in the horizontal distri-
bution respectively, satisfy the equations

(la) Fc<7δα = Xcffba — Γ^gda ~ Γ^g^d = 0,

(g n) (b) Fiflrδα = Xtfta - Γiίgda - Γ£gύd = 0,

(c) Fcflr * = XcQji - Γcjgu - Γdgji = 0,

(d) Ptfji = Xkgji - Γύgu - Γάg3ι = 0.
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The different connection parameters used in the equations (8.11) can be ex-
pressed in terms of the tensors of Xm+n together with the various Object of
anholonomity' by inserting the appropriate indices in the general formula

with Ωaβr = gaδgrsΩδff and correspondingly for Sa

βr.
Let us now take the particular case in which the fibred space Xm+n is the

tangent bundle of the ^-dimensional base space Xn, in which the coordinates
are xh. The coordinates in the fibre will consequently be those of the tangent
vectors to Xn, which we denote by xh. The law of transformation of coordi-
nates in the fibred space X2n (since m and n are now equal) will therefore be
the extended point transformation

(8.13) xh' = xh'(xh), άΛ' = ιr^*Λ

ox

At this stage we also take the vector field Bκ in the fibred space which is
tangent to the fibre at every point to be the field of tanget vectors to Xn.
This means that ya is identified with xh. Our index convention must there-
fore be modified. We shall make the following convention. Let a + n = k,
b + n = ΐ, c + n = j, d + n = k, e + n = I. If we put a it will be understood

that n is to be added to α, so that a — h. Similarly h = h — n = a, and so for
other letters in the two groups. It is further understood that a and a occur-
ring in a formula will imply summation from 1 to n for a and from n +1 to
2n for a.

If therefore we take for ξκ the particular interpretations

= xh f or K = n +1, , 2n

the equation xh=fh(ξ) of §1 will give a very special form

For the vectors Ba

λ we take any vector, which, together with Chχ, can form
a base for covariant vectors. For this we take

We may then choose for the dual matrix any matrix which satisfies the con-
ditions of §1.

We have therefore the table

M Baκ = («, 0), C,* = (- Γl «),

Bα* = (δg,r?), cΛ

Λ = (o,aί).
If we write da = d/dya, Qί = d/dx\ Xl = di — Γa

ίda the consequent expressions
for the various Objects of anholonomity' will all vanish except
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(8.15) a,? = XLJΠ}, fhf = ~9tΠ.
Δ

Before writing down the special forms taken by the general expressions (8.12)
for the various indices we make the following assumptions about the torsion
tensor of X2n

(a) Geodesies and autoparallels coincide, so that Saβr + Sarβ = Q,
(b) Sύo

a = S^ = 0.
With these assumptions we have from (8.12) the following

(8.16) Γ3> = ~-gad(dcgbd + 9bgcd - 8dgcb),

(8.17) Γ% - l~gadXjgdb + Ωjb« + &„ + S,Λ
Δ

(8.18) Γi = l-ghkdcgkl + Ω\e + &Λ

(8.19) Γjt = -g^Xjga + Xί0jl - XΛ,i).
Δ

We further restrict the coefficients gcb to be equal to g^, so that the four
equations (8.11) reduce to the last two, and we shall need to have

(8.20) ΓX> = rfδ = Γ% and Γjb = ΓJί = ΓJi

so that there will be equality between the right hand sides of

(a) (8.16) and (8.18), (b) (8.17) and (8.19).

The equations (8.20) therefore serve to determine some of the mixed compo-
nents of the torsion tensor as follows

(8.21) Sβ/ - gad

(8.22) Stc" = gh*X\.jgm - gadgeιcddιΓl

These will be written in a different form after making a further examination
of the consequences of taking ya = xh.

Referring to the table (8.14), we have

(8.23) Xa = da = 0/dxh which we write 9Λ,

(8.24) Xt = di - Πda = di~ Γlθh

and consequently the equations (8.5) — (8.10) take on new forms

(8.5)x xhdhF=2F which expresses the homogeneity of degree 2 of the F in x,

(8.6)x diF = gijXJ which shows, in conjunction with (8.5)r that g^ is homoge-
neous of degree zero in x,

(8.7)' dJdiF-ΓJlθtF=gJt,

(S.8Y diF-rid^F^O,

(8.9)' Γc}x3 = 0,

(S.lOy Γ? = Πby
b = ΓvxJ = Γi0 where a symbol 0 appearing as an index will
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indicate contraction with x.
The common value of Γ& and Γfs can now be written, on taking account of
of (8.23) and of gcb = gti = gjt as

(8.25) Γ& = ~gh*(djgίk +9^* - dkgώ = Cόί

h = ghkCm

where we write Cjih in view of the indices acturally occurring. With this
notation we may now rewrite some of the quations as

(8.7)" dfliF - Cjίhx
h = gji on using (8.6)',

(8.8)" 3ίF-Γ7ldhF=0 on writing Γί0 = ΓΪ,

(8.9)" Cβ

hxl = Q or CJihx* = Q.

At this stage we impose convention D of Cartan ([2], p. 10) which is equi-
valent to Cjihx

h = 0, so that (8.7)" gives

(8.26) gji = djdiF and 2CJih = d^F.

We may also write the non-vanishing components of the torsion tensor of X2n

in the new forms

(8.21)' S*f = gh*gtmXυΓ%,

(8.22)' Sicα = gh*(Xtjg*u - g^Γί).

We note that these components of the torsion tensor, as well as the connec-
tion coefficients given in (8.19) are expressed in terms of the function F and
its derivatives except for the Γί = ΓV But this can be expressed also in
terms of F and its derivatives, for if we write (8.19) in full, we have, on
writing ϊ% for the three-index symbols of Christoffel

(8.27) n = r% - ΓjCtS

and hence
_ γh Γ~Ίΰ Γ1 h r<~h> _ γh
— TjQ — L ooL'jjc 9 *• oo — / oo ,

so that

(8.28) Γ5 = Γίb-rti)^Λ

Substitution of Γ\ from (8.28) in (8.27), (8.21)' and (8.22)' determines the con-
nection Γ# in the horizontal distribution as well as the torsion in the fibred
space X2n.

The connection thus obtained is the connection given by E. Cartan for
Finsler space. We note therefore that

The euclidean connection in Finsler space given by Cartan can be re-
garded as the connection induced in the horizontal distribution in a metric
fibred space with torsion, where the torsion coefficients are given by (8.21)'
and (8.22)'.

The Γji occurring in (8.27) are written Γji in Cartan 's tract. We re-
mark that if we attempt to obtain the connection in a horizontal distribution
in a space without torsion, the two sets of components of the torsion of X2n



176 K. YANO AND E. T. DA VIES

given in (8.21)' and (8.22)' would have to vanish. Considering (8.21)' we can
easily verify that X^Γ^ = Rjίt O

m the vanishing of which is the condition for
absolute parallelism of line elements (Cartan [2], p. 42). Further, from (8.15)
it follows that $3/ = 0 and the horizontal distribution becomes a holonomic
subspace of Xzn which is now a space with a euclidean connection without
torsion, i.e. a Riemannian space. So that a Finsler connection cannot be
induced in a horizontal distribution from an X2n without torsion.
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