CONDITIONAL EXPECTATION IN AN
OPERATOR ALGEBRA, III

By HISAHARU UMEGAKI

1. Introduction.

The theory of rings of operators of von Neumann has been developed by
many authors, especially since it has been regarded as a non-commutative
extension of the integration over a measure space by Dixmier [3],” Dye [4]
and Segal [10], some fundamental theorems on measure theory have been
extended. In the papers [3], [8] and [14], the authors have introduced the
concept of the conditional expectation into some ring of operators of von
Neumann (=von Neumann algebra in the sense of Dixmier [2] and we shall
use this terminology below) which can be also regarded as a non-commutative
extension of conditional expectation in the probability theory. The extension
has also been made of the C. Moy characterization theorem (cf. [8] and [14])
and the martingale convergence theorem (cf. [15]). In the present note, as a
part of a non-commutative extension of measure theoretic probability theory
we shall prove for a von Neumann algebra of finite class a Halmos-Savage
theorem (cf. [6]) with respect to sufficient statistics in probability theory
which was reformulated under the terminology of Borel subfield by Bahadur [1].

For our purpose we shall depend upon as a basic theorem the Radon-
Nikodym theorem due to Dye [4], in a von Neumann algebra. Firstly we
shall introduce a space of some restricted normal states relative to a von Neu-
mann subalgebra which will be called tracelet space (cf. Definition 1) and give
an example of such space by the direct product of finite factors in the sense
of Nakamura [7], and further we shall extend the existence theorem of the
conditional expectation in a von Neumann algebra for normal states in the
tracelet space (cf. Theorem 1). TUnder Theorem 1, we shall introduce a
concept of sufficiency of von Neumann subalgebra for some restricted set of
normal states and prove a Halmos-Savage characterizations of sufficient sub-
algebra (cf. Theorems 5 and 6). These have applications to find a charac-
teristic property of subalgebra having unique expectation onto it (cf. Theorem
7), and to prove a von Neumann proposition (¢f. Theorem 2 of [9]) for a von
Neumann’s operations which are stated in the final section.

2. Preliminary.

Let A be a countably decomposable (= o-finite) von Neumann algebra of
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finite class acting on a Hilbert space H, and B, C and M von Neumann sub-
algebras of 4, and B°=B’~A where B’ is the commutant of B. Denote
the identity operator by 1 and a complex number by A.

Let u be arbitray but fixed faithful normal trace of A. Then for a sub-
algebra B, there exists a linear mapping ¢ (e —a) from A onto B such that
for any a €A and for any beB

(1) m(ab) = u(a°v),

(2) a*=0 (6 =0) implies a =0,

(3) a°=0 (a=0), a**=a* and (ab)* = a‘D,
(4) aectta® if aeta.

(cf. [8], [8] and [14]). Such a linear mapping e is uniquely determined
within the condition (1), that is, uniquely determined by u# and B, and it was
called conditional expectation relative to B (cf. [14]) or expectation conditioned
by B (cf. [8]). (Recently, Tomiyama [18] has proved that every linear idem-
potent mapping from A onto B with norm one has always the property (3)).
Here we shall call a linear idempotent normal (=condition (4)) mapping from
A onto B by B-expectation.

For the normal trace u, denote L'(A, u) (= L, say) and L*A4, u) (= L,2
say) the L' and L? spaces with the norms || |[; and | ] respectively,
and similarily denote for the subalgebra B LB, ) and L*B, 4) which
are considered as closed subspaces of L,'and L,* respectively. Then the
conditional expectation e relative to B is uniquely extended to a positive
linear idempotent mapping from L,!' onto LY(B, ) satisfying |«¢|l; <||z|; for
every x < L,', and furthermore ¢ extended to a projection operator from L,®
onto L*B, ;). We denote also the extended mappings of ¢ to L,' and L,?
respectively by same e.

If a measurable operator x (in the sense of Segal [10]) satisfies 7B (i.e.
ux = 2u for every unitary % in B’) then z is called B-measurable.

For a normal state o, a positive measurable operator x is called s-integr-
able if for the spectral resolution « =IX dFE; the numerical integration j/l da(E»)

is finite, and we denote it by o(x). A measurable operator x is o-integrable
if the absolute value |z| of = is o-integrable. For any pair of measurable
operators « and y, if | —y| is o-integrable and o(|2z —¥|) =0, then we call
“o=1y o-n.e.”’. Denote L*A, s) the space of all measurable operators & such
that o(x*x) is finite (i.e. z*x is o-integrable). For z and y < L*A4, o), y*x is
o-integrable, and the space L3*(4, o) is a Hilbert space under the inner pro-
duct <{wx, y>s =a(y*x) for x, y = L¥A, o) where the origin 0 in L%*4, s) being
g-n.e. zero operator.

For any pair of normal states o, g2, we call o; being absolutely conti-
nuous with respect to . (denote o;<ay), if ox(a)=0 (¢ =0) implies always
oi(@)=0. Further for any pair of sets of normal states S; and S,, if
o3(a) =0 (a =0) for every o; € S, implies g,(a) =0 for every o, € S;, we denote
‘S$1<8;’, and if S;<'S: and S.<S;, denote ‘S;~S;’. If p< o, by Radon-
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Nikodym theorem due to Dye [4] there exists uniquely an operator d € L% A4, o)
within p-n.e. such that p(a)=o(d*ad) for every a= A, and we denote
D(p/o)=d and call the Radon-Nikodym derivative in the sense of Dye (of p
with respect to o).

If S is a set of measurable operators, then denote the set of all positive
operators in S by S*.

Denote ‘“s;”’ the supporting projection of a normal state ¢, and for a
von Neumann subalgebra B ‘bs’’ the supporting projection in B of the o.
For any von Neumann algebra M, denote the Banach space of all s-weakly
continuous linear functionals of M by M, in the notation of [3].

3. Tracelet space and correspondence between normal states and ex-
pectations.

In the present section, firstly we shall introduce a some restricted set of
normal states of A which will be referred throughout of this paper.

DEFINITION 1. For a von Neumann subalgebra B, let ‘“Sz’’ be the set
of all normal states ¢ of A satisfying

(5) o(ab) =o(ba) for every a=A and for every bEB,

and we call Sp the B-tracelet space.

The B-tracelet space contains obviously the space of all normal traces,
and is weakly closed, convex set in Ay;. The following lemma follows imme-
diately from the definition of B-tracelet space and the Radon-Nikodym theo-
rem due to Dye:

LEMMA 1. For any o< Sp, there exists des LY(B°, m)* such that
o(a)= u(dsa) for every a =A. Further the dertvative D(s/u) is self-adjoint,
positive and ds= D(o/m)®. Conversely for any t< LB, u)* with |t[i=1
o(a) (= u(ta)) belongs to Sp.

We shall now give an example of B-tracelet space:

ExaMPLE 1.2 If A is a II;-factor and B, C are subfactors of A such that
A=B®C in the sense of Nakamura [7], where B and C are identifying
with B® {11} and {11} Y C respectively. Then obviously B°=C and B=C".
Let up and u¢ be the normal traces of B and C respectively, and S(B) and
S(C) the sets of all normal states of B and C respectively. Then u= up X u¢

2) This example is suggested by Prof. M. Nakamura. Takesaki [12] has extended
the theorem of Nakamura [7] to the direct product of factors without the assumption of
finiteness. If we introduce formally the tracelet space into a von Neumann algebra,
without assuming the finiteness, in the same way of Definition 1, then, when B is II;-
factor, C is a factor and A=B®C in the sense of [12], the B-tracelet space Sp is
given by (6), where up is the trace of B, and where B and B ® {41} are identifying as
in this Example.
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by [7], and
(6) Sz = {1z X po; pc< S(C)}
(6") S¢ = {05 X p¢; o€ S(B)}

where ugp X pc is defined as a state of A by
(1B X pc)20b: ® €:) = 23 pa(bi)pc(es)

for any finite b€ B, c;€C (1 =1, 2, -+, »), that is, B- or C-tracelet spaces
are represented by (6) or (6’) respectively. We shall prove (6): the state
Mg X pc obviously satisfies (5) and belongs to Sz. Conversely, let 6 =Sz and
let ¢ be the state of C of the contraction of ¢ onto C. By Lemma 1 there
is ds e LY(C, m)* such that og(c) = pe(dsc) for every ceC. Let {c.} be a
sequence of operators in C satisfying ||ds — ¢,|li—0. Then

ab®ec)=limu(1R®c)(dX ) =limud R cnc)
= pup(b) }.‘l?o Ho(enc) = up(b)uc(dsc) = up(b)ac(c),
and we get (6).

In the following, for any fixed von Neumann subalgebra B of A we shall
give a correspondence between normal states in Sz and B-expectations which
is a generalization of the existence theorem of conditional expectation in A
(cf. Theorem 1 of [14]).

THEOREM 1. For any o< Sp, there corresponds a B-expectation &
such that
(7 o(a) = o(ass) for every acA,

and & ts uniquely determined by o within the equation (7) and o-n.e. Con-
versely any B-expectation ¢ is corresponding to certain o € Sp, that is, € = &>.

Proof. Putting f.(b) =c(ab) for any fixed a €A and for any bEB, f, is
a weakly* (=o-weakly) continuous linear functional of B. For each b&B,
let % being the partially isometric operator in B such that b=u|b],

[fa®) | = |o(ab) | = lo(an |b])| = |o(aubsby) | (b:=101%)
= |o(biauby) | = | a%[lwo(bib) = allwa(lb]).”
Hence there exists uniquely a’ €B such that f,(b) =o(a’d) and bsa’ = a’ where
bs is the supporting projection in B of ¢ which belongs to the center of B.
This implies o(ab) =o(a’b) for every a=A and every bB. The mapping
a—a’ obtained above maps linearly A into B and satisfies (3) and (4). Indeed,
for any a, a;, a:€A and for any beB

3) In general, for the B-expectation, there corresponds a number of states in the
B-tracelet space Sp. Concerning this fact we shall discuss the sufficiency of subalgebra
for a set of normal states in Sg.

4) |la]le is the operator bound of a.
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o((a; + a2)'b) = a((a; + a2)b) = o(a;b) + o(azb)
=o(a’b) + o(a’d) = o((a’ + a’)b).

Since ai/, ay’ and (a;+ a;) belong to bsB, (a;+ az) =a,’+ ay’. Similarily
(Aa) = Aa’ and the condition (3) is obviously satisfied. The condition of nor-
mality (4) for the mapping a— a’ follows from that: If a«1Ta for self-adjoint
a«, a €A, then for beB*

0(aa’b) = o(a«d) T o(ab) = o(a’b)

and a.’ < a’ imply a.’1by for some self-adjoint b, = bsB. Hence o(byd) = a(a’d)
for all beB and a’=b,. Now we put

aso =a’ 4+ a’(1 — bs) for every a€A,
where a® is the conditional expactaion of a relative to B, then for every b= B
beo=b"+ b%(1 — bs) = bbs + b(1 — bs) = b

and As=B. Therefore & is obviously a B-expectation and satisfies (7). The
uniquess of &: Taking a B-expectation ¢ satisfying o(a) =o(a¢) for all a €A,

(8) a(acb) = a((ab)*) = o(ab) = o((ab)‘e) = o(ascb)

for every beB. (8) and ss = b, imply that bsa‘c = bsa® and s.a° = scboa® = Ssbsatc
= ssa%s, and we obtain a®=a‘ o-n.e.

Conversely, let ¢ be arbitary B-expectation. Putting o(a) = u(a®), o(a®)
=u(ass) = u(as) = o(a) and

o(ab) = pu((ab)?) = u(asb) = u(ba*) = u((ba)?) = a(ba).
These imply that ¢ = Sz and a¢ = ass o-n.e..

REMARK 1. The B-expectation & corresponding to o< Sp is uniquely
determined by o within (7) and without the terminology o-n.e. if and only if
o is faithful on B, because the both parts of ‘“4f’’ and ‘“‘only if’’ follow
from that the support b; in B of ¢ is identity operator 1. In Theorem 1,
even if the assumption on A—the countable decomposability and the finiteness
—does not put, and if the set of states Sz defined by (5) is not empty, then
for any o< Sp there corresponds uniquely a linear idempotent mapping from
A onto b.B satisfying (3) and (4). This fact will be obtained by the same
way as in the proof of Theorem 1.

REMARK 2. As Example 1, let A, B and C be Il;-factors such that
A=B®C, and let 1, up and u¢ be the normal traces of A, B and C respec-
tively. Then by Example 1 any ¢ € Sp is expressed by ¢ = uz X ¢ where o¢
is the contraction of ¢ onto C (i.e. g¢(c) =6(1®c¢)). This implies that for any
finite b;€B and ¢;=C

(9) (Zl} b @ ci)eo = ? b @ acle)l.
Indeed, for any b= B
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o(Cb:Qac(c))(d® 1)) = (X b:id R oc(c)l)
=31 (up(bib)ac(c:) = a(b:id R ;) = (L b: R e )(0 R 1))
and hence (9) holds.

In the following we prove that any B-expectation is representable by the
conditional B-expectation e as (10) below.

THEOREM 2. For any B-expectation &, there exists uniquely t. € LY(B¢, u)*
such that

10) ac = (t.a)° for every acA.

Conversely, for any t<L'(B¢ n)* with t*=1, putting a°= (ta), then & is a
B-expectation. The correspondence ¢ —t. is one-to-one between the set of all
B-expectations and {t =L'(B¢, u)*; t¢=1}.

Proof. Putting o(a) = u(a¢), by the proof of Theorem 1 o= Sp. Then by
Lemma 1 there exists uniquely d.e LB wu)* such that o(a)=u(do.a) for
for all a=A. Therefore for every beB

HM(acd) = u((ab)e) = a(ab) = u(dsad) = u((ds2)°d)

and a*=(dsa)*. The operator d, is the required one, i.e. t.=ds;. The uni-
queness will be followed from the final part in this proof.
Converse case: For any ¢, €L,? t,eL¥B° u) and bEB,

M((E1E2)°D) = p(t tab) = pu(tibts) = p(tatid) = p((2t1)D) ¥

and (¢i2)° = (tot1)°. Let te LY(B° m)* be t*=1 and put a¢=(ta)’. Then
b= (tb)*=1tb=1"0 for any b= B and (ta)* = (t'%at?)* = 0 for any a A*. Hence
for a€A* 0=Zas=(a)=(t|allx1)=]als1l, and a=B*. By the linearity
of ¢, at=B for all a=A. Since the normality of ¢ is obvious, ¢ is a B-
expectation.

The final part follows immediately from the above parts and the follow-
ing: If ¢, t. =L’ satisfy (t:a)° =(t.a)¢ for every a €A, then u(t;a)= u((t;a)?)
= //l((tga)e) = ,U(tza) and ty =1,

4. Sufficiency of subalgebra.

In this section, we shall introduce the concept of sufficient statistics of
probability into the von Neumann algebra A.

DEFINITION 2. Let B be a von Neumann subalgebra and S, be a set of
normal states of A. Then we call that B is sufficient for S,, if the B-tracelet

space contains S, (i.e. Sp < Sz) and for each a € A there exists a’ B such that
ass=a’ o-n.e. for every g€ S,.

5) For any measurable operators ¢t and t’, ¢t is the closure of the product operator,
ie., tt'=t-t in the notation of [10].
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This definition is slightly non-commutative extension of the case of suffi-
cient statistics in probability theory (ef. [1] and [5]), which may be described
as the following:

Let (2, %) be a measurable space in the terminology of measure theory,
and A the multiplication algebra of all bounded, measurable and complex
valued functions defined on 2. Let B be an arbitary Borel subfield of A and
B the subalgebra of A consisting of all B-measurable functions. Then A4 is
(in general homomorphically) represented by a commutative von Neumann
algebra A acting on a Hilbert space H® and B is similarily represented by a
von Neumann subalgebra B of A, The space of all probability measures of
(2, can be identified with the space of all normal states of A by the
natural way, which coincides with the B-tracelet space (likewise defined by
(5) in Definition 1), because A is commutative. We denote the element in A4
and its corresponding operator in A by the same symbol a, ete.. Then for
each probability measure o, there corresponds a conditional expectation
Es(3|B) 3= N) relative to B which is determined in o-n.e. in the usual sense.
In our notation, it is expressed by Eo(a|B)=a‘ for a=A (cf. Theorem 1
and Remark 1). For a set S, of probability measures, the sufficiency of a
Borel subfield B is defined by such a way: for any subset 8= there is a
function @’ B such that

11) Es3|B)=a’ o-n.e. for every o< S,.

For these cases the countable decomposability is not assumed, but since
the equation (11) is defined within the ‘‘o-n.e.”” part, these cases are covered
by our case.

For 0= Sz if we put ‘“a’s =b.a‘s”’ where bs is the supporting projection
in B of o, then a% = a‘s o-n.e. and o(a) =a(a’) for all a=A. The mapping
ds is a linear, idempotent from A onto b.B satisfying (3) and (4). That is,
linear mapping & and 8, can be considered as same one within o-n.e.. By
Theorem 2, taking

(12) to= botso,
it is obvious that
13) a% = (t,a)¢ for every a € A and o€ Sp.

Under this notation, we have the following for any pair (B, S;) of a von

6) Let P be the set of all probability measures of (£2, %). For each 6 €P A is
homomorphically represented by a von Neumann algebra A, acting on the Hilbert space
L2, N) (=H, say). The algebra A. is isomorphic to the quotient algebra A/N,, where
N, = {fEA; jlfl d0'=0}. The Hilbert space H is defined by the direct sum >}{H,; 0 € P}
in the similar method of Takeda [11], and the von Neumann algebra A is defined by
the discrete direct sum 3 {A4,; 6P} (={(2 f. |6 €P); f€A}) where the *operation, the

addition and the multiplication are introduced into A by coordinatewise ones of {A.;

geP}, that is, (DfsloePP=f*|oeP), S f.|c€P)+(Xg:|6EP)=(Z(f+9)|
ogeP) ete.



58 HISAHARU UMEGAKI
Neumann subalgebra B and a set of normal states S, satisfying S, c Sz:

THEOREM 3. B 1s sufficient for Sy if and only if bea’s=b,a% for every
a €A and for every pair o, p = S,.”

THEOREM 4. B 1is sufficient for Sy if and only if B 1s sufficient for the
closed convexr hull K of Sy with respect to the weak topology of Ax.

Proof of Theorem 3. The “only if”’ part is obvious, we prove the ‘“4f "’
part. By the condition, for any a €A
a%0a°° = a%bsbea’? = adsbpbsa’? = a®?q’s.

Therefore for each fixed a = A4*, there exists a’B* such that a’=sup {a’s;
o< Sy} where ‘““sup’ being taken under the ordering of operators. Hence

bsa’= sup {bsa’?; p € Sy} = sup {bpboa’?; p = Sy}
=sup {bea’s; p = Sp} = a’s
and a’s=a’ og-n.e. for each s S, and a€A*. Since any a A is a finite

linear combination of operators in A* and ds is linear, we get a’ =a’ o-n.e.
for every a €A and for some corresponding a’€ B.

Proof of Theorem 4. The ‘“4f’”’ part is obvious, we prove the ‘““only if”’
part. Put K, the convex hull of S; and K the weak closure of K, in A,.
Any o €K, is expressed by ¢ =311 di0; for 0. € Sy and scalars 2, = 03 r-:4; =1).
If B is sufficient for S,;, then for each a A there exists a’B such that
that as? =bsa’ for every pe S,. Hence o(a’) =>7-140:(a’) =S lioi(a)=a(a) and
boa’ = a’s. By a well-known theorem of Mazur, K coincides with the closure
of K, in the strong topology in A4, and for any ¢ €K there exists {o.} CK,
such that o.(a)—oa(a) for all a=A. Therefore o(a)=1ima,(a)=1imas,(a’)
=o(a’) and a’sc=a’ o-n.e.

As Lemma 1, denote ds =D(s/u)®> for o =Sz which belongs to L'(B°, u),
then

LEMMA 2. For any o € Sg, do = teds® = ds’ts, where ts is defined by (12).
Proof. Since a% = (t,a)° for any a €A,
(14) m(dsa) = o(a) = a(as) = u(dsa’s) = u(ds(toa)®).?

Taking b,’ € (B°)* which are commuting each other, satisfying b,/ < b,,./ (n=1,
2, -++) and converging to ¢, in the L,-mean, then b,*1¢.°=bs and

Jdabn’) = pu(dabn'®) T (dobs) = o(bs) = 1.

Since 0=do%b, = do®by (n=1, 2, --.), it converges in the L.-mean to some

7) This theorem is related with the concept of the pairwise sufficiency (cf. [5]) and
it will be applied to the proof of Theorem 6.
8) If ds, t. belong to L%, then (15) (below) is clear from (14) (cf. §2).
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operator in L'(A, ) and u(d.b,’) <1, and since d.¢, b,” and ¢, commute each
other, by Lebesgue convergence theorem, d.°ts €L,!, 0= u(d:’t:)<1 and for
every a4

15) Mm(ds(tea)?) = lim p(ds(b,'a)?) = lim u(d+°b,/a) = p(ds tsa).

Combining (14) and (15), u(dsa) = u(d.’tsa) and we get ds = do’ts = tods®.

LEMMA 3. The B-expectation & is uniquely extensible to a projection
operator ps. from L*A, o) onto LB, o) and satisfies {a‘sby, bs)s = {aby, bs)s
for by, b, € L¥B, o), where LB, ) is a linear subspace of L*(A, o) consisting
of all B-measurable operators which is obviously closed.

Proof. Since a*cwcqc < (a*a):s for all a€A (ef. [18]), for any a, a; and
ag €A
{a:%9, asys = a(as*a,°0) = o(as*o*a,c) = o(azoray) = {1, Ao
and
{ass, a:9)s = a(asoxass) < o((a*a) = s(a*a) = {a, a)s.
Therefore ¢ is uniquely extended to the projection ps from L%*A, o) onto
L2%B, o) because the restrictions of A and B onto the supporting domain of

o are dense in L%*(A, o) and L%B, s) respectively. The second part follows
from that, a‘shb = ps(ab) for any a A4 and b= B implies that

{azoby, byys = {po(abs), bs)s = {abi, Pobs)s = {aby, be)s.

Hereafter, as in Theorems 8 and 4 let (B, Sy) be a pair of a von Neumann
subalgebra B and a set of mormal states satisfying Sy Sz. In the follow-
ing, we prove Halmos-Savage theorem for our non-commutative case.

THEOREM 5. It is a mecessary and sufficient condition for B to be suffi-
cient for S, that there exists a state w< Sp such that (i) Sy~ =, (ii) =(ass)
=7n(ssa) for each o< 8, and for every acA and (iii) D(o/x) coincides with
a B-measurable operator o-n.e. for every ¢ S.

Proof. Necessity: By the assumption, for each a €A there corresponds
a’ =B such that a’ =bsa’, and by Theorem 2 there exists t, = LY(B¢, u) such
that ads = (t.,a)¢ for all a=A and t.*=bs,, where the notations ¢, and d, refer
to the equations (12) and (13). Whence for each pair o, p€ S,

M(botsa) = pu(bo(tsa)?) = j(boa’e) = u(bobsa’)
= u(bobpa’) = p(bsa®?) = pu(bs(toa)) = p(bot,a)
and bpts = bstp. Since bots =t and bote = to,
tato = botoboto = botabat, = toto.

While for any b/, b”<B° and be B, u(b'*b"*b) = u(b’b’*b) = u(b’’b’*b) and b'°b’’®
=b"¢p’. Since ds, dp = LY(B° u), ds and d, are approximated by sequences
in B¢ respectively, and we have d.°d.®*=d.’d.®. Since by Lemma 2 d, = t.ds®
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and do=tpd,°,
(16) dadp = taduetpdpe = tatpdaedpe = tptvdpedae = t.ﬂdpetadae = dpdp.
Let ds = j&dEx(a) be the spectral resolution of d.(c = S;) and C the von Neu-

mann subalgebra generated by {Eis); 1=0, 0 S,}, then C is commutative
and ds (6 S;) are C-measurable, moreover there exists a projection py=C
such that p,=sup {ss; 0 = S;}. Let F be a family of all projections p=C
such that p€F if and only if p<s, for some ¢ S;,. By the countable de-
composability of C and by Zorn lemma there exist a countable {s.}CS; and
{p.} cF such that p,=<s,, and sup;.:p.=p.. Putting r=n10./2"% =
belongs to the closed convex hull of S, (which is contained in Sz) and p, = s,
and hence = ~S,. Consequently by Theorem 4 a’==b-a’ (¢’ is the operator in
B, cf. Def. 2) and by b, < b: we get botz =t, and®

dodz"t = (tadae)(txdn‘e)_l = totz 'do’d "t = 8obod oAt = Sodod "t

and d.d:"!' =d.’d:*"! o-n.e.. Since ds commutes with d- and d.(=1), D(e/7)>0
and d.d-"'= D(o/n)®. Therefore D(s/x) coincides with the B-measurable
operator (d.°d-°"1)”? o-m.e.. The condition (ii) is obvious from (16) and the
construction of =.

Sufficiency: For any fixed o € S,, put As = {s.ass; a €A} and B, = {ssbss;
beB}. Then A, and B, are von Neumann algebras (acting on s, H) with the
parallel properties (in §2) of A and B respectively. Since for any a < A4,
beB and pe Sp

0(80b800.85) = p(bssa8s) = P(Ss0Ssb) = P(Ssa8bSs),

putting 7n'(a) = n(a)/n(ss;) and o'(a) =o(a) for a €As =’ and ¢’ belong to Sz,
as states of A.,. By the assumptions (ii) and (iii), D(¢’/=’) belongs to
L*Bs, n’), and by Lemma 38 (for As, B, and n’) we get immediately

0((85a86)*™b) = {(8s085)°=b D(c/7), D(o/7))=
= {80a8:bD(c /%), D(6/7))== a(Ssabss) = a(ab) = a(a*sb)

and be(ssass)= = bsa’c = ads for every a €A. While the condition (ii) implies
that n(s.ab) = n(abss) = n(as:b) for every b&B and (ssa)’==(ass)’~ for every
acA. Therefore again by (ii), for a€A*, b= B* and b, = b'/?

7(80ab) = n(Ssb1ab;) = 7(ssb1ab18s) < n(biab,) = n(abd)
and
%0 = bs®c = bo(86080)°™ < bz(SsASs)*™ = (86080)%= = (80a)0n < adn

Put f(a) =o(a’~) — o(a). Then f is a positive linear functional of A and
F ) =01%x) — a(1%) = 6(bz) — o(bs) = (1) — o(1) = 0.

Consequently f =0 and s(a*=) = a(a’~) = s(a’) = ¢(a®s). Thus we obtain a®c =as=

9) For any positive and measurable operator £, t~! is defined such as the closure of
the inverse operator in its supporting manifold and zero in its orthocomplimented mani-
fold, which is also positive and measurable.
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o-n.e. for every aA. Since ¢ is arbitary in Sy, B is sufficient for S,.

REMARK 8. In the original case of Theorem 5 (ef. Theorem 1 of [5]), the
countable decomposability has not been assumed, but it has been discussed
for a set of probability measures dominated by a probability measure p,
which implies that the multiplication algebra of all bounded random variables
defined p-n.e. becomes a countably decomposable von Neumann algebra, and
it reduces to our case.

In the rest part of this section, we shall describe for our case a related
concept of a theorem of Halmos-Savage with respect to the pairwise suffi-
ciency in probability theory. The following will be obtained immediately
from Theorem 5:

COORLLARY 5.1. If the set S, comsists of the faithful normal states,
them it 1s a mecessary and sufficient condition for B to be sufficient for S,
that D(a/p) is B-measurable for every pair of states o, pE S,.

DEFINITION 3. A closed linear subspace C of A, is called abelien sub-
space if C is generated by {l.r; c€C} for a certain commutative, weakly
closed self-adjoint subalgebra C of A and for a certain normal trace = of A,
where the operation [, is defined by (I.f)(a)=/f(ca) (f€A*).

For example, the closed linear subspaces of A, generated by the set of
all normal traces of A is an abelian subspace. In general, the real part of
any abelian subspace C of A, is an abstract (L)-space in the sense of Kaku-
tani (cf. [6]) where the ordering in C is defined from the positive definite-
ness.!” By Radon-Nikodym theorem due to Dye, we can easily see that:

LEMMA 4. If a closed linear and self-adjoint subspace C of Ay is an
abelian subspace, then C~ A" generates C and ds, dp commute each other
Jor any pair of normal states o, p in C.

Denote for any pair of normal states o, p D(g, p) = D(s/(c+ p)/2). Under
these terminologies we prove the following:

THEOREM 6. It is a mecessary and sufficient condition for B to be
sufficient for S, that (1°) S, is contained im an abelian subspace of Ay
and (2°) D(o, p) coincides with a B-measurable operator o-n.e. for every
pair o, ps S,

Proof. Necessity: We refer to the proof of Theorem 5. Let C be the
von Neumann subalgebra and = the normal state in Sz which were defined in
the part of the necessity of that proof. Then C is commutative, do € L(C, 1)
for every o< S, and further by the construction of = d-=L'(C, #). Putting

10) We shall give a characterization of the abelian subspace under the terminology
of abstract (L)-space in another occasion.
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C={f.; x=LYC, m)} (where f.(a)=u(xa)), C is obviously an abelian subspace
of A, and contains S,. Consequently the closed convex hull K of S, is con-
tained in C and for any pair o, p€ K with o< p D(s/p) =0, and by Theorem 4
and the proof of Theorem 5 d.d-"!=D(s/n)?=ssvs for certain B-measurable
positive operator v,, which depends on @, for each s = K. Hence
dodp ™t = 86(Vodz)(Wpdz) ! = 86(VoVp ™ 1)8z = SosVsVp 1.
Since v, and v, can be taken to be positive and commuting each other, D(s/p)
= (dodo )2 = ss(vsvo"1)% and (2°) follows immediately from this.

Sufficiency: By the condition (1°) and by Lemma 4, dsd, =d.ds for each
pair o, p€ S, and dod: =d-ds (Where 7 = (o4 p)/2), and further z(as,) =r(s.a)
for every a A. Therefore by the same manner of the proof of Theorem 5,
a’s =a’ o-n.e. and similarily a¢® = asx p-n.e.. Consequently a’ = bsa°c = bsas=,
a’® = boass and

bpa"o = bpbaaa" = bobpae" = bsad®.

Thus by Theorem 3 we get the sufficiency of B for S,.

5. Uniqueness of expectation.

In this final section, we shall give a simple application of the sufficiency
of a von Neumann subalgebra to the uniqueness of expectation on it. This
is essential for non-commutative case.

THEOREM 7. The following conditions are equivalent each other:
(i) B s sufficient for Sz,

(ii) B°cB, where B°=B'~A,

(iii) The B-expectation is uuique.

Proof. (i)—(ii): For & € (B)*, put b= 0" +1)/u®’ +1) and o(a)= uba)
(e €A). Then o< Sp and is faithful. Hence & =& (=e¢), and a’s = bsatc = a%
by bs=1. By Theorem 2, taking ¢, such as (12), then for all a4

M(toa) = u((toa)?) = w(ase) = wa) = m(a)
which implies t-=1. While b=ds,=t.d.* (by Lemma 2)=d.* and bEB.
Therefore b’ B, and B°CB, because each operator in B¢ is expressed by
a finite linear combination of the operators in (B°)*.

(ii)—(iii): Let ¢ be a B-expectation. Putting o(a) = u(a*), then ¢ € Sp and
gs=¢. Since a¢ = (tsa) for ts=LY(B° m) with £°=1 and by (ii) t. belongs
to LY(B, u), we obtain t- =1 and a.=(t.a)*=a’.

(iii)— (i) follows immediately from Theorem 1.

COROLLARY 7.1. If B=N¢* for certain commutative von Neumann sub-
algebra N, then the B-expectation is unique.

Proof. NcN’and Nc A imply NCN°=B and B'’C N’. Hence B°c N'~A
=N°=B and we get the proof by Theorem 7.
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From this corollary, Theorem 2 in [9] (which will be stated in Cor. 7.1’)
follows such as: For a projection p A, denote C,={p}~A and a!? = pap
+ 1 —p)a(l—p) for every a=A, |p being a notation of von Neumann
(e.g. see [9]). Then |p is obviously a C,-expectation and by Corollary 7.1
every C,-expectation is unique and hence is represented by |p. Moreover let
{p,q,---, 7, ---} be a countable family of projections in A which are com-
muting each other, and put B=C,~Cy~-+-. Then B={p, q, ---}°, and the
B-expectation is unique. While for every a=A a'?l?*I” converges in the
strong operator topology to an operator bB (cf. [9], [14]) and denote
a?iel»=5b, Then the mapping |p|q|--- is a B-expectation, which has been
called the won Neumann’s operation defined by the von Neumann sub-
algebra {p, q, ---}" (cf. [9]). Consequently for the subalgebra B, every B-
expectation is represented by the von Neumann’s operation |p|q|---. Espe-
cially, if the Hilbert space H, on which A acts, is separable, and if N is
commutative, then N is generated by a countable family of projections in it,
therefore we obtain

COROLLARY 7.1’. For the von Neumann subalgebra B(=N°), the B-expec-
tation coincides with the von Neumann’s operation defined by N, that is,
Jor any countable family of projections p, q, --- which generates N, |p|q|---
defines the unique B-expectation and hence is determined only by N.

This corollary contains a von Neumann proposition, which has been
proved in [9], for our special von Neumann algebra A. Concerning the von
Neumann’s operation, we shall give a further remark (cf. Cor. 7-1”’). For any
von Neumann subalgebra M, M° satisfies M°=M°(= (M°)°)°). Indeed, a =M*
is equivalent to that aa’=a’a for all a’€M* =M — A’ which is also equi-
valent to a e (M~ A’)~A (= M**), where M— A’ means the smallest von
Neumann subalgebra containing M and A’. Furthermere if M is commu-
tative, then M° is also commutative. This is clear by that M<“=M'~A)
~A=M-—A"Y~A. We take N, and the Hilbert space H as in the Cor. 7.1/,
then N¢¢=N°¢=B, N is commutative and is generated by a countable family
of projections p, q,---. Therefore the von Neumann’s operation defined by
Ne¢¢ is also B-expectation, that is, we obtain

COROLLARY 7.1”. The wvon Neuman’s operations defined by N and N°
are identical.

As a special case of Cor. 7.1 and Cor. 7.1/, we have the following:

COROLLARY 7.2. If B is a maximally abelian subalgebra, them the B-
expectation ts unique, and furthermore if the Hilbert space H is separable
then it is a von Neumann’s operation defined by B.

If the converse of the last part of this corollary holds, then B is maxi-
mally abelian, that is, for commutative B, the equality ‘‘the B-expectation
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=the von Neumann’s operation defined by B’’ is a characteristic property
of the maximality of B (cf. Theorem 3 of [9]).

Let T be the set of all normal traces of A, then from the proof of
Theorem 7 we have:

COROLLARY 7.8. For a von Neumann subalgebra B, B is sufficient for
T if and only if A’ ~ACB.

This contains a result of Dixmier (cf. Proposition 8 of [3]) for the present
restricted algebra A.
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