
ON THE CONVOLUTION TRANSFORM

BY YUKICHI TANNO

1. Introduction.

In this paper we shall study the inversion theory for the class of con-
volution transforms

(1) /(aO=Γ G(x-t)φ(t)dt
J-oo

for which the kernel G(i) is of the form

( 2 )
'

Here

(3)v ; - β c *

where {α^JΓ and {cfe}Γ are positive constants such that

(4) 0<

lim — = β>β' = lim— .
n+oo dn w>oo Cn

We agree that from certain point on, all ck may =00. In fact, the case was
extensively studied by Hirschman and Widder [1] Chapter IX. We shall
follow after their arguments to consider the generalization.

If we set ak = (2k - 1)/2, ck = oo (fc = 1, 2, 3, - •), Theorem 7 and Theorem
8 below will give known results for the Stieltjes transform [1].

2. Properties of the kernel.

We suppose that

( 1 ) E(S) :
k = l

where

(2) 0<αι^α 2^ , lim

LEMMA 1. If E(s) is defined by equations (1) and (2), then
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lim r-1 log | E(reίθ) \ = πΩ \ sin θ \
r->oo

uniformly for θ in any closed interval not containing an integral mul-
tiple of π.

This is known; see [1] p. 213.

LEMMA 2. // F(s) is defined by equations (3) and (4) of §1, then

lim r-1 log \F(reίθ) \ = π(Ω- Ωr) \ sin θ \
r-»oo

uniformly for θ in any closed interval not containing an integral mul-
tiple of π.

This is an immediate consequence of Lemma 1.

We define

hk(f) = (l - ^4)~α* [' e-**Mdu + ̂ i(t)
V Cjc / Z J _oo Ck

where j ( t ) is the standard jump function, that is, j ( t ) = 0 for t < 0, 1/2 for
t = 0 and 1 f or £ > 0. It is easily verified that hk(t) is a distribution function
with mean 0 and variance 2(ak~

2 — ck~
2) and that

(3)

the bilateral Laplace transform converging absolutely for —

THEOREM 1. If

1. F(s) is defined by (3) and (4) of §1,
2. μ denotes the multiplicity of αi as a zero of F(s),

and

3. G(t) = ̂ y f '°° -^esίds (- oo < ί < oo),
27Γ^ J_ ίoo /< (s)

then
A. G(£) ^s a frequency function with mean 0 awd variance

ί
C50

G(t)e~stdt — l/F(s), the bilateral Laplace transform converging
-00

absolutely in the strip — aι<9ϊs<aι,
C.
D.

where p(t) is a real polynomial of degree μ — 1 and

as *-+oo (n = 0, 1, 2,

as ί-» -oo (n = 0, 1, 2,
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for some ε > 0.

Proof. If we set

Hn(t) = h,(t) # A2(ί) #•••# hn(t)

where operation # denotes the Stieltjes convolution for distribution func-
tions, that is, h#k means

Joo
h(t-

-00
u)dk(u),

then by the convolution theorem [2] Hn(t) is a distribution function with the
bilateral Laplace transform

We have

,. A I-*2/**2 1

uniformly for s in any compact set of the s-plane punctured at ±αι, ± α2,
Thus \/F(iτ) is the characteristic function of a distribution function

Further, by Levy's theorem

Since by Lemma 2

(4) log|.P(ir)|-^-^)|r| as r->±oo,

it follows that H(t) is infinitely diίf erentiable. If G(t) = dH(t)/dt, then G(t) is
a frequency function, and

•I ίoo

(5)
^

From this the conclusion C follows.
To demonstrate the conclusion D, let us choose ε > 0 so small that no

ak (k = 2, 3, •••) lies in the interval —a1 — 8^σ<a1 (s = σ + iτ). Integrating
about the rectangular contour with vertices at ±ίT, —0,1 — ε ± iT and letting
T increase without limit, we obtain

t) R+(t) =

Again by Lemma 2 if η > 0 then

1
as
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uniformly for o in any finite interval. From this it is easily seen that

-^}nR+(t) = 0(e-<aι+ε») as ί-»oo.
dtj

The second part of conclusion D will be established similarly.
From D we see that

Γ estG(t)dt
J —oo

converges absolutely for \3ts\<a,ι and defines in this strip an analytic func-
tion. Since

we have demonstrated the conclusion B; that is, for | ffts | < αj

(6) Γ β-"G<t)dί=-=£-r-.
J -oo J? \S)

From this equation the conclusion A follows by the the straightforward com-
putations.

THEOREM 2. If G(f) is defined as in Theorem 1, then

This follows from the fact that the functions hjc(t) are convex distribu-
tion functions.

3. Properties of the transform.

THEOREM 3. If

1. G(t) is defined as in Theorem 1,
2. a(ΐ) is of bounded variation in every finite interval,

and

ί
oo

G(xQ — t) da(t) converges,
-00

then

Γ G(x-t)da(t)
J -00

converges uniformly for x in any finite interval.

Proof. It is enough to show that

(1) lim
A, £+ +

(1)' lim
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uniformly for x in any finite interval. By Theorem 1 we have

uniformly for x in any finite interval. If we set

then

(3) L(ί) = o(l) as

We have

A

—
- ί) da(t) = -G(x0 - t) da(t)

_ Γ
- I

Using equations (2) and (3) we see that equation (1) holds uniformly for x.

We can establish (1)' similarly.

4. Operational calculus.

Denote by D the operation of differentiation. We define the operation
(1 — D/dk)-1 after Hirschman and Widder [1] by the following equation:

(1 - D/akγ
lφ(x) = Γ e-

yD/a*φ(x)h(y}dy,
J-oo

where

0 (0, oo),

that is, by the equations

ake
a** Γφ(y)e~a^dy if ak > 0,

J X

-ake
a*x<\ φ(y)e~aκydy if ak < 0.

Joo

For example, if ak > 0 then

for/ Λ / 1-β/α*

Therefore

the integral converging absolutely by Lemma 2.
Let us define
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- s2/ak

2

11 1 — Q2/f 2 '=±71 + 1 -L *> / vfc

THEOREM 4. if
1. .Fn(s) is defined by equation (1),
2. Gn(t) is defined by equation (3),

then

A. GnOO is a frequency function of mean 0 and variance

ί
oo

Gn(t)e~stdt = l/Fn(s), the bilateral Laplace transform converging
-00

absolutely in the strip — an+ι< 9ϊs<αn+ι,
C. Gn(t) e C°°, - 00 < ί < 00,

αtiίZ

where pn(t) is a polinomial of degree μn — 1, ̂  denoting the multiplicity
of s = an+ι as a zero of Fn(s)9 and

'-Λ Rn,-(t) = 0(e<an+ϊ+εH) as ί-> — oo (m = 0, 1, 2, •••)

for some ε>0.

This is an immediate consequence of Theorem 1.

From this theorem and Theorem 1 we have

(4) F

5. Inversion theorem.

THEOREM 5. //

1. G(ί) is defined as in Theorem 1,

2. FW*(Z>) αrad Gn(t) are defined by (2) and (3) o/ §4,
3. a(t) is of bounded variation in every finite interval,

and

ί
oo

G(x — t) da(t) converges,
-00

then
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F«*(D)f(x) = Γ Gn(x - t) da((),
J —00

the integral converging uniformly for x in any finite interval.

Proof. From the relation (4) of §4 it is enough to show that the integral

(1) Γ Gn(x-t)da(t)
J —00

converges uniformly for x in any finite interval. By Theorem 1 and Theorem
4 the integral

d G^χ-V
-. dt G(χ-t)

converges uniformly for x in any finite interval and we have

uniformly for x. For any x (— oo < x < oo) we set

L(t)= (*G(x-f)da(t),
Jo

then by Theorem 4, L(t) is bounded and !/(+ oo), L(— oo) exist. For arbitrary
Γi, T2 we have

2Gn(x - t)da(t) =
?!

Gn(X~t)

The last two terms converge as jΓι-> — oo, T2-* + co, uniformly for x in any
finite interval.

COROLLARY 5. 1. G(t) is defined as in Theorem 1,

2. Fn*(D), Gn(t) are defined by (2) and (3) of §4,

3. <f>(t) is integrable on every finite interval,

ί
oo

G(x — t)φ(t) dt converges,
— 00

then

Fn*(D)f(x)=Γ Gn(x-t}φ(t)dt,
J —oo

the integral converging absolutely for x in any finite interval.

In the previous theorem, set
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Then the result follows immediately.

LEMMA 3. [1] Let <p(t) be continuous and a(t) of bounded variation in
every finite subinterval of a g t < oo. If

1. φ(t) is positive and monotonic,

and

ί
oo

φ(t) da(t) converges,
a

then lim^oo φ(t) = 0 implies that

THEOREM 6. //

1. G(t) is defined as in Theorem 1,

2. Fn*(D) and Gn(t) are defined by (2) and (3) of §4,

3. a(t) is of bounded variatian in any finite interval,

and

ί
oo

G(x — t) da(t) converges,
— 00

then for n sufficiently large

(*2Fn*(D)f(x)dx=Γ Gn(x2-t)a(t)dt-Γ Gn(xι-t)a(t)dt.
JXl J-oo J-oo

Proof. By Theorem 2 and Lemma 3 we have

(1) αr(ί) = o[G(α?-ί)]-1 as ί->±oo.

By Theorem 5

=F Gn(x-t)da(t),

the integral converging uniformly for x in any finite interval. Integrating by
parts, we obtain

=[Gn(x-t)a(f)Γ -Γ
L J-oo J-

Theorem 1, Theorem 4 and the estimation (1) show that the integrated parts
vanishes uniformly for Xi^x^ x2 Thus

the integral converging uniformly for xl^x^xz. We have

ΓFn*(D)f(x) dx = Γdx Γ \^-Gn(x - ί)Ί«(ί) dt.
JXI J*! J-ooL VX J

Because of the uniform convergence of the inner integral we may invert the
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order of integration and we have

J a o Λoo -]

Fn*(D)f(x) dx = lGn(x2 - ί) - Gn(Xi - ί) U(ί) cZί.
a?l J -oo J

Using Theorem 1, Theorem 4 and the estimate (1), we see that if n is suffi-
ciently large, the integral (2) will converge absolutely.

LEMMA 4. If Gn(t) is defined as in (3) of §4, then

limCn(ί) = 0 (0<|ί |<oo).
W->00

Proof. Let ί0 be an arbitrary number different from zero. Then
we have

I Γ*o/3 1 C I / 2 1 Γ°°
Gn(t) dt ^ Gn(t) dt ̂  -̂ -L t2Gn(t) dt

\J*0 Ji^l>Kθl/2 4 J-oo

Hence

ί
*o/2 f

Gn(t)dt = 0.
*0

But by Theorem 2 Gn(t) is monotonic over the range of this integral and
takes its smallest value at t0; i.e.

(*0/'2Gn(t)dt\.
~ 7t\"U/ g

From this inequality the result follows immediately.

THEOREM 7. //

1. G(t) is defined as in Theorem 1,

2. ^>(£) is integrable on every finite interval,

ί
oo

G(x — t)φ(t) dt converges,

4. Fn*(D) is defined by (2) of §4,
and

5. φ(f) is continuous at x,

then

Proof. By Corollary 5 we have

Fn*(D)f(x)=Γ Gn(x-t)φ(t)dt.
J -oo

Since Gn(t) is a frequency function
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Fn*(D)f(x) - φ(x) = Γ Gn(x - t)ίφ(t) - ψ (*)] dt
J-oo

By the condition 5, for an arbitrary ε > 0 we may choose d > 0 so small that

Put

Γ Gn(x-
J-oo

We have

= (*
J-o

! ^ S Γ+ 8Gn(X ~
J x—δ

x-δ Jx+δ

say.

Gn(t) dt = 8.

Gn(x-t)ίφ(t)-φ(x)ldt=Γ Γ G^x ~^\G(x - t){ψ(t) - ψ(x)}]dt.
+δ J -ooL tΓ^ΛJ — t) J

By Theorem 1 and Theorem 4, for ε > 0, there exists T0 such that for suffi-
ciently large n

Gn(X ~

G(x -1)
<ε T0).

Thus

Furthermore by Lemma 4 we have

lim
W-> 00

Γ° Gn(x-t){φ(t)-φ(x)}dt
Jx+δ

= 0.

Hence

and similarly

Thus we get

lim I /i I ̂  fi(l + 0(1)).

lim Γ Gn(x-t)lφ(t)-φ(x)]dt
J-oo

Since ε is arbitrary our theorem is proved.

THEOREM 8. If

1. G(t) is defined as in Theorem 1,

2. a(t) is of bounded variation in every finite interval,

ί
oo

G(x — t) da(t) converges,

4. Fn*(D) is defined by (2) of §4,
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and
5. a(t) is continuous at Xι and x2,

then

lim Fn*
**-><*> J xι

This is an immediate consequence of Theorem 6 and Theorem 7.
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