AFFINE CONNEXIONS IN AN ALMOST PRODUCT SPACE

By KENTARO YANO

Let us consider an almost complex space M of class C* and denote by F:*
its structure tensor satisfying F.*F;* = —A.. As is well known now, in order
that the tensor F;* define a complex structure, it is necessary and sufficient
that the Nijenhuis tensor

Ny = #p(apFlt - ale‘) - F;"(apr“ - a#Fp‘)

constructed from F,* vanish. (Eckmann [1], Eckmann and Frolicher [1],
Ehresmann [1], Frélicher [1], Libermann [1], [2], [8], Newlander and Niren-
berg [1], Nijenhuis [1], de Rham (unpublished), Yano [2], [3].)

If there exists a symmetric affine connexion I';; in M, then denoting by
V7, the covariant derivative with respect to this affine connexion, we have

Nt = Fo (7, Fof — P 1Fo5) — Foo (7, Fuf — P, Fy)

and consequently we can see that if there exists a symmetric affine connexion
such that 7,.F;*=0, then N,:*=0 and consequently the almost complex
structure is a complex structure.

Now the eigenvalues of the matrix (F;*) are +4 and —% and the eigen-
vectors corresponding to the eigenvalue + % span a distribution B of complex
dimension n and those corresponding to the eigenvalue —<¢ span a distribu-
tion B which is complex conjugate to B. The condition /,.F;* =0 means then
that these two complex conjugate distributions are parallel with respect to
the symmetric affine connexion. (Yano [2].)

Now the following converse problem arises. We assume that N,,"=0.
Then does there exist a symmetric affine connexion I';; such that the
covariant derivative /,F,* of the structure tensor F;* vanishes? This pro-
blem was studied by Eckmann [1] and Frélicher [1] and answered affirma-
tively. (Cf. Yano [38].)

Now problems quite analogous to this arise in a space which we ecall
here an almost product space. Suppose that there are given two comple-
mentary distributions B and C of respective dimensions p and ¢ (p=1, ¢=1,
»+ g =mn), then denoting by B; and C; the projection tensors on these distri-
butions, we have

B;+C:=Aj.
It is easy to verify that if we put
B, —Ci=F,,
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then the tensor field F';* satisfies
FF =+ A,

and conversely if we have a tensor field F',* satisfying F.2F;*= + A}, then
the two tensors Bj=3%(A5+ F;*) and C;= (A7 — F,;*) are projection tensors
on two complementary distribution B and C respectively. The eigenvectors
corresponding to the eigenvalue +1 span the distribution B and those cor-
responding to —1 span the distribution C.

We shall call a space in which the structure tensor F;* satisfying
FAF=+ A, (F;*x A)) is given an almost product space. When p=gq, the
space is called a space with paracomplex structure. (Libermann [2], [3].)

Now a necessary and sufficient condition for B (C) to be completely integ-
rable is given by

N!‘ZE—NFXPFPE=O (NF1K+N/UIPF#‘=0).

It is easy to see that if there exists a symmetric affine connexion with
respect to which the distribution B (C) is parallel, then the distribution B (C)
becomes integrable.

Conversely suppose that one of the distributions, say, B is integrable. In
the case of almost complex spaces the integrability of B implies that of B, but
in the case of almost product space the integrability of a distribution does
not imply that of the other. Under the assumption that B is integrable,
does there exist a symmetric affine connexion with respect to which the
distribution B is parallel? This problem and more general problems were
studied from a global point of view by Walker [1], [2] and Willmore [1], [2]
and were answered affirmatively.

Now what we call here distributions are nothing but the non-holonomic
subspaces studied by Dienes [1], Schouten [1], Vranceanu [1], the present
author and Petrescu [1] and others some more than twenty years ago, but
the authors who studied the almost complex or product spaces did not use
the existing classical theory of non-holonomic subspaces.

The present author [2] has shown already how to use the existing theory
of non-holonomic subspaces to study the almost complex spaces. The purpose
of the present paper is to study the problem of the existence of affine con-
nexions which satisfy certain conditions imposed on the distributions B and
C in almost product space and which are symmetric whenever the distribu-
tion B or C is integrable, the problem which was already studied by Walker
and Willmore in great details. But we shall study here the problem utilizing
fully the existing theory of non-holonomic subspaces and we shall try to
express the results in terms of the structure tensor F';* only.

81. Almost product spaces.

Let M be an m-dimensional manifold of differentiability class C>~ and there
be given globally two complementary distributions B and C of dimensions p
and ¢ respectively, where p+g=n and p=1, ¢=1.
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When there is given only one distribution B in M, we can construct
globally a complementary distribution C in the following way. Since the
manifold M is of differentiability class C®, we can introduce a global Rie-
mannian metric of class C~in M. Then we have only to define C as a distri-
bution which is always orthogonal to the distribution B with respect to the
introduced Riemannian metric. The distribution C is thus globally defined.

We take p linearly independent contravariant vectors By* («, 4, p, ++-=1,
2, .-, m;a,bec,--=1,2+--,0;h,%,7,---=p+1, ---,n) in B and ¢ linearly
independent contravariant vectors C;* in C. Then 7 vectors B,* and C;* being
linearly independent, we construct the inverse of the matrix (B,*, C;*) which
we denote by (B%;, C"). Then we have the identities:

(1.1) B,*B*, =63, B,C".=0, Ci*B*% =0, C*C". =,
where ¢ is the Kronecker symbol and
1.2) B.,*B*; + C;*C% = A3,

A} being the unit tensor.
We use also the notations

(1.3) A= (B, C%), A%, =(B%, C™)
(a, 8,7, »-+=1,2,--+, n) and write (1.1) and (1.2) in the following form:
(1.4) AgrAc, =03, AsA% = Al

We call the set of Az* =(B,*, C;*) the non-holonomic frame.
If we put

(1.5) B, B*; = Bj, Ci*C',=Cj},

then we have from (1.1) and (1.2)

(1.6) BiB}=B;, BiC:=0, CiBi=0, CiCi=C:
and

a.m A;=B;+C3.

It will be easily verified that the tensors 'Bi and C; do not depend on
the choice of By,* in B and C;* in C. These are projection tensors on B and
C respectively, that is, an arbitrary vector v* in the tangent space at £ M
is decomposed into

v* = Byt 4 Civ,
Bjv* and Cv* being respectively in B and C. A vector in B is characterized by
v* = Biv? or Civ*=0
and a vector in C by
v* = Civ? or i =0.
We now define the tensor F;* by
1.8) Fs=B; —Cj},
then (1.7) and (1.8) give
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(1.9) B = %(A; LR, Ci= %(A; — Fy).

Taking account of (1.6) we can easily see that
(1.10) FrFs=AS.

We notice here that if the distributions B and C are given globally then
the tensor F';* of rank n will be defined also globally.

Conversely, if, in the manifold M, a tensor F,;* satisfying equation (1.10)
is given globally, then we define B; and Ci by (1.9) and we can easily see
that these B% and C; satisfy (1.6) and (1.7). Thus B: and C; define two
complementary distributions B and C globally.

Let @ be an eigenvalue of the matrix F;* and v* the corresponding eigen-
vector, then we have

(1.11) F vt = av?,
from which, contracting with F';*
Fi*F vt = aF,"v?
or
V¢ = qv*,
because of (1.10) and (1.11). Thus we have a?=1, which shows that the

eigenvalues of the matrix F;* are +1 or —1. For an eigenvector v* corres-
ponding to the eigenvalue +1, we have

Fivi=v  or cw:%m;-mw:o,

which shows that v is in B. An eigenvector corresponding to the eigen-
value —1 is in C.

Thus if F;* has eigenvalue +1 of multiplicity » and eigenvalue —1 of
multiplicity ¢, then the dimension of B is » and that of C is gq.

An n-dimensional manifold M in which a tensor field F:* (% A}) satisfying
(1.10) is given is called an almost product space.

§2. Integrability conditions.
We put
@) Q1 = (0, Ay — 0pA,0) A%,
and call 2,4 the non-holonomic object, where &, denotes the non-holonomic

or Pfaffian derivative with respect to A,¢, that is,

@.2) 8, = A, 0. = A,‘-(,}g;,
&* being the local coordinates. Thus
(2.3) 61, = Bb‘a; and 61, = Ci‘ax.

The equation (2.1) can also be written in the form
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@2.4) Q5= — -;—A,ﬂAﬁZ(aﬂAn — 9,40,

which shows that £2,; are scalars under a transformation of the local coordi-
nates. But if we effect the transformation of the non-holonomic frame:
(2.5) Apc=AL Ay (AL|*0),

then the non-holonomic object £2;,* undergoes the transformation
(2.6) Rup” = AL AL AY 2,57 + ‘;‘(OT/A,%/ — 0 A7)AY,

where AY is the inverse matrix of AS,. Equation (2.6) shows that the non-
holonomic object £,5* is not a tensor under the transformation of non-holo-

nomic frame.
Since we are considering a non-holonomic frame whose first p vectors are

in the distribution B and whose second g vectors are in the distribution C,
the transformation (2.5) of the non-holonomic frame should split into

(27) Bb/” = Alb;/Bb'c, Ci/AT = Af/Ci‘,

which means

. A% 0
@.8) 5 = ( . )
Thus equation (2.6) gives
(2.9) Qo = AL AL AY Q.7 Q0 = A AL AT 2,2,

which show that 2.," and 2,° are tensors under a transformation of the
non-holonomic frame.
We shall now consider the integrability condition of the distribution B.
An arbitrary contravariant vector d&* in the tangent space at £ M can
bewritten in the form

(2.10) d&* = Bo~(d€)* + Cu(d§)"

because of (1.7), where

(2.11) (d€)* = B%dEr,  (d&)* = Ch.dé&r.
Thus the distribution B is defined by

(2.12) (dg)" = C™de* = 0.

The condition for the distribution B to be completely integrable is then
that
(0/1Chx - alcn;:)dsy /\ dEZ = 0

be satisfied by any d&* satisfying (2.12), that is,
@.13) Q= — %BcﬁBbz(aﬂC% —8:C") =0,

This is the condition for the distribution B to be completely integrable.



6 KENTARO YANO

The same condition may be found also in the following way. An arbi-
trary contravariant vector d&* in the tangent space at £ M can be written
in the form:

(2.14) d&* = Bid&* 4 Chde?
because of (1.7). Thus the distribution B is defined by
(2.15) Cid&*=0.

The condition for B to be completely integrable is then that
0.C:—0,Cr)de* NdE* =0

be satisfied by any dé&* satisfying (2.15), that is, by any vector satisfying
Bid&* =d&*. Thus we have

2.16) - —%—BZBZ(@,CZ —6,05=0

as the condition for B to be completely integrable.
By a straightforward calculation, we can show that

@.17) Be,BYiChr e’ = — —%BZBZ(@,C; —3,C5),

and the equivalenee of (2.13) and (2.16) is evident.
Now substituting (1.9) in the left hand member of equation (2.16), we find

2.18) - %B;B}’(@,C; — 8,05 = il»é(Np;‘ — N F.5),

where N.:* is the so-called Nijenhuis tensor [1] formed with F,*:
(2.19) Np:¥ = Fu(0,F,F — 0, F,%) — F:°(0,F,F — 0.F,*).
The equation (2.18) shows that the conditions for B to be completely
integrable is expressed also in the form:
(2.20) Nuf — Nt F,r=0.

Similarly we can find that the condition for C to be completely in-
tegrable is

2.21) 2,5=0
or

2.22) - —;—C;CZ(&BZ —9.B5)=0
or

2.23) Nost + N Foe = 0.

Gathering the above results we have

THEOREM 1. In order that the distribution B (C) be completely integ-
rable, it is mecessary and sufficient that

chh =0 (jSa = 0)
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or equivalently
L BiBi(3.05 — 0.0 =0 (— L Cs00.B; 0.8 = o)

or equivalently
N;«z”—sz"Fﬂ"=0 (N,ul"}'Nplpr‘:O).

Consequently in order that both of the distributions B and C be com-
pletely integrable, it is mecessary and sufficient that
.chh = 0, _lea = 0
or equivalently

_ %B;BZ(&C.? —8.0H=0, — %C;Cf(a,B,‘, —0.B5)=0

or equivalently
N/tl‘ = O.

§3. Affine connexions and distributions.

Let I'f; be components of an affine connexion in M and the covariant
differentiation of a contravariant vector v* be denoted by

3.1) Vowr =008 + I'E vt
If we put
(3.2) I'ts = (0;Ap" + A" Ap* i) A,
then the components /7, v* of /7,v* with respect to the non-holonomic frame
(A.*) are given by
(3.8 Vvs=0,v%+ L5 08,
From (3.2) we have

1
(3.4) “’2‘(F?ﬁ —I's) =25+ Si6%,
where
(8.5) S, = AT"A‘BZA",;SM‘
and
(3.6) Sut = 3 (T —T'3)

is the torsion tensor for the affine connexion I'f;.

From (3.4) we can see that the I'{; is not necessarily symmetric with
respect to 7 and 8 even if the affine connexion I';; is without torsion.

Now if we effect a transformation (2.5) of the non-holonomic frame, the
components I';; of the affine connexion undergo the transformation

3.7 I5le = 00 Ap+ AL T3 AT
Since the matrix (A%) has the form (2.8), the equation (3.7) gives
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{ 'Yy = ASAVAYTY, Iy =AY AVAN T,
rf;/,i/ = A";/A;/A:’F_‘fzi, Zr,,;/ = AerglAg, gu
which show that I'%, I'%, I'f; and I's; are components of tensors with
respect to the transformation of the non-holonomic frame A.*= A% A.*
having a special form (2.8). For example, the vanishing of one of these
tensors should have a geometrical meaning independent of the choice of the
vectors B,* in B and C;* in C.

Now equation (3.2) can be written also in the form:
(3.9) 0, A+ At Al =T AL".
If we put r=c and =05 in (8.9), we get

0:By* + BByl sy = 'ty By + 'y G

(3.8

or
0.By* + BBy’ s, — 't B,* = I''yCh”.
We denote by /7 B,* the left hand member of the above equation:
(3.10) VcBb‘ - 0¢Bb” + Bc#BbZF:/z - ngBa,‘ = ngCh‘-

Here ".B,* is the so-called van der Waerden-Bortolotti derivative of B,*
(Schouten [1]) along the distribution B and consequently equation (3.10)
reduces to that of Gauss when B is integrable.

If we put ¥=c¢ and #=1 in (38.9), we get
(8.11) V.C# = 0.C* + B Ci* Ity = I'e;Ba* + I'e;:Cr*,
which reduces to the equation of Weingarten when B is integrable.

Similarly, from (3.9) we get

(8.12) P ,By* = 0,;By* + C;*By* i = ', B +11,Ch
and
(3.13) VjCi” = 8]'Ci‘ + C,“Cﬂl’,‘f; — T;%-Ch" = ['}"iBa,‘y

which reduce respectively to the equation of Weingarten and to that of Gauss
when the distribution C is integrable.

We shall now consider various conditions which we can put on the distri-
butions B and C.

(i) The condition for B to be flat.

Let us consider a vector field v»*. If the vector is parallel when we
displace in any direction contained in B, we say that the vector is parallel
along B. We can use the same terminology also for the distribution, that
is, if a distribution is parallel when we displace in any direction contained in
B, we say that the distribution is parallel along B.

Now when we displace a vector contained in B parallelly along B, if the
displaced vector is always contained in the distribution B, we say that the
distribution B is a flat distribution. (See Hayden [1].) Walker [2] calls such
a distribution a semi-parallel distribution.
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The equation (3.10) shows that the condition for the distribution B to
be flat is
(8.14) I =0.

(ii) The condition for B to be geodesic.

Take a point £* and a direction v* at & which is contained in B. The
auto-parallel curve or path with respect to the affine connexion under considera-
tion is uniquely determined by the inital point & and the initial direction v*.
If the tangent to the path thus determined is always contained in B for any
initial point and for any initial direction contained in B, we say that the
distribution is geodesic. (See Hayden [1].) Walker [2] calls such a distribu-
tion a path-parallel distribution.

The condition for the distribution B to be geodesic is then that, if the
equation

. A& _
(O ds =0
is satisfied at the initial point £ and for the initial direction (d&*/ds), at &5,
it should always be satisfied along the path:
d*¢* e dE" d§t _
ds? “ds ds
having & as the initial point and (d£*/ds), as the initial direction at &;.
Thus differentiating C%d&*/ds =0 along the path, we have
; i e \AEF dE?
L= QLN %S =,
(0.C*; — C*.I';3) de ds 0
or, d&*/ds being always contained in B,

B "By (0,C% — CeI'7:) =0

+I

or
(0Bo," + BBy, * '5)Ct =0,

which is equivalent to

(8.15) ', =0.

This is the condition for B to be geodesic.

Thus we see that a flat distribution is always geodesic, but a geodesic
distribution is not necessarily flat. The distinction between flat distributions
and geodesic distributions goes back to Hayden [1].

(iii) The condition for B to be parallel along C.

The equation (3.12) shows that the condistribution B to be parallel
along C is

(3.16) I, =0.
@{iv) The condition for C to be parallel along B.
3.17) Iz, =0.

(v) The condition for C to be flat.
(3.18) I'si=0.
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(vi) The condition for C to be geodesic.
(3.19) r'%,=0.
(vii) The condition for B to be parallel.
From (i) and (iii) we have
(3.20) I't=0 and I's=0 or I7=0.

(viii) The condition for C to be parallel.
From (iv) and (v) we have

(3.21) I's;=0 and I';=0 or [I7%=0.

Suppose that there is given a symmetric affine connexion with respect to
which the distribution B is flat, then we have

FZb = O
On the other hand, from (3.4), we find
ST —Th) =2,

the torsion tensor S;s* being zero. This shows that when the distribution B
is flat with respect to a symmetric affine connexion, B is integrable. The
same is true of course for the distribution C.

8§4. The determination of affine connexions.

Let us consider an almost product space M of class C> in which two
complementary distributions B and C of class C* are given globally. Walker
[17, [2] studied the existence of global affine connexions with respect to
which the given distributions are flat, geodesic or parallel and which are
without torsion whenever possible. We shall study the same problems with
the use of the existing theory of non-holonomic subspaces and of the Nijen-
huis tensor which is related closely to the integrability conditions of the
distributions.

Following Walker, we first choose a symmetric affine connexion lc";’iz de-
fined globally in the almost product space M. Since the space is of class C*,
we can introduce a global Riemannian metric of class C= in M and construct
the Levi-Civita affine connexion which can be taken as our I%..

Then for any global affine connexion I'f;, if we put

.1 Io=I"%+ Tu",

T.;* is a tensor field defined globally in M. The problem of determination
of a global affine connexion I';; satisfying certain conditions is then reduced
to that of the global tensor T.." satisfying certain conditions.

Substituting (4.1) into (3.2) we find

4.2) =1+ Ths,
where
4.3) %= 0,A5 + A" AT Ax,



AFFINE CONNEXIONS IN AN ALMOST PRODUCT SPACE 11

are components of the affine connexion IO’,'fz with respect to the non-holonomie
frame (4.") and

(4.4) T, = Ar"A,elA“; Tk

are those of the tensor T.:* with respect to the same frame.
The affine connexion I';; being symmetric, we have from (4.3)

@.5) ~éwn-fm=9w.

We shall study the existence of global affine connexions with respect to
which the given distributions are flat, geodesic or parallel and which are
symmetric whenever possible.

(i) Affine connexions with respect to which the distribution B is flat.
The condition for B to be flat is
I',=0.
Thus we have from (4.2)
0= 1%+ Ta
Th}ls the distribution B is flat with respect to the affine conmexion
r'i,=I%+4+T.* if and only if the tensor T.:* satisfies

4.6) Tyt =—1".

To get the simplest T.:* which satisfies this condition, we define T.:* by
requiring that all the components T,s* of T..* with respect to the non-holo-
nomic frame other than T." given by (4.6) are zero. Such a T.:* is given
by the formula

4.7 T,:* = — B¢,B",Co I,

As we remarked at the beginning of Section 3, the I, are components
of a tensor with respect to the transformation of the non-holonomic frame,
and the T..* defined here does not depend on the choice of the vectors B,* in
B and C*in C. Thus we can see that the tensor 7,..* is determined uniquely
by the distributions B and C and the affine connexion Io‘,fz. But these are
given globally and consequently the T..* is defined globally and we can con-
clude that the affine connexion

Fﬁfo'Zz-l'Tﬂl"
is also defined globally. Thus we have

THEOREM 2. For any distribution given globally, there exists a global
affine connexion with respect to which the distribution is flat.

We can further require that the affine connexion I';; is symmetric when-
ever the distribution B is integrable.
In order that this is the case, we should have
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1
Srﬂa = 2 (T~ — Tﬁra) =0,

whenever
e =0.
On the other hand, we have, from (4.6),
o= — 2"

Thus, the distribution B is flat with respect to the affine connexion
I's=I;;+ T.u* and the affine connexion I'i; 1s symmetric whenever the
distribution B is tintegrable, if and only if the temsor T..* satisfies

(4.8) Ty = — °'Z,,, the other T'’s satisfying Ty — Ts* =0.

The simplest T.:* which satisfies these conditions is given by (4.7). Thus
we have

THEOREM 3. For any distribution given globally, there exists a global
affine conmexion with respect to which the given distribution s flat and
which 1s symmetric whenever the distribution is integrable.

(ii) Affine comnexions with respect to which the distribution B 1is
geodesic.

The condition for B to be geodesic is
r&, =0.
Thus we have from (4.2)
0= I°"<i'b> + Tieny.
Th}ls the distribution B is geodesic with respect to the affine connexion
s, =T+ Tk if and only if the tensor T.:* satisfies

o

T<cb>h = - F(ﬁb)'
The simplest symmetric T.,* satisfying this condition is given globally by
(4.9) TAZ‘ = - Bchb/IChxlg'(Zb)-
Thus we have

THEOREM 4. For any distribution given globally, there exists a global
symmetric affine connexion with respect to which the distribgtion is geodesic.

(ili) Affine connexions with respect to which distribution B is parallel
along C.

The condition for B to be parallel along C is
(4.10) 'y =0.
Thus we have from (4.2)
0o=1 %+ Ti".
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Thus the distribution B 1s parallel along C with respect to the affine
connexion Iy, =1%+ Tu* of and only if the tensor T.:* satisfies

@.11) 't = — I,
The simplest T.:* satisfying this condition is given globally by
(4.12) Tz = — C?,B",Cy* T,

Thus we have

THEOREM 5. For any complementary distributions given globally, there
exists a global affine connexion with respect to which one distribution s
parallel along the other.

@iv) Affine connexions with respect to which the distribution C is paral-
lel along B.
Interchanging B and C in (iii), we see that the distribution C is parallel
along B with respect to the affine connexion I':; =IQ',’51+ T.:* if and only if
the tensor T.:* satisfies

(4.13) T.*=—14.
The simplest T,.:* satisfying this connition is given globally by
4.14) Tw*= — B%,CH B, %,

(v) Affine connexions with respect to which the distribution C is flat.
Interchanging B and C in (i), we see that the distribution C is flat with

respect to the affine connmexion I}, =Iq',’fz + T.;:¢ if and only if the tensor T.:*
satisfies

(4-15) Tjia = - f?l
The simplest T.:* satisfying this condition is given globally by
(4.16) Turr = — C1,CL BT,

The affine connexion defined here is symmetric whenever the distribution
C is integrable.

(vi) Affine connexions with respect to which the distribution C s
geodesic.
Interchanging B and C in (ii) we see that the distribution C is geodesic
with respect to the affine connexion I ;; = f;; + Tw* if and only if the tensor
T.:* sayisfies

4.17) T = — I G
The simplest symmetric T.:* satisfying this condition is given globally by
4.18) Tpa* =—C',C5B T 5o

Now combining the results in (i) and (v) we have
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THEOREM 6. For any complementary distributions B and C given glo-
bally, there exists a global affine commexion with respect to which both of
the distributions are flat and which is symmetric whenever both of the
distributions are integrable.

Denoting by I':; =r #1+ T.,® the components of such an affine connexion,
the tensor T.;* must satisfy
(4.19) Tot=—I%,  T.°=-1%,
all the other T’s satisfying T,*— T4, =0.
The simplest T..* satisfying these conditions is given by
(4.20) Toif = — B%B"Cy It — C7,C% B 1.

Next combining (ii) and (vi) we have

THEOREM 7. For any complementary distributions B and C given glo-
bally, there exists a global symmetric affine connexion with respect to which
both of the distributions are geodesic. (Walker [2], Theorem 1.)

Denoting by I, =r %2+ Tu* the components of such an affine connexion,
the tensor T.:* should be symmetric and satisfy

(4.21) Tt =— IOT(Zb)y Ty*=— f(?z‘)-
The simplest T.:* satisfying these conditions is given by
4.22) Tu:* = — B,B,Cy I by — C1,.CL B I Gy

Also combining (ii), (iii), (iv) and (vi), we have

THEOREM 8. For any complementary distributions B and C given glo-
bally, there exists a global symmetric affine connexion with respect to which
both of the distributions are geodesic and one of the distributions is parallel
along the other. (Walker [2], Theorem 2.)

Denoting by I}, =19','i,1 + T.:* the components of such an affine connexion,
the tensor T.;* should be symmetric and satisfy
423) Tot=—Ily, Tp'=T"=—I"%, T.*=T"=~—1% Ti=—1%,.
The simplest T.:* satisfying these conditions is given by
oy In0= T BUBUCAL & — CLBNCA T — BUCHCALS
— B°,CY B, 1'% — C'B*; B, I'%, — C7,.C%: B, I G,

(vii) Affine connexions with respect to which the distribution B 1is
parallel.

The condition for B to be parallel is
I''»=0 and [I%=0.
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From (4.2) we have
o o
]
0= Fﬁb + chh, 0= Fjb + ijh.

Thus the distribution B is parallel with respect to the affine connexion
Fﬁz=f,’iz + Tk if and only if the tensor Tu.* satisfies

(4.25) Toh=—I"% and Tp'=—1I"%.
The simplest T.:* satisfying these conditions is given by
(4.26) T,15= — B*,B,Cy It — C7uBCo I ™.

Thus we have

THEOREM 9. For any distribution given globally, there exists a global
affine connexion with respect to which the given distribution is parallel.

We can further require that the affine connexion I';; is symmetric when-
ever the given distribution is integrable.

The distribution B is parallel with respct to the affine conmexion
Iy, =1+ Tu" and the affine conmexion I[5; is symmetric whenever the
distribution B is integrable if and only if the tensor Tu* satisfies
@.2n Tot=—1I%, — Tp*=T,=—TI",

all the other T,p* being symmetric in T and B.

The simplest T.:* satisfying these conditions is given by
(4.28) Tui*= — B, B*:Cy I — C1,BY,Cy* I % — BY,C/1Ch I,

Thus we have

THEOREM 10. For any distribution given globally, there exists a global
affine connexion with respect to which the given distribution is parallel
and which 1s symmetric whenever the distribution is integrable.

(viii)) Affine conmexions with respect to which the distribution C s
parallel.
Interchanging B and C in (vii), we see that the distribution C is parallel

with respect to the affine connexion I'5; = IE‘Zz + Tu® of and only if the tensor
T.:* satisfies

(4.29) T.o=—I% and Tp*=—1%.
The simplest T.:* satisfying these conditions is given by
(4.80) T = —B,C4LB I — C1.CHB< T,

The distribution C ts parallel with respect to the affine connexion
iy =I%4Tu* and the affine conmnexion I, is symmetric whenever the
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distribution C is integrable if and only if T..* satisfies
(4.31) To=Te=—1% and Tyo=-—1%

all the other T,z being symmetric in 7 and B.

The simplest T.:* satifying these conditions is given by
(4.32) Tui*= — B°,C, B, 1'% — C'uB*, B, I'% — 7,0 By*1%.

Now combining the results in (i), (iii), (iv), (vi) and (vii), we see that the
distribution C is geodesic and C is parallel along B with respect to an
affine connexion I'%; =f:x + Tw* if and only if the temsor T.* satsifies

(4.33) Tot=—I%, Tp'=—1I%, Tg'=—I1%, Tu*=—I%
The simplest T.:* satisfying these conditions is given by
(3.34) Tt = — BB,y I — C1,BYC I — C1uCiaB oI &y — B2uCHiBos T,

Thus we have

THEOREM 11. For any complementary distributions B and C given
globally, there exists a global affine conmexion I’,‘53=19',’53+ T.2* with respect

to which the distribution B is parallel, the distribution C is geodesic and
1s parallel along B.

We can require further that the affine connexion I'}; is symmetric when-
ever the given distribution B is integrable.

The distribution B is parallel, the distribution C is geodesic andyis
parallel along B with respect to the affine connexion It =15+ Tw* and the
affine connexion I's; is symmetric whenever the distribution B is integrable
of and only if the tensor T..* satisfies
435) Tor=—1I"%, Tp=Ty=—1"%, Tu'=—1"%, Tu*=To=—1%,
all the other T,p* being symmetric in 7 and B.

The simplest T.:* satisfying these conditions is given by
(4 36) sz" = — Bchbxch"f"éb _ ijBb,zChnf'gb —_ B”#Cf;Ch‘lg"}b
' — €04 BT &y — BS,CHBo [, — C4B B I,
Thus we have

THEOREM 12. For any complementary distributions B and C given
globally in M, there exists a global affine conmexion with respect to which
the distribution B is parallel, the distribution C is geodesic and is parallel
along B and which is symmetric whenever the distribution B is integrable.
(Walker [2], Theorem 3.)
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Combining (vii) and (iii), we can see that the distributions B and C are
both parallel with respect to the affine commexion I'5; =% + Tu* if and
only if
(437) chh = — f‘zb, ijh = - f'.’;'by Tcza = "'f"zu Tjia - - f'g'i-

The simplest T.:* satisfying these conditions is given by
(4.38) Tu*=— B*.B"Cy* " — C",B",Cy I — B*,C1, BT — C1,.C4, B, %

We can further require that the affine connexion I';; is symmetric when-

ever the given distribution is integrable.

The distributions B and C are both parallel with respect to the affine
connexiton 'y, =15+ Tu* and the affine connexion is symmetric whenever

the distributions B and C are both integrabdle if and only if the tensor
T.:¢ satisfies

° 5 o o o
(4'39) Cbh = =41 cv ijh = Tbjh = F’.;'by Tcla = Twa = - F‘tz:i; Tjiaz - F‘;’i,

all the other T,s* being symmetric in 7 and B.

The simplest T.,* satisfying these conditions is given by
(8.40) Tu* = — B, B*,Cy* I "% — CV,.B?,C < I, — B?,C7,C I,
' — Be,C4B AT — C4uBY B — BT,
Thus we have

THEOREM 138. For any complementary distributions given globally, there
exists always a global affine conmexion with respect to which both of the
given distributions are parallel and which is symmetric whenever both of
the distributions are integrable.

85. Affine connexions in terms of the structure tensor.

In this Section we shall try to express various affine connexions obtained
in Section 4 in terms of the structure tensor F,* of the almost product
space M.

(i) Affine conmexions with respect to which the distribution B is flat.
From (4.7) we have
Tyi* = — B*BYCoi 0
= — B%,B",C1*(@.By* + B ByI,)C",,
from which
(.1) T, = BiB3(V .C%).
Substituting (1.9) into (5.1) we find
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52  Tut=-— ; [P uFys + Fu(V ,Fo¥) + For (0, F o) + Fu Fuo(7 Fo7)).
If we put
(5.3) Myt =Fo (7 Fi) + Fr (7 uF,),
then equation (5.2) can be written as
(5.4) Tpr=— é{Mp;‘ — M, F,o-].
On the other hand it is easily verified that
(5-5) Mti‘ — Mi* = NﬂZ‘
and consequently, from (5.4) we have
(5.6) Tt — Tt = — & (Nout = Nya? F).
Thus we have
THEOREM 14. For any distribution B given globally in M, the affine

connexion with respect to which the given distribution is flat and which is
symmetric whenever the distribution is integrable is given by

6.7) Tin=Fia— LMot — Mot Foel,
M.;* being given by (5.3) and 1%, being an arbitrary symmetric affine con-
nexton defined globally in M.

(ii) Affine conmexions with respect to which the distribution B 1is
geodesic.

From (4.9) we have

(5.8) T.i* = BLB% (7 .CL).
Substituting (1.9) into (5.8) we find

(5.9) Ty = — é [Mos® — Mo, Fo .
Thus we have

THEOREM 15. For any distribution B given globally in M, an affine con-
nexion with respect to which the given distribution is geodesic is given by

(5.10) Tia =i — g (Mo = Mo, Foe].

(ili) Affine conmexions with respect to which the distribution B is
parallel along C.

From (4.12) we have
(5.11) T..* = CiB3(P.Co).



AFFINE CONNEXIONS IN AN ALMOST PRODUCT SPACE 19

Substituting (1.9) into (5.11) we find
(6.12)  Tu=— 21[1714* — Fo o F") + Fi*(P For) — FeFo(F Fl9)1.

Thus we have

THEOREM 16. For any complementary distributions B and C given
globally in M, an affine connexion with respect to which B is parallel along
C 1s given by

(619  Th=Ih—  [7Fs = FAPFi) + Fo P ) — FiFr (P F).
(iv) Affine conmnexions with respect to which the distribution C 1is

parallel along B.

Interchanging B and C or changing the sign of F';* in the above theorem,
we can see that for any complementary distributions B and C given glo-
bally in M, an affine connexion with respect to which C is parallel along
B 1is given by

(5.14) TIi=1"%+ ; [P Fy + Fo(F Fir) — Ff (P Fo5) — FrFo (P Fo5)].

(v) Affine connexions with respect to which the distribution C is flat.

Interchanging B and C or changing the sign of F;* in Theorem 14 we
can see that for any distribution C given globally in M, an affine conne-
xtom with respect to which the given distribution is flat and which s sym-
metric whenever the distribution C is integrabele is given by

(5.15) = P — (M + Mot P,

(vi) Affine conmexions with respect to which the distribution C is
geodesic.

Interchanging B and C or changing the sign of F,;* in Theorem 15 we
can see the for any distridbution C given globally in M, an affine connexion
with respect to which the given distribution is geodesic is given by

(5.16) =15 é—(wa)‘ + Ml Fe).
Now from (4.20) we find
5.17) T = — %Mp;‘ = — LR P+ P F ),
form which
(5.18) T — Th = — i»NP;".

Thus we have
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THEOREM 17. For any complementary distributions B and C given
globally, an affine connexion with respect to which both of the distributions
are flat and which s symmetric whenever both of the distributions are
integrable is given by

(5.19) iy =Th= - (R4 Fi) + BB F ).
Also from (4.22) we find
(5.20) Tpe = -}Mw,n

Thus we have

THEOREM 18. For any complementary distributions B and C given
globally in M, a symmetric affine connexion with respect to which both of
the distaibutions are geodesic is given by
1

(5.21) Ii=I7%+- .

M(M)E-

Also from (4.24), we find

-1
4

[y

Tk = M(M)x + ‘""[F,up(ﬁPFit) - Flp(ﬁ#FPx)]

'S

(5.22)

et

+ S [F#F ) — Foe(Fo)].

'S

Thus we have

THEOREM 19. For any complementary distributions B and C given
globally a symmetric affine connexion with respect to which both of the
distributions are geodesic and one of the distributions is parallel along the
other is given by

T == Mot + S [FA0Fi) — Fir(PoF )
(5.23) 1 . .
oy [0 Fi) = FAPaF o).
(vi) Affine connexions with respect to which the distribution B 1is
parallel.
From (4.26) we have
(5.24) T.* = BY(P .C5).

Substituting (1.9) into (5.24) we find
(5.25) Tpt= — —}[(%Fﬁ) — B F)F,e].

Thus we have
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THEOREM 20. For any distribution B given globally in M, a global
affine conmexion with respect to which the distribution B 1s parallel is
given by

(5.26) Ti=I5 = HOFD — CFOF,.
From (4.28) we have

Tt = — LICFD) + CoF) + Fo@ B 1 BP0

(5.27)

+ ';*[(VAF;:‘) +FF LV F)+ Ff (Vo B+ Fr Fe (VL FL)],
from which
(5.28) T,k — Tyt = ; (Ni* — Nos? For).

Thus we have

THEOREM 21. For any distribution B given globally in M, a global
affine conmexion with respect to which the given distribution s parallel
and which 1s symmetric whenever the distribution s integrable is
given by

=15~ LI F) + OiF0) + FoCuFy) + PP i)

(5.29) 1

8
(viii) Affine conmexions with respect to which the distribution C is
parallel.

+ [ F )+ Fl Wi F3) + For (P F o) + B Foo(F F)].

Interchanging B and C or changing the sign of F;* we can see from the
above theorem that for the distribution C given globally in M, a global
affine connexion with respect to which C is integrable is given by

Tii= Pt [[CF0) +F0) — FPuF) - FoF,)]
(5.30) L. ) 0 o
- %‘[(VZF#E) - FFP(Vlex) - FXP(VPF#E) + F#rFka(VaFr‘)].
From (4.34) we find
Tt = = L L0 F) — P, Fi0) )
(5.31) —~ %[Mw + Mo Foe]

+ %Eﬁm + F W o Fy%) — Fot (P F %) — FeFoo (P F,9)]1.

Thus we have
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THEOREM 22. For any complementary distributions B and C the affine
connexion with respect to which B is parallel, C is geodesic and C is paral-
lel along B is given by

Fi=T5— | [CF0) — O F)F ]
(5.32) ~ ; [ Mo + Moy o]
+ 'étﬁpm + F (P Fir) — F (P Fo) — FoFor(V F o).

From (4.36) we have

1
T = — ; [ Mt + Mo Fo] = LMy = M Fe]
(5.33) 1
+ 2 [prlele)‘ +l7(ﬂFl>pr‘l
from which
(5.34) Tyt = Ty = = (Nput = Na? F).

Thus we have

THEOREM 23. For the complementary distributions B and C given glo-
bally in M, the affine connexion with respect to which B 1s parallel, C is
geodesic and C ia parallel along B and which is smmetric whenever B is
integrable is given by

Tis =1 — 4 [M sy + Mo Fr] - UM — Mt P

(5.85) 1
+ E[Fw"lele)‘ + V(#FX)pFPK]°
From (4.38) we have
(5.36) Tt = + %(ﬁ,‘F;P)Fp‘.

Thus we have

THEOREM 24. For the distributions B and C given globally in M, an
affine commexion with respect to which B and C are both parallel is
given by

(5.37) re,=rIu+ %(ﬁ,,FJ)F,,‘.
From (4.40) we have

(5.38) Tt = — -}[me’m — F F)1+ (7 uF0)Foe],
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from which

(5.39) Tt — Tyt = — inf.

Thus we have

THEOREM 25. For the distributions B and C given globally in M, an
affine connexion with respect to which B and C are both parallel and which
is symmetric whenever both of B and C are integrable is given by

(5.40) ro=r— i—-[w(ﬁm — Fr(V Fue)]+ ; [z 0 3
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