
AFFINE CONNEXIONS IN AN ALMOST PRODUCT SPACE

BY KENTARO YANO

Let us consider an almost complex space M of class C°° and denote by Fλ*
its structure tensor satisfying Fμ

λFλ

κ = —Al. As is well known now, in order
that the tensor Fλ

κ define a complex structure, it is necessary and sufficient
that the Nijenhuis tensor

Npί< = Fμ'(dPFs - dιFP*) - F*'(θfFμ - QμFf )

constructed from Fλ

κ vanish. (Eckmann [1], Eckmann and Frδlicher [1],
Ehresmann [1], Frδlicher [1], Libermann [1], [2], [3], Newlander and Niren-
berg [1], Nijenhuis [1], de Eham (unpublished), Yano [2], [3].)

If there exists a symmetric affine connexion Γκ

μλ in M, then denoting by
Pμ the covariant derivative with respect to this affine connexion, we have

and consequently we can see that if there exists a symmetric affine connexion
such that PμFχf = 0, then Nμλ* = 0 and consequently the almost complex
structure is a complex structure.

Now the eigenvalues of the matrix (Fλ

κ) are + i and —i and the eigen-
vectors corresponding to the eigenvalue + i span a distribution B of complex
dimension n and those corresponding to the eigenvalue —i span a distribu-
tion B which is complex conjugate to B. The condition PμFs = 0 means then
that these two complex conjugate distributions are parallel with respect to
the symmetric affine connexion. (Yano [2].)

Now the following converse problem arises. We assume that Nμι
κ = 0.

Then does there exist a symmetric affine connexion ΓR

μλ such that the
covariant derivative PμFλ

κ of the structure tensor Fλ

κ vanishes? This pro-
blem was studied by Eckmann [1] and Frδlicher [1] and answered affirma-
tively. (Cf. Yano [3].)

Now problems quite analogous to this arise in a space which we call
here an almost product space. Suppose that there are given two comple-
mentary distributions B and C of respective dimensions p and q (p ̂  1, q ̂  1,
p + q = ri), then denoting by Bκ

λ and Cl the projection tensors on these distri-
butions, we have

B'2 + CΪ = Aί

It is easy to verify that if we put
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then the tensor field Fλ

κ satisfies

and conversely if we have a tensor field Fλ

κ satisfying Fμ

λFλ

κ = +Aκ

μ, then
the two tensors B\ = l(Aκ

λ + F*κ) and C\ = l(A\ — Fλ

κ) are projection tensors
on two complementary distribution B and C respectively. The eigenvectors
corresponding to the eigenvalue +1 span the distribution B and those cor-
responding to — 1 span the distribution C.

We shall call a space in which the structure tensor Fλ

κ satisfying
Fμ

λFλ

κ — + Aμ (Fλ

κ$=Aκ

λ) is given an almost product space. When p = q, the
space is called a space with paracomplex structure. (Libermann [2], [3].)

Now a necessary and sufficient condition for B (C) to be completely integ-
rable is given by

Nμί* - NPS F/ = 0 (Nμλ* + Nμ^FP

κ = 0).

It is easy to see that if there exists a symmetric affine connexion with
respect to which the distribution B (C) is parallel, then the distribution B (C)
becomes integrable.

Conversely suppose that one of the distributions, say, B is integrable. In

the case of almost complex spaces the integrability of B implies that of B, but
in the case of almost product space the integrability of a distribution does
not imply that of the other. Under the assumption that B is integrable,
does there exist a symmetric affine connexion with respect to which the
distribution B is parallel? This problem and more general problems were
studied from a global point of view by Walker [1], [2] and Willmore [1], [2]
and were answered affirmatively.

Now what we call here distributions are nothing but the non-holonomic
subspaces studied by Dienes [1], Schouten [1], Vranceanu [1], the present
author and Petrescu [1] and others some more than twenty years ago, but
the authors who studied the almost complex or product spaces did not use
the existing classical theory of non-holonomic subspaces.

The present author [2] has shown already how to use the existing theory
of non-holonomic subspaces to study the almost complex spaces. The purpose
of the present paper is to study the problem of the existence of affine con-
nexions which satisfy certain conditions imposed on the distributions B and
C in almost product space and which are symmetric whenever the distribu-
tion B or C is integrable, the problem which was already studied by Walker
and Willmore in great details. But we shall study here the problem utilizing
fully the existing theory of non-holonomic subspaces and we shall try to
express the results in terms of the structure tensor Fλ

κ only.

§1. Almost product spaces.

Let M be an ^-dimensional manifold of differentiability class C°° and there
be given globally two complementary distributions B and C of dimensions p
and q respectively, where p + q = n and p^l, q^l.
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When there is given only one distribution B in M, we can construct
globally a complementary distribution C in the following way. Since the
manifold M is of differentiability class C°°, we can introduce a global Rie-
mannian metric of class C00 in M. Then we have only to define C as a distri-
bution which is always orthogonal to the distribution B with respect to the
introduced Riemannian metric. The distribution C is thus globally defined.

We take p linearly independent contravariant vectors Bb

κ (ιc, λ, μ, ••• = !,
2, , n; α, 6, c, - = 1, 2, , p; h, i, j, - = p + 1, , n) in B and q linearly
independent contravariant vectors Cf in C. Then n vectors Bb

κ and dκ being
linearly independent, we construct the inverse of the matrix (Bb

κ, dκ) which
we denote by (Ba

λ, Ch*). Then we have the identities:

(1.1) BSB*.=K, B**C\ = Q, dKB\ = Qf C»"CΛ«=Λ,

where d is the Kronecker symbol and

(1.2) Ba'
cBa, + Ct'C^ = Al

Al being the unit tensor.
We use also the notations

(1.3) Aβ* = (Bb; CΛ, A«2 - (5% CΛ2)

(a, β,T, ••• = !, 2, •••, n) and write (1.1) and (1.2) in the following form:

(1.4) Aβ

κA«κ = δa

β, Aa*A«* = Al

We call the set of Aβ

κ — (Bb

κ, dκ) the non-holonomic frame.
If we put

(1.5) Ba B
a

Λ = Bκ

λ, Ci CΊ = Cί,

then we have from (1.1) and (1.2)

(1.6) B\Bλ

μ = Bκ

μj BίCί = 0, C5Sί = 0, Cκ

λC
λ

μ = Cκ

μ

and

(1.7) AS = SS + C5.

It will be easily verified that the tensors B\ and C\ do not depend on
the choice of Bb

κ in B and Cf in C. These are projection tensors on B and
C respectively, that is, an arbitrary vector V in the tangent space at ξ e M
is decomposed into

Bκ

λv
λ and Cκ

λv
λ being respectively in B and C. A vector in B is characterized by

v* = BW or CW = 0

and a vector in C by

v« = civ* or BSv* = 0.

We now define the tensor Fλ

κ by

(1.8) Fλ* = Bκ

λ-Cl,

then (1.7) and (1.8) give
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(1.9) Bϊ = {

Taking account of (1.6) we can easily see that

(1.10) Fλ'Ff* = Aί

We notice here that if the distributions B and C are given globally then
the tensor Fλ* of rank n will be defined also globally.

Conversely, if, in the manifold M, a tensor Fλ

f satisfying equation (1.10)
is given globally, then we define Bκ

λ and Cl by (1.9) and we can easily see
that these Bl and Cκ

λ satisfy (1.6) and (1.7). Thus Bκ

λ and C5 define two
complementary distributions B and C globally.

Let a be an eigenvalue of the matrix Fλ

κ and v* the corresponding eigen-
vector, then we have

(1.11) Fμ*v " = av>,

from which, contracting with Fλ

κ

or
<VK — a2VK,

because of (1.10) and (1.11). Thus we have α2 = 1, which shows that the
eigenvalues of the matrix Fι* are +1 or — 1. For an eigenvector vκ corres-
ponding to the eigenvalue + 1, we have

Fi v* = v* or CW = -(Aκ

λ - Frfv* = 0,

which shows that vκ is in B. An eigenvector corresponding to the eigen-
value — 1 is in C.

Thus if jFV has eigenvalue + 1 of multiplicity p and eigenvalue — 1 of
multiplicity q, then the dimension of B is p and that of C is q.

An ^-dimensional manifold M in which a tensor field JFV (^Aκ

λ) satisfying
(1.10) is given is called an almost product space.

§2. Integr ability conditions.

We put

(2.1) arβ = ̂ -(ΘrAβ -dβAr*)A gΔ.

and call Ωrβ
a the non-holonomic object, where dr denotes the non-holonomic

or Pfaffian derivative with respect to Ar

κ, that is,

(2.2) 8r = Ar«9. = Ar'-~,

ξκ being the local coordinates. Thus

(2.3) db = Bb*dκ and di = Cί

κdκ.

The equation (2.1) can also be written in the form
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(2.4) Ωrf = - γAΛV(9,A«, - 0, A%),

which shows that Ωrβ
a are scalars under a transformation of the local coordi-

nates. But if we effect the transformation of the non-holonomic frame:

(2.5) Aβ,* = Aβ

β,Aβ* ( |A?

then the non-holonomic object Ωγf undergoes the transformation

(2.6) β-^X - Ar

r,A
β

β,AΐΩrf + 4-@rΆ?, - 9M?')Aί',
Δ

where Aaά is the inverse matrix of A*?. Equation (2.6) shows that the non-
holonomic object Ωrβ

a is not a tensor under the transformation of non-holo-
nomic frame.

Since we are considering a non-holonomic frame whose first p vectors are
in the distribution B and whose second q vectors are in the distribution C,
the transformation (2.5) of the non-holonomic frame should split into

(2.7) Bb,
κ = AvBb*, d,κ = Aί,Ciκ,

which means

0
(2'8) *"=(θ AS,

Thus equation (2.6) gives

(2.9) Ωe,b,
h' = A°c,A

b

b,Al'Ωcb

h, Ωj,t,*'= AΪAΪAZΩjf,

which show that Ωcτ>h and J2yi

a are tensors under a transformation of the
non-holonomic frame.

We shall now consider the integrability condition of the distribution B.
An arbitrary contravariant vector dξκ in the tangent space at ξ e M can

bewritten in the form

(2.10) dξ = Ba (dξr + Ck*(dξ)h

because of (1.7), where

(2.11) (dξ)a - B*λdξ2, (dξ)h = CΛιdξ*.

Thus the distribution B is defined by

(2.12) (dξf = Ch

λdξλ = 0.

The condition for the distribution B to be completely integrable is then
that

be satisfied by any dξκ satisfying (2.12), that is,

(2.13) Ωc,
h - - ±BfBS(Qβhι - d£\] = 0.

This is the condition for the distribution B to be completely integrable.
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The same condition may be found also in the following way. An arbi-
trary contravariant vector dξ κ in the tangent space at ξ e M can be written
in the form:

(2.14) dξ* = EUξλ + Cldξ*

because of (1.7). Thus the distribution B is defined by

(2.15) C\dξλ = 0.

The condition for B to be completely integrable is then that

be satisfied by any dξκ satisfying (2.15), that is, by any vector satisfying
Bκ

λdξλ = dξκ. Thus we have

(2.16) - \Bτ

μB
σι(dτCl - dσCl) = 0

Δ

as the condition for B to be completely integrable.
By a straightforward calculation, we can show that

(2.17) Bc

μB\Ch

κΩcb

h = - \Bτ

μB
σ

λ(dτCl - 0,Cί),
Δ

and the equivalenee of (2.13) and (2.16) is evident.
Now substituting (1.9) in the left hand member of equation (2.16), we find

(2.18) - \-Bτ

μB\(QτCl - 0.Cί) = ~(N»* - Nn'FP ),
£ lb

where Nμ** is the so-called Nijenhuis tensor [1] formed with JFV:

(2.19) Nμί< = Fμ'(dfFλ* - d*FP

K) - Fλ'(9fFμ* - dμFf').

The equation (2.18) shows that the conditions for B to be completely
integrable is expressed also in the form:

(2.20) JSΓ^'-^/F/ = 0.

Similarly we can find that the condition for C to be completely in-
tegrable is

(2.21) Ωjf = 0

or

(2.22) - γC;Cί(9rB: - QaBκ

τ) = 0

or

(2.23) NμS + NμsFP' = Q.

Gathering the above results we have

THEOREM 1. In order that the distribution B (C) be completely integ-
rable, it is necessary and sufficient that
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or equivalently

or equivalently

Consequently in order that both of the distributions B and C be com-
pletely integrable, it is necessary and sufficient that

or equivalently

- ~Bτ

μBl(dτCl - OσC
κ

τ) = 0, - γC;CJ(βr Bl - dσB*τ) = 0

or equivalently

§3. Affine connexions and distributions.

Let Γκ

μλ be components of an affine connexion in M and the covariant
differentiation of a contravariant vector v* be denoted by

(3.1) Pμv* = dμ

If we put

(3.2) Γ*rβ = (drAβ* + Ar'Aβ'ΓMA .,

then the components Prv
a of Pμv* with respect to the non-holonomic frame

(Aa

κ) are given by

(3.3) Prv* = drv
a

From (3.2) we have

(3.4) ---(77, - Γ?r) =

where

(3.5) Sγβ

a = A/A^A\Sμλ

κ

and

(3.6) S^^* — ~--(Γμj. — Γλμ)

is the torsion tensor for the affine connexion Γμλ.
From (3.4) we can see that the Γ"β is not necessarily symmetric with

respect to T and 0 even if the affine connexion Γ*μλ is without torsion.
Now if we effect a transformation (2.5) of the non-holonomic frame, the

components Γ"β of the affine connexion undergo the transformation

(3.7) />> - (dr,A

Since the matrix (A£/) has the form (2.8), the equation (3.7) gives
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{ 7~~*Λ' AC AO Λ^ Ύ~*Tι 7~*̂ '
JL c'&' — 4~Λ.Qr2jLbtjt\.Jι i cδ, •*• /' &'

/%,=AMMr/?,, rs-v
which show that Γ%b, Γ%, ΓJt and Γ^ are components of tensors with
respect to the transformation of the non-holonomic frame Aa'

κ = A",Aa

κ

having a special form (2.8). For example, the vanishing of one of these
tensors should have a geometrical meaning independent of the choice of the
vectors Ba

κ in B and Gf in C.
Now equation (3.2) can be written also in the form:

If we put ϊ = c and β = b in (3.9), we get

or
^ ~D K [ D μ ~D X J~*κ Ί~<Cί ~D K 7~*Λ /^ K
Uc *-*b i -*-^c -Db •*• μλ •*• cb *->a — •* ct\^h

We denote by PcBb

κ the left hand member of the above equation:

Here PcBb

κ is the so-called van der Waerden-Bortolotti derivative of Bb

κ

(Schouten [1]) along the distribution B and consequently equation (3.10)
reduces to that of Gauss when B is integrable.

If we put T = c and β = i in (3.9), we get

(3.11) PeCi* = dcC

which reduces to the equation of Weingarten when B is integrable.

Similarly, from (3.9) we get

(3.12) PjBύ< - djBb< + CfBSΓ'n - ΠtBa'+ΓίtCS

and

(3.13) pjCt* = djCiκ + C/WΓh - ΓJtCh

κ - />£</,

which reduce respectively to the equation of Weingarten and to that of Gauss
when the distribution C is integrable.

We shall now consider various conditions which we can put on the distri-
butions B and C.

( i ) The condition for B to be flat.
Let us consider a vector field vκ. If the vector is parallel when we

displace in any direction contained in B, we say that the vector is parallel
along B. We can use the same terminology also for the distribution, that
is, if a distribution is parallel when we displace in any direction contained in
J5, we say that the distribution is parallel along B.

Now when we displace a vector contained in B parallelly along B, if the
displaced vector is always contained in the distribution B, we say that the
distribution B is a flat distribution. (See Hayden [1].) Walker [2] calls such
a distribution a semi-parallel distribution.
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The equation (3.10) shows that the condition for the distribution B to
be flat is

(3.14) Γί* = 0.

(ii) The condition for B to be geodesic.
Take a point ξκ and a direction v* at ξκ which is contained in B. The

auto-parallel curve or path with respect to the affine connexion under considera-
tion is uniquely determined by the inital point ξκ and the initial direction V.
If the tangent to the path thus determined is always contained in B for any
initial point and for any initial direction contained in B, we say that the
distribution is geodesic. (See Hayden [1].) Walker [2] calls such a distribu-
tion a path-parallel distribution.

The condition for the distribution B to be geodesic is then that, if the
equation

cvf = o
as

is satisfied at the initial point £5 and for the initial direction (dξκ/ds)0 at ξ5,
it should always be satisfied along the path:

d*ξ« ΓK dξ» dξ* π, — „ -Γ L μl ------- - - = (J
as* as as

having ξξ as the initial point and (dξκ/ds)Q as the initial direction at ξo.
Thus differentiating Cίλdξλ/ds = 0 along the path, we have

or, dξλ/ds being always contained in B,

Bc/^)W^-c'.r;,) = o
or

(dtcB^ + B^B^πjC^^Q,

which is equivalent to

(3.15) 7^ = 0.

This is the condition for B to be geodesic.
Thus we see that a flat distribution is always geodesic, but a geodesic

distribution is not necessarily flat. The distinction between flat distributions
and geodesic distributions goes back to Hayden [1].

(iii) The condition for B to be parallel along C.
The equation (3.12) shows that the condistribution B to be parallel

along C is

(3.16) Γ% = 0.

(iv) The condition for C to be parallel along B.

(3.17) Γ2t = 0.

(v) The condition for C to be flat.

(3.18) Πi = 0.
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( v i ) The condition for C to be geodesic.

(3.19) Λ3ί) = 0.

(vii) The condition for B to be parallel.
From ( i ) and (iii) we have

(3.20) Γjδ = 0 and Γ3» = 0 or Γ?6 = 0.

(viii) The condition for C to be parallel.
From (iv) and (v) we have

(3.21) Γ* = 0 and Γ5< = 0 or Γ?< = 0.

Suppose that there is given a symmetric affine connexion with respect to
which the distribution B is flat, then we have

ΓΛ

Λ = 0.

On the other hand, from (3.4), we find

~(ΓΛ

Λ-Γti = Qeb

Λ,

the torsion tensor Srβ
a being zero. This shows that when the distribution B

is flat with respect to a symmetric affine connexion, B is integrable. The
same is true of course for the distribution C.

§4. The determination of affine connexions.

Let us consider an almost product space M of class C°° in which two
complementary distributions B and C of class C°° are given globally. Walker
[1], [2] studied the existence of global affine connexions with respect to
which the given distributions are flat, geodesic or parallel and which are
without torsion whenever possible. We shall study the same problems with
the use of the existing theory of non-holonomic subspaces and of the Nijen-
huis tensor which is related closely to the integrability conditions of the
distributions.

Following Walker, we first choose a symmetric affine connexion Γκ

μλ de-
fined globally in the almost product space M. Since the space is of class C°°,
we can introduce a global Riemannian metric of class C°° in M and construct

the Levi-Civita affine connexion which can be taken as our /%.
Then for any global affine connexion Γ^t if we put

(4.1) Γίa=/';, + !Γ,Λ

Tμn* is a tensor field defined globally in M. The problem of determination
of a global affine connexion Γκ

μλ satisfying certain conditions is then reduced
to that of the global tensor Tμχ

κ satisfying certain conditions.
Substituting (4.1) into (3.2) we find

(4.2) Γ rβ = Γ rβ+Trβ ,

where

(4.3) Πβ = (.9τAf + Ar'AfPtfA'.
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are components of the aίfine connexion fμλ with respect to the non-holonomic
frame (Aa

κ) and

(4.4) Trf = ArμAfA*fTμS

are those of the tensor 2V with respect to the same frame.
The affine connexion Γμλ being symmetric, we have from (4.3)

(4.5) -0(Γarβ-fa

βr)=Ωrβ
a.

Lt

We shall study the existence of global affine connexions with respect to
which the given distributions are flat, geodesic or parallel and which are
symmetric whenever possible.

( i ) Affine connexions with respect to which the distribution B is flat.

The condition for B to be flat is

Γ*» = 0.

Thus we have from (4.2)

o = /^+τβΛ
Thus the distribution B is flat with respect to the affine connexion

Γκ

μλ = Γκ

μλ + 2V if and only if the tensor 2V satisfies

(4.6) 2V=-/'Λ

cδ.

To get the simplest 2V which satisfies this condition, we define 2V by
requiring that all the components Trp* of 2V with respect to the non-holo-
nomic frame other than Tcb

h given by (4.6) are zero. Such a 2V is given
by the formula

(4.7) Tμλ* = -Bc

μB\Ch

κΓh

cb.

As we remarked at the beginning of Section 3, the ι c b are components
of a tensor with respect to the transformation of the non-holonomic frame,
and the 2V defined here does not depend on the choice of the vectors Ba

κ in
B and dκ in C. Thus we can see that the tensor 2V is determined uniquely
by the distributions B and C and the aίfine connexion Γμλ. But these are
given globally and consequently the 2V is defined globally and we can con-
clude that the affine connexion

Γ'μλ = /•?, + 2V

is also defined globally. Thus we have

THEOREM 2. For any distribution given globally, there exists a global
affine connexion with respect to which the distribution is flat.

We can further require that the affine connexion Γμλ is symmetric when-
ever the distribution B is integrable.

In order that this is the case, we should have
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whenever

ώβ6

Λ = 0.

On the other hand, we have, from (4.6),
o h __ n h

Thus, the distribution B is flat with respect to the affine connexion
Γh = Γϊz + Tμz*, and the affine connexion Γκ

μλ is symmetric whenever the
distribution B is integrable, if and only if the tensor Tμλ

κ satisfies

(4.8) Tcΐ,
h = - I'M, the other T's satisfying Tΐβ

a - Tβΐ

a = 0.

The simplest Tμι
κ which satisfies these conditions is given by (4.7). Thus

we have

THEOREM 3. For any distribution given globallyr, there exists a global
affine connexion with respect to which the given distribution is flat and
which is symmetric whenever the distribution is integrable.

(ii) Affine connexions with respect to which the distribution B is
geodesic.

The condition for B to be geodesic is

Thus we have from (4.2)
T2" Λ i rp h

— J (cδ) ~T~ •*• (cδ)

Thus the distribution B is geodesic with respect to the affine connexion
Γκ

μλ =Γκ

μλ + Tμλ

κ if and only if the tensor Tμλ

κ satisfies

ηn h in h
•L (cδ) — J (cδ).

The simplest symmetric Tμλ

κ satisfying this condition is given globally by

Thus we have

THEOREM 4. For any distribution given globally, there exists a global
symmetric affine connexion with respect to which the distribqtion is geodesic.

(iii) Affine connexions with respect to which distribution B is parallel
along C.

The condition for B to be parallel along C is

(4.10) Γ}b = 0.

Thus we have from (4.2)
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Thus the distribution B is parallel along C with respect to the affine
connexion Γμλ = Γμλ -f Tμι

f if and only if the tensor Tμλ
κ satisfies

(4.11) 2V=-Γ$δ.

The simplest Tμλ

κ satisfying this condition is given globally by

(4.12) Tμ^ = -C^Bb

λC^ΓJb.

Thus we have

THEOREM 5. For any complementary distributions given globally, there
exists a global affine connexion with respect to which one distribution is
parallel along the other.

(iv) Affine connexions with respect to which the distribution C is paral-
lel along B.

Interchanging B and C in (iii), we see that the distribution C is parallel
along B with respect to the affine connexion Γμλ = f*μλ + Tμλ

κ if and only if
the tensor Tμχ

κ satisfies

(4.13) Γβ,
β=-Γ£.

The simplest Tμλ" satisfying this connition is given globally by

(4.14) T^=-E\G\E^f^.

(v) Affine connexions with respect to which the distribution C is flat.

Interchanging B and C in (i), we see that the distribution C is flat with
respect to the affine connexion Γμλ = Γμλ + Tμλ

κ if and only if the tensor Tμι*
satisfies

(4.15) τy>=-/%

The simplest Tμι* satisfying this condition is given globally by

(4.16) TμS = -&μC\Ba*Γa

dί.

The aίfine connexion defined here is symmetric whenever the distribution
C is integrable.

(vi) Affine connexions with respect to which the distribution C is
geodesic.

Interchanging B and C in (ii) we see that the distribution C is geodesic

with respect to the affine connexion Γκ

μλ = Γμλ + Tμλ
κ if and only if the tensor

Tμχ
κ sayisfies

(4.17) Γ<yl)«=-ΛSi>

The simplest symmetric Tμf satisfying this condition is given globally by

(4.18) 2V = -C^C'̂ α Λ;,,.

Now combining the results in (i) and (v) we have
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THEOREM 6. For any complementary distributions B and C given glo-
bally, there exists a global affine connexion with respect to which both of
the distributions are flat and which is symmetric whenever both of the
distributions are integrable.

Denoting by Γκ

μλ = Γκ

μι + Tμχ
κ the components of such an affine connexion,

the tensor Tμλ

κ must satisfy

(4.19) Tcb

h = -Γh

cb, T3i* = - Γa

όίί

all the other T's satisfying Trβ«-Tβr

a = Q.
The simplest Tμλ

κ satisfying these conditions is given by

(4.20) 2V = - B'pBWk'f** - C'rCΊBa f**.

Next combining (ii) and (vi) we have

THEOREM 7. For any complementary distributions B and C given glo-
bally, there exists a global symmetric affine connexion with respect to which
both of the distributions are geodesic. (Walker [2], Theorem 1.)

Denoting by Γμχ = Γμλ + 2V the components of such an affine connexion,
the tensor 2V should be symmetric and satisfy

(4.21) τcb

h = - rcs», zy = - Λs<>.
The simplest Tμλ

κ satisfying these conditions is given by

(4.22) TV - - B%B6*(VA*> - C',C',Bα Λ3i>.

Also combining (ii), (iii), (iv) and (vi), we have

THEOREM 8. For any complementary distributions B and C given glo-
bally, there exists a global symmetric affine connexion with respect to which
both of the distributions are geodesic and one of the distributions is parallel
along the other. (Walker [2], Theorem 2.)

Denoting by Γκ

μλ = Γμλ + Tμi* the components of such an affine connexion,
the tensor Tμλ

κ should be symmetric and satisfy

(4.23) ΓC6

Λ =-/•£>, TJb

h = TbJ

h=-rjb, Tcf=Tlc« = -fa

Gl, Γy<

α=-Γc3<>.

The simplest Tμλ

κ satisfying these conditions is given by

TV - - B%B6,CVΓ(Ϊ&> - C'fB*iCh'r$, - B*μ&2Ch f*»

- B^Bα ΓSi - C\Bc>Ba«ra

ci - CWiBa Γfa.

(vii) Affine connexions with respect to which the distribution B is
parallel.

The condition for B to be parallel is

Γcδ = 0 and Γ*6 = 0.
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From (4.2) we have

0^ ΓΪ6 + Γβδ

Λ, 0 - Γh

jb + Tjb\

Thus the distribution B is parallel with respect to the affine connexion

Γκ

μλ — Γκ

μλ }- Tμι
κ if and only if the tensor Tμχ

κ satisfies

(4.25) Tcb

h = - Γh

cb and Tjb

h = - fh

όb.

The simplest Tμλ

κ satisfying these conditions is given by

(4.26) TPί<= - Bc

μB\Ch*Γh

cb - CJ

μB\C^Γh

jb.

Thus we have

THEOREM 9. For any distribution given globally, there exists a global
affine connexion with respect to which the given distribution is parallel.

We can further require that the affine connexion Γμλ is symmetric when-
ever the given distribution is integrable.

The distribution B is parallel with respct to the affine connexion

Γμλ = Γμλ + Tμi* and the affine connexion Γκ

μλ is symmetric whenever the

distribution B is integrable if and only if the tensor Tμλ
κ satisfies

(4.27) Tcb

h = - fh

cb, Tjb

h = Tbj

h = - /%,

all the other Trβ
a being symmetric in ϊ and 0.

The simplest Tμλ

κ satisfying these conditions is given by

(4.28) Tpί<= - Bc

μB\Ch*Γh

cb - σμB\Ch

κfh

jb - E\OλC^f},.

Thus we have

THEOREM 10. For any distribution given globally, there exists a global
affine connexion with respect to which the given distribution is parallel
and which is symmetric whenever the distribution is integrable.

(viii) Affine connexions with respect to which the distribution C is
parallel.

Interchanging B and C in (vii), we see that the distribution C is parallel

with respect to the affine connexion Γκ

μλ =Γμχ + Tμχ
κ if and only if the tensor

Tμλ

κ satisfies

(4.29) Tcι

a = - fa

cι and ϊy - - /%

The simplest Tμλ

κ satisfying these conditions is given by

(4.30) 2V = -^CSBα Γi - CWiBsΓSi.

The distribution C is parallel with respect to the affine connexion

Γκ

μλ = Γμλ + Tμx" and the affine connexion Γκ

μλ is symmetric whenever the
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distribution C is integrable if and only if Tμλ

κ satisfies

(4.31) Tc« = Tίc

a = - Γi and TJt = - Γa

όi

all the other Trβ
a being symmetric in T and β.

The simplest Tμf satifying these conditions is given by

(4.32) Tμλ*= - B^C^B^f'^ - C'r&tBa fΐi - C>,C*,Ba'/1«.

Now combining the results in (i), (iii), (iv), (vi) and (vii), we see that the
distribution C is geodesic and C is parallel along B with respect to an

affine connexion Γμλ = Γμλ + TV if and only if the tensor 2V satsifies

(4.33) Γc*Λ=-Λ* Tflh=-f*», ΪW=-Λ*>, ZV^-Λ,.

The simplest TV satisfying these conditions is given by

(3.34) TV = - Bc

μB\Ch

κΓlb - Cj

μB\Ch*f}b - C^C^B^Γ^ - Bc

μC\Ba*fa

cί.

Thus we have

THEOREM 11. For any complementary distributions B and C given

globally, there exists a global affine connexion Γμλ=ΓR

μλ-\-Tμλ
κ with respect

to which the distribution B is parallel, the distribution C is geodesic and
is parallel along B.

We can require further that the affine connexion Γfa is symmetric when-
ever the given distribution B is integrable.

The distribution B is parallel, the distribution C is geodesic andlis
parallel along B with respect to the affine connexion Γμλ = Γμλ + Tμι* and the
affine connexion Γμλ is symmetric whenever the distribution B is integrable
if and only if the tensor Tμλ

κ satisfies

(A QFC^ ηπ h — ΛΛ ηπ h rn h j°Ά ηπ a ϊ°»α ηπ a, rπ a 7°'«
V^.ΰO; l cδ — — 1 cb, J. jb — J-bj — — 1 jb, J ζji) — — J (jί), J-cz — J ic — J en

all the other Trβ
a being symmetric in ϊ and β.

The simplest Tμι* satisfying these conditions is given by

TV = - Bc

μB\Ch

κfh

Cb - C'μB*ιCΛ f% - B\&λCh

κΓh

jb
(4.0Ό) 0 o o

- C'tC'tBaTa, - Bc

μC\Ba«ra

cl - C^B^Ba'Γl.

Thus we have

THEOREM 12. For any complementary distributions B and C given
globally in M, there exists a global affine connexion with respect to which
the distribution B is parallel, the distribution C is geodesic and is parallel
along B and which is symmetric whenever the distribution B is integrable.
(Walker [2], Theorem 3.)
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Combining (vii) and (iii), we can see that the distributions B and C are
both parallel with respect to the affine connexion Γμλ = fμλ + Tμχ

κ if and
only if

(4.37) 2V - - /*, Zy = - /%, Tcτ

a = -Γa

cι, Tjf = - hi^

The simplest Tμi* satisfying these conditions is given by

(4.38) 2V = - Bc

μB\Ch

κfh

cb - UμB\Ch*Γh

jb - Bc,C^Ba

Kfa

cl - C^C^B^Γ^.

We can further require that the affine connexion Γκ

μλ is symmetric when-
ever the given distribution is integrable.

The distributions B and C are both parallel with respect to the affine
o

connexion Γκ

μχ — Γμχ + 2V and the affine connexion is symmetric whenever
the distributions B and C are both integrable if and only if the tensor
Tμtκ satisfies

(4.39) ΓC6

Λ =-/•<£, 2V = 2τ

6/=-Γ56, Teι« = Tte

a=-Γa«, 2y=-Γ3ίf

all the other Trβ

a being symmetric in ϊ and β.

The simplest 2V satisfying these conditions is given by

T^κ = - *%B6,(V/% - &μB\Ch*fh

jb - B\U\Ch*f}b(4.40)
- B%C\Ba*ra

Gl - C^&iBsΓϊi - CWiBa Πt.

Thus we have

THEOREM 13. For any complementary distributions given globally, there
exists always a global affine connexion with respect to which both of the
given distributions are parallel and which is symmetric whenever both of
the distributions are integrable.

§5. Affine connexions in terms of the structure tensor.

In this Section we shall try to express various affine connexions obtained
in Section 4 in terms of the structure tensor Fλ

κ of the almost product
space M.

( i ) Affine connexions with respect to which the distribution B is flat.

From (4.7) we have

from which

(5.1) Γ^ = J5;

Substituting (1.9) into (5.1) we find



18 KENTARO YANO

(5.2) 2V = - -I ψμF
O

If we put

(5.3)

then equation (5.2) can be written as

(5.4) 2V - - --k-afpi* - MμSo

On the other hand it is easily verified that

(5.5) Mμί< - Mtμ* = NμS

and consequently, from (5.4) we have

(5.6) 2V - 2V - - - (AV - Nμί'Fμ ).

Thus we have

THEOREM 14. For any distribution B given globally in M, the affine
connexion with respect to which the given distribution is flat and which is
symmetric whenever the distribution is integrable is given by

(5.7) Γ'μί = Γκ

μi - \[_Mμλ* - MμSFf<l,
o

Mμi* being given by (5.3) and Γκ

μλ being an arbitrary symmetric affine con-
nexion defined globally in M.

(ii) Affine connexions with respect to which the distribution B is
geodesic.

From (4.9) we have

(5.8) 2V - BάB^(7tC
κ

σ).

Substituting (1.9) into (5.8) we find

(5.9) TV = - - J- [Mc,,/ - ΛW*V].
o

Thus we have

THEOREM 15. For any distribution B given globally in M, an affine con-
nexion with respect to which the given distribution is geodesic is given by

(5.10) Γ'μί = fκ

μλ - -kΛW - ΛWίV].
o

(iii) Affine connexions with respect to which the distribution B is
parallel along C.

From (4.12) we have

(5.11) T^ = Cy?!(FrCi).
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Substituting (1.9) into (5.11) we find

(5.12) 2V = - -k^fV - F/(7PFS) + F/(7μFP*) - F/F/(FrF/)].
o

Thus we have

THEOREM 16. For any complementary distributions B and C given
globally in M, an affine connexion with respect to which B is parallel along
C is given by

(5.13) Γ;, = Γκ

μλ - \-irμFλ* - F^PpFs) + Fλ

p(PμFP

κ) - FiFί'(PτF9*)'].
o

(iv) Affine connexions with respect to which the distribution C is
parallel along B.

Interchanging B and C or changing the sign of Fλ

κ in the above theorem,
we can see that for any complementary distributions B and C given glo-
bally in M, an affine connexion with respect to which C is parallel along
B is given by

(5.14) Γίz = Γ'n + -k/^ίV + Ff(r,Frt - FWtFf) - FiFf(r*F.*γ\.
o

(v) Affine connexions with respect to which the distribution C is flat.

Interchanging B and C or changing the sign of Fλ* in Theorem 14 we
can see that for any distribution C given globally in M, an affine conne-
xion with respect to which the given distribution is fiat and which is sym-
metric whenever the distribution C is integrabele is given by

(5.15) Γ'P2 = fκ

μλ - -ί(MV + Mμ/FP

κ).
o

(vi) Affine connexions with respect to which the distribution C is
geodesic.

Interchanging B and C or changing the sign of Fλ

κ in Theorem 15 we
can see the for any distribution C given globally in M, an affine connexion
with respect to which the given distribution is geodesic is given by

(5.16) Γ'μλ = Γ;,- y(M^/ + JlWίV).

Now from (4.20) we find

(5.17) 2V - - ~-MV - - -~-[F/(F,F/) + F/(P%F/)],

form which

(5.18) 2V - 3V = - —#*'*•
4

Thus we have
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THEOREM 17. For any complementary distributions B and C given
globally, an affine connexion with respect to which both of the distributions
are flat and which is symmetric whenever both of the distributions are
integrable is given by

(5.19) Γκ

μ, =Γκ

μλ- I -[ W%*V) + F/(ί7μF^.

Also from (4.22) we find

(5.20) Tμΐ~M<μtf.

Thus we have

THEOREM 18. For any complementary distributions B and C given
globally in M, a symmetric affine connexion with respect to which both of
the distaibutions are geodesic is given by

(5.21)

Also from (4.24), we find

Tμλ< = - - »Λ
4

(5.22)

Thus we have

THEOREM 19. For any complementary distributions B and C given
globally a symmetric affine connexion with respect to which both of the
distributions are geodesic and one of the distributions is parallel along the
other is given by

Γκ

μλ = Γμλ - \M^ + ~lF/(rfFs) - FS(ΐμFf'K4 4
(5.23)

(vii) Affine connexions with respect to which the distribution B is
parallel.

From (4.26) we have

(5.24) T^ = Bp,(l7μC
κ

P).

Substituting (1.9) into (5.24) we find

(5.25) Tμi = - |-[(F,F/) - (F,F/)*V ].

Thus we have
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THEOREM 20. For any distribution B given globally in M, a global
affine connexion with respect to which the distribution B is parallel is
given by

(5.26) Γμλ = fκ

μλ - i[(F,F/) - (F,F/)^/].

From (4.28) we have

TV = - {[(fVFV) + (F,F/) + FS(?fFf ) + Ff'(?>Ff n

(5.27)
+ H(^F/) + F/(F,F/) + F/(F,F/) + F/F/(F.ίV)],

o

from which

(5.28) TV - 2V - * (ΛV ~ Nn'Ff).

Thus we have

THEOREM 21. For any distribution B given globally in M, a global
affine connexion with respect to which the given distribution is parallel
and which is symmetric whenever the distribution is integrable is
given by

Γκ

μλ = Γμλ - -J-K^fV ) + ( f̂

(5.29)

(viii) Affine connexions with respect to which the distribution C is
parallel.

Interchanging B and C or changing the sign of Fλ

κ we can see from the
above theorem that for the distribution C given globally in M, a global
affine connexion with respect to which C is integrable is given by

Γκ

μλ = Γκ

μλ + - [̂(̂ ίV ) + (F,*V) - FS(7μFP') - F/(rλFP')l

(5.30)
- -™[(^fV) - F/(I7,FP

K) - FS(ϊpFμ*) + Fμ*Fλ (17.Fs) \.
o

From (4.34) we find

2V = - ̂ [(̂ ,-P/) - (PVFV)!?1,']

(5.31) -
O

+ —
O

Thus we have
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THEOREM 22. For any complementary distributions B and C the affine
connexion with respect to which B is parallel, C is geodesic and C is paral-
lel along B is given by

Γμλ -

(5.32)

From (4.36) we have

(5.33)

+ 2"
from which

(5.34) TV - TV = - -* OVV

Thus we have

THEOREM 23. For the complementary distributions B and C given glo-
bally in M, the affine connexion with respect to which B is parallel, C is
geodesic and C ia parallel along B and which is smmetric whenever B is
integrable is given by

Γκ

μλ - f;, -

(5.35)

From (4.38) we have

(5.36) T,** = +~(l7μF/)FP".
A

Thus we have

THEOREM 24. For the distributions B and C given globally in M, an
affine connexion with respect to which B and C are both parallel is
given by

(5.37) Γκ

μλ = Γμλ + γ(F,F/)F/.

From (4.40) we have

(5.38) TV = - IF/faF,') - F/(F,F/)] + (F,F/)F/],
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from which

(5.39) TV ~ 2V = ~ I NV'

Thus we have

THEOREM 25. For the distributions B and C given globally in M, an
affine connexion with respect to which B and C are both parallel and which
is symmetric whenever both of B and C are integrable is given by

(5.40) Γκ

μλ = /*;, - [F/(F,F/) - F/(P%F/)] + ~(F,F/)F/.
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