ON JULIA-LINES OF DIRICHLET SERIES

By Chuji Tanaka

1. Introduction.

Let us put

(1.1) $F(s) = \sum a_n \exp(-\lambda_n s) \quad (s = \sigma + it, \ 0 \leq \lambda_1 < \lambda_2 < \cdots < \lambda_n \to \infty).$

We begin with some definitions.

DEFINITION 1. Let (1.1) be simply convergent in the whole plane. We call the horizontal line $t=t_0$ the Julia-line, provided that (1.1) takes every value, except perhaps two (∞ included), infinitely many times in any strip $|t-t_0| < \varepsilon$, ε being any positive constant.

DEFINITION 2. Under the same assumptions as above, the horizontal line $t = t_0$ is called the argument-line, provided that |F(s)| tends uniformly to infinity, and $\arg F(s)$ assumes every argument $\theta \pmod{2\pi}$ infinitely many times in any strip $|t - t_0| < \varepsilon$, ε being any positive constant.

Mandelbrojt has established the following theorems.

THEOREM A. ([4] p. 16, [3] theorem 1.) Let (1.1) with $\lim_{n \to +\infty} (\lambda_n/n) \ge G$ >0 be simply (necessarily absolutely) convergent in the whole plane. Then following alternatives are possible:

[I] there exists at least one Julia-line in the strip $|t-t_0| \leq \pi/G$, where t_0 is an arbitrary but fixed constant, or

[II] (1.1) tends uniformly to infinity in the strip $|t-t_0| \leq \pi/G$.

THEOREM B. ([5] p. 268.) Let (1.1) with $\lim_{n\to+\infty} (\lambda_{n+1} - \lambda_n) > 0$ be simply (necessarily absolutely) convergent in the whole plane, and be of positive order ρ .¹⁾ Then (1.1) has at least one Julia-line in any strip $|t-t_0| \leq \max(\pi \overline{D}, \pi/2\rho)$, where t_0 is an arbitrary but fixed constant, and \overline{D} is the superior mean density of $\{\lambda_n\}$ ([5] p. 51).

The object of this note is to prove the next theorem, which is a genera-

- 1) The order ρ of (1.1) is defined by
 - $\rho = \lim_{\sigma \to -\infty} \frac{1}{-\sigma} \log^+ \log^+ M(\sigma), \quad \text{ where } \quad M(\sigma) = \sup_{-\infty < t < +\infty} |F(\sigma + it)|.$

Received October 29, 1958.

lization of Mandelbrojt's theorem. The proof of our theorem is based upon Mandelbrojt's ideas ([2] pp. 185-188).

THEOREM. Let (1.1) with $\lim_{n \to +\infty} (\lambda_{n+1} - \lambda_n) = h > 0$ and $\lim_{n \to +\infty} n/\lambda_n = \delta$ ($\leq 1/h$) be simply (necessarily absolutely) convergent in the whole plane, and be of order ρ . If $\rho > 0$, then (1.1) has at least one Julia-line in any strip $|t - t_0| \leq \pi \delta$, t_0 being arbitrary but fixed. If $\rho = 0$, then there exists at least one Julia-line or an argument-line in any strip $|t - t_0| \leq \pi \delta$.

REMARK. (1) In our theorem, the width of the horizontal strip is independent of ρ .

(2) On the relation between δ and \overline{D} , we know that

 $\overline{D} \le \delta \le e\overline{D}$ ([5] pp. 51–53).

As a corollary, we get an analogue of Fabry's gap-theorem.

COROLLARY. Let (1.1) with $\lim_{n \to +\infty} (\lambda_{n+1} - \lambda_n) > 0$, $\lim_{n \to +\infty} n/\lambda_n = 0$ be simply (necessarily absolutely) convergent in the whole plane, and be of order ρ . If $\rho > 0$, then (1.1) has every line $t = t_0$ as the Julia-line, t_0 being arbitrary but fixed. If $\rho = 0$, then (1.1) has every line $t = t_0$ as the Julialine or the argument-line.

2. Lemmas.

To establish our theorem, we need some lemmas. The next lemma is a generalization of Mandelbrojt's lemma ([3] pp. 13-14).

LEMMA 1. (Tanaka [8] p. 424). Under the same assumptions as in the theorem, we have

$$\sup_{\Re(s)=\Re(s_0)}|F(s)| \leq A \operatorname{Max}_{|u-s_1|=\pi(\delta+\varepsilon)}|F(u)|,$$

where (i) ε is any given positive constant, (ii) s_0 and s_1 are two arbitrary points satisfying $\Re(s_1) = \Re(s_0) - \varDelta(\varepsilon)$, where $\varDelta(\varepsilon) = 3\delta \log(e^6/h\delta) + 2\varepsilon$, (iii) A is a constant depending upon ε , δ and $\{\lambda_n\}$.

LEMMA 2. Let (1.1) be uniformly convergent in the whole plane²⁾ and be of positive order ρ . Then, for any positive Δ_1 , there exists a constant α dependent upon Δ_1 and ρ such that

$$\overline{\lim_{\sigma \to -\infty}} \frac{\log^+ M(\sigma - \mathcal{\Delta}_1)}{\log^+ M(\sigma)} \ge \alpha > 1,$$

where

²⁾ It means the uniform convergence-abscissa of (1.1) is equal to $-\infty$.

$$M(\sigma) = \sup_{-\infty < t < +\infty} |F(\sigma + it)|.$$

Proof. Suppose that

(2.1)
$$\overline{\lim_{\sigma \to -\infty}} \frac{\log^+ M(\sigma - \Delta_1)}{\log^+ M(\sigma)} < \beta.$$

Then, there exists a constant σ_0 (<0) such that

$$\log^+ M(\sigma - \varDelta_1) < \beta \log^+ M(\sigma) \quad \text{for} \quad \sigma \leq \sigma_0.$$

Hence

so that

(2.2) $\log^+ M(\sigma_0 - n \varDelta_1) < \beta^n \log^+ M(\sigma_0).$

By the definition of ρ , there exists a sequence $\{\sigma_k\}$ $(\sigma_1 > \sigma_2 > \cdots > \sigma_k \to -\infty)$ such that

(2.3)
$$\rho = \overline{\lim_{\sigma \to +\infty}} - \frac{1}{-\sigma} \log^+ \log^+ M(\sigma) = \lim_{k \to +\infty} - \frac{1}{-\sigma_k} \log^+ \log^+ M(\sigma_k).$$

We can easily choose a sequence of positive integers $\{n_k\}$ such that

(2.4)
$$\sigma_0 - n_k \varDelta_1 \leq \sigma_k < \sigma_0 - (n_k - 1) \varDelta_1 \qquad (k = 1, 2, \cdots).$$

Hence, by (2.4) and (2.2)

$$\log^+ M(\sigma_k) \leq \log^+ M(\sigma_0 - n_k \varDelta_1) < \beta^{n_k} \log^+ M(\sigma_0),$$

so that

$$\frac{1}{-\sigma_k} \log^+ \log^+ M(\sigma_k) < \left\{ 1 - \frac{\sigma_0 + \mathcal{A}_1}{\sigma_k} \right\} \cdot \log^+ \frac{\beta}{\mathcal{A}_1} + \frac{1}{-\sigma_k} \log^+ \log^+ M(\sigma_0).$$

Letting $k \to +\infty$, we get

$$(2.5) \qquad \qquad \exp\left(\rho \varDelta_{1}\right) \leq \beta.$$

Hence (2.1) implies (2.5). Therefore, from $\exp(\rho \Delta_1) > \alpha$, we can conclude that

$$\overline{\lim_{\sigma\to-\infty}} \frac{\log^+ M(\sigma-\varDelta_1)}{\log^+ M(\sigma)} \ge \alpha.$$

Since $\rho > 0$, we can evidently choose a constant α such that

$$\exp\left(\rho \varDelta_{1}\right) > \alpha > 1,$$

which proves our lemma 2.

LEMMA 3. Under the same assumptions as in the theorem, if $\rho > 0$, then we can find two sequences $\{s_n\}, \{s_n'\}$ (Fig. 1) and a constant α such that

$$\lim_{n \to +\infty} \frac{\log |F(s_n')|}{\log |F(s_n)|} \ge \alpha > 1,$$

where (i) $s_n = \sigma_n + it_n$, $s_n' = \sigma_n' + it_n$, $|t_n - t_0| \leq \pi(\delta + \varepsilon)$, $|\sigma_n - \sigma_n'| \leq \Delta_1 + \pi(\delta + \varepsilon)$; (ii) t_0 is an arbitrary real constant, Δ_1 and ε are any positive constants, $\Delta(\varepsilon)$ is the constant in lemma 1, and α is the constant in lemma 2.

Proof. By lemma 2, there exists a sequence $\{\sigma_n\}$ $(\sigma_1 > \sigma_2 > \cdots > \sigma_n \rightarrow -\infty)$ such that

(2.6)
$$\lim_{n \to +\infty} \frac{\log M(\sigma_n - \Delta_1)}{\log M(\sigma_n)} \ge \alpha > 1.$$

On account of lemma 1, in which we put

$$\Re(s_0) = \sigma_n - \varDelta_1, \qquad s_1 = s_n'' = \{\sigma_n - \varDelta_1 - \varDelta(\varepsilon)\} + it_0,$$

we can choose s_n' such that

$$M(\sigma_n - \varDelta_1) \leq A \max_{|u - s_n''| = \pi(\delta + \varepsilon)} |F(u)| = A |F(s_n')|.$$

Hence

(2.7)
$$\log |F(s_n')| \ge \log M(\sigma_n - \varDelta_1) - \log A.$$

Putting $s_n = \sigma_n + it_n$, $t_n = \Im(s_n')$, we have evidently

$$\log |F(s_n)| \leq \log M(\sigma_n),$$

so that, by (2.7) and (2.6)

$$\lim_{n \to +\infty} \frac{\log |F(s_n')|}{\log |F(s_n)|} \ge \lim_{n \to +\infty} \frac{\log M(\sigma_n - \mathcal{\Delta}_1)}{\log M(\sigma_n)} \ge \alpha > 1,$$

which proves lemma 3.

LEMMA 4. (Gronwall [1] pp. 316-318.) Let f(z) (f(0) = 0, f'(0) = 1) be regular for |z| < 1 and map |z| < 1 conformally onto a convex domain. Then

$$\frac{1}{(1+|z|)^2} \leq |f'(z)| \leq \frac{1}{(1-|z|)^2}.$$

LEMMA 5. (Mandelbrojt [2] p. 176, p. 197; [5] p. 265.)

(1) Let $\mathfrak{F} = \{f(z)\} (|f(z)| > 1)$ be the family of the analytic functions in \mathfrak{D} . Then, to any domain \mathfrak{D}_1 completely contained in \mathfrak{D} , there corresponds a constant $\beta(\mathfrak{D}_1)$ (>1) dependent upon \mathfrak{D}_1 such that

$$rac{1}{eta} < rac{\log |f(z_1)|}{\log |f(z_0)|} < eta,$$

where z_0 and z_1 are two arbitrary points contained in \mathfrak{D}_1 and f(z) is any function belonging to \mathfrak{F} .

(II) Let \mathfrak{D} be the unit circle |z| < 1, and \mathfrak{D}_1 be the circle $|z| \leq R$ (<1). Then

$$\lim_{R\to 0}\beta(\mathfrak{D}_1)=1.$$

LEMMA 6. Under the same conditions as in the theorem, if $F(s) \neq 0$, and $|\arg F(s)| < 2m\pi$ in the half-strip $S(\varepsilon)$:

$$|t-t_0| \leq \pi(\delta+\varepsilon), \qquad \sigma \leq \sigma_0,$$

then

$$\sum_{\lambda_n < \omega} a_n \exp\left(-\lambda_n s\right) \{1 - \exp\left(\lambda_n - \omega\right)\}$$

$$\geq |F(s)| \left\{1 - A\gamma^{2m} \exp\left(-\frac{\omega}{2}\right)\right\} \qquad for \quad s \in S\left(\frac{\varepsilon}{2}\right),$$

where (i) A is the constant in lemma 1 and (ii) Υ (>1) is a constant independent of ω .

Proof. By the well-known Perron's formula ([7] p. 5), we get

(2.8)
$$F(s) = \sum_{\lambda_n < \omega} a_n \exp(-\lambda_n s) \{1 - \exp(\lambda_n - \omega)\} - R_{\omega}(s),$$

where

(i)
$$\begin{aligned} R_{\omega}(s) &= \frac{1}{2\pi i} \int_{\beta - i\infty}^{\beta + i\infty} F(z) \frac{\exp(\omega(z-s))}{(z-s)(z+1-s)} dz, \\ \text{(ii)} \quad \Re(s) &= \sigma > \beta > \sigma - 1. \end{aligned}$$

Setting $\beta = \sigma - 1/2$, $M(\sigma) = \sup_{-\infty < t < +\infty} |F(\sigma + it)|$,

$$egin{aligned} |R_{\omega}(s)| &\leq rac{1}{\pi}Migg(\sigma-rac{1}{2}igg) ext{exp}igg(-rac{\omega}{2}igg) igg_{_0}^{+\infty}rac{1}{ au^2+(1/2)^2}\,d au \ &= Migg(\sigma-rac{1}{2}igg) ext{exp}igg(-rac{\omega}{2}igg). \end{aligned}$$

Hence, by lemma 1 in which, replacing ε by $\varepsilon/2$, we put

(2.9)
$$s_0 = \left(\sigma - \frac{1}{2}\right) + it_0, \qquad s_1 = s_0 - \varDelta \qquad (Fig. 2),$$
$$|R_{\omega}(s)| \le A |F(s_2)| \exp\left(-\frac{\omega}{2}\right),$$

where $|s_1 - s_2| = \pi(\delta + \varepsilon/2)$. Therefore, by (2.8) and (2.9),

$$(2.10) \quad \sum_{\lambda_n < \infty} a_n \exp\left(-\lambda_n s\right) \{1 - \exp\left(\lambda_n - \omega\right)\} \geq |F(s)| \left\{1 - A \frac{F(s_2)}{F(s)} \exp\left(-\frac{\omega}{2}\right)\right\}.$$

Let us consider the function-family $\{F_n(s)\} = \{F(s-n)\}$ in the rectangle

$$D: \qquad |t-t_0| \leq \pi \Big(\delta + rac{3arepsilon}{4}\Big), \qquad |\sigma| \leq rac{1}{2} + r(2arepsilon),$$

where

$$r(\varepsilon) = \frac{1}{2} + \varDelta + \pi \left(\delta + \frac{\varepsilon}{2}\right)$$
 (Fig. 2).

Since $|\Re(s_2) - \Re(s)| \leq r(\varepsilon)$, there exist an integer n_k and two points s_{n_k} , s'_{n_k} such that

(2.11)
$$F(s) = F_{n_k}(s_{n_k}), \qquad F(s_2) = F_{n_k}(s'_{n_k}),$$

where

(i)
$$s = s_{n_k} - n_k$$
, $s_2 = s'_{n_k} - n_k$

(ii) $s_{n_k}, s'_{n_k} \in D'; D'$ denoting the rectangle

$$|t-t_0| \leq \pi(\delta + \varepsilon/2), \quad |\sigma| \leq 1/2 + r(\varepsilon).$$

Setting

$$f_n(s) = \left(\frac{F_n(s)}{F_n(it_0)} \right)^{1/4m}, s$$

we get easily

$$f_n(it_0) = 1, \quad |\arg f_n(s)| < \pi \quad \text{for} \quad s \in D.$$

Hence, the function-family $\{f_n(s)\}$ is normal in D, and bounded at it_0 , so that $\{f_n(s)\}$ is uniformly bounded in $D' (\subset D)$. By the entirely similar arguments, $\{1/f_n(s)\}$ is also uniformly bounded in D'. Thus, there exists a constant $\gamma(D') > 1$ such that

$$rac{1}{\gamma} < |f_n(s)| < \gamma$$
 for $s \in D'$ $(n = 1, 2, \cdots).$

3) The following argument is due to Mandelbrojt ([2] p. 177).

Hence, by (2.11)

$$\left| rac{F(s_2)}{F(s)}
ight| < \varUpsilon^{8m}$$
 ,

so that, by (2.0)

$$\sum_{\lambda_n < \omega} a_n \exp\left(-\lambda_n s\right) \{1 - \exp\left(\lambda_n - \omega\right)\}$$

 $\geq |F(s)| \left\{1 - A \gamma^{sm} \exp\left(-\frac{\omega}{2}\right)\right\} \quad \text{for} \quad s \in S\left(\frac{\varepsilon}{2}\right),$

which proves our lemma 6.

LEMMA 7. Under the same conditions as in the theorem, let us denote by $N_{\omega}(t_1, t_2, \sigma_0)$ the number of zeros of $S_{\omega}(s) = \sum_{\lambda_k < \omega} a_k \exp(-\lambda_k s) \cdot \{1 - \exp(\lambda_k - \omega)\}$ contained in the half-strip $t_1 < t < t_2, \sigma < \sigma_0$. Then

$$N_{\omega}(t_1, t_2, \sigma_0) \geq -\frac{t_2-t_1}{2\pi} \lambda_{n(\omega)} - n(\omega) - K,$$

where

(i) $\lambda_{n(\omega)}$ is the greatest exponent contained in $0 \leq x < \omega$, and (ii) K is a constant independent of ω .

Proof. We have evidently

(2.12)
$$N(t_1, t_2, \sigma_0) = \lim_{\sigma \to -\infty} (I_1 + I_2 + I_3 + I_4),$$

where

$$\begin{split} I_1 &= \frac{1}{2\pi} \int_{\substack{\sigma_0 + it_1 \\ \Re(s) = \sigma_0}}^{\sigma_0 + it_2} d \arg S_{\omega}(s), \\ I_2 &= \frac{1}{2\pi} \int_{\substack{\sigma_0 + it_2 \\ \Im(s) = t_2}}^{\sigma + it_2} d \arg S_{\omega}(s), \\ I_3 &= \frac{1}{2\pi} \int_{\substack{\sigma + it_1 \\ \Im(s) = \sigma}}^{\sigma + it_1} d \arg S_{\omega}(s), \\ I_4 &= \frac{1}{2\pi} \int_{\substack{\sigma_0 + it_1 \\ \Im(s) = t_1}}^{\sigma_0 + it_1} d \arg S_{\omega}(s), \end{split}$$

Since $S_{\omega}(s)$ tends uniformly to F(s) as $\omega \to +\infty$ on the segment $\Re(s) = \sigma_0$, $t_1 \leq \Im(s) \leq t_2$, there exists a constant K independent of ω such that

 $(2.13) |I_1| < K.$

Since

$$S_{\omega}(s) = a_{n(\omega)} \exp\left(-\lambda_{n(\omega)}s\right) \{1 - \exp\left(\lambda_{n(\omega)} - \omega\right)\} (1 + o(1))$$

on the segment $\Re(s) = \sigma$, $t_1 \leq \Im(s) \leq t_2$, where o(1) tends uniformly to 0 as $\sigma \to -\infty$,

CHUJI TANAKA

(2.14)
$$\lim_{\sigma \to -\infty} I_3 = -\frac{1}{2\pi} \int_{t_2}^{t_1} \lambda_{n(\omega)} dt = \frac{t_2 - t_1}{2\pi} \lambda_{n(\omega)}.$$

On the horizontal line $t = t_j$ (j = 1, 2), we can put

$$S_{\omega}(s) = X(t, \sigma) + i Y(t, \sigma)$$
 $(t = t_j, j = 1, 2),$

where

$$X(t, \sigma) = \sum_{i=1}^{n(\omega)} \gamma_i(t) \exp(-\lambda_i \sigma), \quad Y(t, \sigma) = \sum_{i=1}^{n(\omega)} \gamma_i^*(t) \exp(-\lambda_i \sigma)$$

We have easily

$$|\,I_2\,| \leq rac{m(t_2)}{2}\,, \qquad |\,I_4\,| \leq rac{m(t_1)}{2}\,,$$

where m(t) is the number of real roots of $X(t, \sigma)$ in $-\infty < \sigma < +\infty$. On the other hand, we know that the number of real roots of $\sum_{i=1}^{n} \tilde{\gamma}_i \exp(-\lambda_i \sigma)$ ($\tilde{\gamma}_i$ and λ_i being real) does not exceed n-1 ([6] p. 49, problem 77). Hence

(2.15)
$$|I_2| + |I_4| \leq n(\omega) - 1 < n(\omega).$$

By (2.12), (2.13), (2.14) and (2.15),

$$N_{\omega}(t_1, t_2, \sigma_0) \geq rac{t_2-t_1}{2\pi} \lambda_{n(\omega)} - n(\omega) - K,$$

which proves our lemma 7.

3. Proof of the theorem.

We distinguish two cases.

Case I. $\rho > 0$: By lemma 3, selecting suitable sub-sequences, if necessary, we can find two sequences $\{s_n\}$, $\{s_n'\}$ such that

(3.1)
$$\lim_{n \to +\infty} \frac{\log |F(s_n')|}{\log |F(s_n)|} \ge \alpha > 1,$$

where

(3.2)

(iii)
$$|\mathcal{\Delta}_n| \leq \mathcal{\Delta}_1 + \mathcal{\Delta}(\varepsilon) + \pi(\delta + \varepsilon).$$

Suppose that w = f(z) maps |z| < 1 conformally onto the rectangle R_1 : $|\Re(w)| \le k$, $|\Im(w)| \le \varepsilon_1$ in such a manner that f(0) = 0, f'(0) = 1. Putting

$$r = \max_{\substack{0 \leq w \leq p < k}} |\varphi(w)|,$$

where $z = \varphi(w)$ denotes the inverse function of w = f(z) (Fig. 3), by lemma 4, we get easily

$$r \leq \int_{0 \leq w \leq p} |\varphi'(w)| \, |\, dw\,| = \int_{0 \leq w \leq p} \frac{1}{|f'(z)|} \, |\, dw\,| \leq (1+r)^2 p,$$

so that

(3.3)

On account of lemma 5 (II), we can find sufficiently small R(0 < R < 1) such that

$$1 < \beta(\mathfrak{D}_1) < \alpha,$$

where \mathfrak{D}_1 designates $|z| \leq R$. Taking sufficiently small p, by (3.3) we can assume that

$$(3.4) r < 4p < R.$$

Now we map the rectangle R_1 in w-plane onto the rectangle $R_2(n)$ in splane by the linear transformation $s = g_n(w)$ (Fig. 3) such that

(i)
$$s = g_n(w) = \frac{\Delta_n}{p}(w-p) + s_n$$

(ii) $s_n = g_n(p), \quad s_n' = g_n(0).$

Then the strip $|\Im(w)| \leq \varepsilon_1$ corresponds to the strip $|\Im(s) - t_n| \leq (\varepsilon_1 |\mathcal{A}_n|)/p$. Since \mathcal{A}_n is bounded, and $\lim_{n \to \infty} t_n = T_0$, for any given $\varepsilon_2 > 0$, taking suffi-

ciently small ε_1 , we can assume that the rectangle $R_2(n)$ are contained in the strip $|\Im(s) - T_0| < \varepsilon_2$ for sufficiently large n.

Let us consider the function-family $\{F_n(z)\}$ = $\{F(g_n(f(z)))\}$ in the domain $\mathfrak{D}: |z| < 1$. Then $\{F_n(z)\}$ is not normal in \mathfrak{D} . On the contrary,

since $\lim_{n\to\infty} F_n(0) = \infty$ by (2.7), $F_n(z)$ tends uniformly to infinity in any domain completely contained in \mathfrak{D} . Then, by lemma 5 (I),

$$\frac{1}{\beta(\mathfrak{D}_1)} < \frac{\log |F_n(0)|}{\log |F_n(z_0)|} < \beta(\mathfrak{D}_1),$$

where $F_n(z_0) = F(s_n)$, so that

CHUJI TANAKA

(3.5)
$$\frac{1}{\beta(\mathfrak{D}_1)} < \frac{\log |F_n(s_n')|}{\log |F(s_n)|} < \beta(\mathfrak{D}_1) < \alpha,$$

which contradicts (3.1). Hence, $\{F_n(z)\}$ is not normal in \mathfrak{D} . In other words, F(s) takes every value infinitely many times, except perphaps two (∞ included), in $\{R_2(n)\}$, a fortiori in $|\Im(s) - T_0| < \varepsilon_2$. Since ε_2 is arbitrary, $\Im(s) = T_0$ is a Julia-line. Letting $\varepsilon \to 0$ in (3.2) (ii), the first part of our theorem is established.

Case II. $\rho = 0$: By theorem A, it is sufficient to prove the existence of the argument-line in the case II of theorem A. In this case, we can determine σ_0 such that, in the half-strip $|t - t_0| \leq \pi(\delta + \varepsilon)$, $\sigma \leq \sigma_0$,

$$(3.6) |F(s)| > k > 0,$$

where k is a suitable constant. Applying lemma 7 to the half-strip $|t - t_0| \leq \pi(\delta + \varepsilon/2)$, $\sigma \leq \sigma_0$, we have

$$N_{\omega}(t_1, t_2, \sigma_0) \geq \lambda_{n(\omega)} \left\{ \left(\delta + rac{arepsilon}{2}
ight) - rac{n(\omega)}{\lambda_{n(\omega)}} - rac{K}{\lambda_{n(\omega)}}
ight\},$$

so that by $\lim_{n\to\infty} n/\lambda_n = \delta$,

$$(3.7) N_{\omega}(t_1, t_2, \sigma_0) > \lambda_{n(\omega)} \cdot \frac{\varepsilon}{4}$$

for sufficiently large ω . If $|\arg F(s)| < 2m\pi$ in the half-strip $|t - t_0| \leq \pi(\delta + \varepsilon)$, $\sigma \leq \sigma_0$, then by (3.6) and lemma 6, for sufficiently large ω , we have

$$\sum_{\lambda_n < \omega} a_n \exp{(-\lambda_n s)} \{1 - \exp{(\lambda_n - \omega)}\} \ge rac{k}{2} > 0,$$

in the half-strip $|t - t_0| \leq \pi(\delta + \varepsilon/2)$, $\sigma \leq \sigma_0$, which contradicts (3.7). Hence, in the half-strip $|t - t_0| \leq \pi(\delta + \varepsilon)$, $\sigma \leq \sigma_0$, |F(s)| tends uniformly to infinity, and moreover $\sup |\arg F(s)| = +\infty$. Then there exists a sequence of points $\{s_n\}$ such that

(i)
$$\lim_{n \to \infty} |\arg F(s_n)| = +\infty,$$

(ii) $\lim_{n \to \infty} \Im(s_n) = t^*, \quad |t^* - t_0| \le \pi(\delta + \varepsilon),$

from which it follows that $\Im(s) = t^*$ is the argument-line. Letting $\varepsilon \to 0$, we can conclude the existence of the argument-line in the strip $|t - t_0| \leq \pi \delta$. Thus the second part of our theorem is established.

References

- GRONWALL, T., Sur la déformation dans la représentation conforme sous les conditions restrictives. C. R. Acad. Sci. Paris 162 (1916), 249-252.
- [2] MANDELBROJT, S., Sur les suites de fonctions holomorphes. Les suites correspondantes des fonctions dérivées. Fonctions entières. Journ. de Math. 8 (1929), 173-195.
- [3] MANDELBROJT S., AND J. J. GERGEN, On entire functions defined by a Dirichlet series. Amer. Journ. Math. 53 (1931), 1-14.

- [4] MANDELBROJT, S., Séries lacunaires. Actualités scientifiques et industrielles. **305** Paris (1936).
- [5] MANDELBROJT, S., Séries adhérentes. Régularisation des suites. Applications. Paris (1952).
- [6] PÓLYA, G., AND G. SZEGÖ, Aufgaben und Lehrsätze aus der Analysis. Bd. II. Berlin (1925).
- [7] TANAKA, C., Note on Dirichlet series (VII). On the distribution of values of Dirichlet series on vertical lines. Kodai Math. Sem. Rep. (1952), 5-8.
- [8] TANAKA, C., Note on Dirichlet series (X). Remark on S. Mandelbrojt's theorem. Proc. Japan Acad. 29 (1953), 423-426.

DEPARTMENT OF MATHEMATICS, WASEDA UNIVERSITY.