ON JULIA-LINES OF DIRICHLET SERIES

By CHUJI TANAKA

1. Introduction.
Let us put
1.1) F)=la,exp(—4:8) (s=o+it, 0S4, << < Ay— o),

We begin with some definitions.

DEFINITION 1. Let (1.1) be simply convergent in the whole plane. We
call the horizontal line t=t, the Julia-line, provided that (1.1) takes every
value, except perhaps two (o included), infinitely many times in any strip
[t—to| <e, & being any positive constant.

DEFINITION 2. Under the same assumptions as above, the horizontal
line t =1, 1s called the argument-line, provided that | F(s)| tends uniformly
to infinity, and arg F(s) assumes every argument 6 (modZr) infinitely
many times in any strip |t —ty| <e, & being any positive constant.

Mandelbrojt has established the following theorems.

THEOREM A. ([4] p. 16, [8] theorem 1.) Let (1.1) with liMns+e(An/0) =G
>0 be simply (necessarily absolutely) convergent in the whole plane. Then
Sollowing alternatives are possible:

[I] there exists at least ome Julia-line im the strip |[t—it)]| < =/G,

where t, 1s an arbitrary dbut fixed constant, or
[TIT @1.1) tends uniformly to infinity in the strip [t —t| = =/G.

THEOREM B. ([5] p. 268.) Let (1.1) with liMus+c(dns1—4z) >0 be simply
(necessarily absolutely) convergent in the whole plane, and be of positive
order p.* Then (1.1) has at least ome Julia-line in any strip |t—i|
< Max (ﬂﬁ', n/2p), where t, is an arbitrary but fixed constant, and D is
the superior mean density of {A.} ([5] p. 5L).

The object of this note is to prove the next theorem, which is a genera-
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1) The order p of (1.1) is defined by

p= lim -_10. log* log*M(s), where M(c)= Sup |F(c+1it)l.
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lization of Mandelbrojt’s theorem. The proof of our theorem is based upon
Mandelbrojt’s ideas ([2] pp. 185-188).

THEOREM. Let (1.1) with liMpsieo (Anyi—2Aa)=0>0 and liMe,ie n/4,
=0 (£1/h) be simply (necessarily absolutely) convergent in the whole plane,
and be of order p. If p>0, then (1.1) has at least ome Julia-line in any
strip |t —to| = 6, &, being arbitrary but fixed. If p=0, then there ewists
at least one Julia-line or an argument-line in any strip |t —t,| < =d.

REMARK. (1) In our theorem, the width of the horizontal strip is
independent of p. B
(2) On the relation between ¢ and D*, we know that

D <6<eD  ((5] pp. 51-53).
As a corollary, we get an analogue of Fabry’s gap-theorem.

COROLLARY. Let (1.1) with liMasico (Anei—22)>0, liMnsis n/2, =0 be
simply (necessarily absolutely) convergent in the whole plane, and be of
order p. If p>0, then (1.1) has every line t=t, as the Julia-line, t, being
arbitrary but fizved. If p=0, then (1.1) has every line t==%, as the Julia-
line or the argument-line.

2. Lemmas.

To establish our theorem, we need some lemmas. The next lemma is a
generalization of Mandelbrojt’s lemma ([3] pp. 13-14).

LEMMA 1. (Tanaka [8] p. 424). Under the same assumptions as in the
theorem, we have
Sup | F(s)] §A| Max | F(u)l,

R(O=RCso) u—81|=m(8+8)
where (1) ¢ 18 any given positive constant, (ii) s, and s, are two arbitrary
points satisfying R(s)) = R(sy) — A(e), where A(e) =30 log (e¥/hd) + 2¢, (iii) A s
a constant depending upon &, 6 and {i,}.

LEMMA 2. Let (1.1) be uniformly convergent in the whole plane® and
be of positive order p. Then, for any positive 4, there exists a constant
a dependent upon 4, and p such that

7~ log® M(c —4;) >
o log"Mo) = >1,

where

2) It means the uniform convergence-abscissa of (1.1) is equal to — oo.
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M(o)= Sup |F(o+1t)].
—oo¥ + o0

Proof. Suppose that

T log® M(o — 41)
@1 alir—neo log* M(o)

Then, there exists a constant ¢, (<0) such that
log* M(c — 4,) < B log* M(o) for o< o,.

<B.

Hence

log™* M(co— 41) < 8 log* M(ao),

log* M(ay— 24,) < B log* M(ao— 4y),

log* M(oy — nd;) < Blog* M(co— (n — 1)),
so that
2.2) log* M(ao — nd:) < B" log* M(a).

By the definition of p, there exists a sequence {o:} (61 >0d2 >+ > 01— — )
such that

2.3) p=Tm !

G>r+o0 —

~log* log* M(s) = lim 1 - log* log*™ M(ov).
4 k>+o0 — O

We can easily choose a sequence of positive integers {n;} such that
2.4) 00— nxdi S ox < 09— (M — 1) 44 k=1,2,---).
Hence, by (2.4) and (2.2)
log* M(a:) < log* M(oy — nid,) < 3% log* M),
so that
L log* log* Mo < {1 ~ ek

— O

}-log+ Bi 1 og*log* Miay).
A1 — O

k
Letting k— 4 o0, we get
(2.5 exp (pdy) = B.

Hence (2.1) implies (2.5). Therefore, from exp (0o4;) > a, we can conclude that

Tim log" Mlo—4y)
M gt M) =

Since p >0, we can evidently choose a constant « such that

exp (pd) > a >1,
which proves our lemma 2.

LEMMA 3. Under the same assumptions as in the theorem, if p>0,
then we can find two sequences {s,}, {s.’} (F'ig. 1) and a constant « such
that
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log | F(s,’) |
A g | F(sy)| =%

where (1) 8n20n+itn; snl:dn’"l‘itny itn_tt}' .—<_-7Z'(5+£); Idn_o'nllédl"'ﬂ(b‘
+¢&); (i) ¢y is an arbitrary real constant, 4, and & are any positive con-
stants, A(e) is the constant in lemma 1, and « 1s the constant in lemma 2.

______________________________ A
/{ \ n
\AIZJ "“‘Jw)=to
a7r(e$+€) 26) L
=4, 677 v
Fig. 1.

Proof. By lemma 2, there exists a sequence {6,} (6s > 02>+ >0, — )
such that

2.6) lim 108 M(on — 1)

= .
S og Mla) | =471

On account of lemma 1, in which we put
R(so) = 0 — 4, s1=8," = {0, — 4, — (&)} + it,,
we can choose s,’ such that
M(o,—4))<A  Max IF(u)l =A|F(s,))].

Ju—sy77| = (S +
Hence
2.7 log | F'(s,’)| = log M(o,, — 4;) —log A.
Putting s, =0, + it,, t,=3(s,’), we have evidently
log | F'(s.) | < log M(a.),
so that, by (2.7) and (2.6)

. loglF(sni’r)ilﬂ> . log M(on— 4 ) 1
,.l%i% log | F'(s.) | =”1+15_r; log M) =a>1l

which proves lemma 3.

LEMMA 4. (Gronwall [1] pp. 316-318.) Let f(z) (f(0)=0, f/(0)=1) be re-
gular for |z|<1 and map |z2] <1 conformally onto a convex domain. Then

1
mé’f(z)l_

(1 Izl)2
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LEMMA 5. (Mandelbrojt [2] p. 176, p. 197; [5] p. 265.)

(I) Let F={f@)?} (f()|>1) be the family of the analytic functions
in D. Then, to any domain D; completely contained in D, there corres-
ponds a constant B(D;) (>1) dependent upon D; such that

1 < log | f (1) |
B log|f(zo)l

where z, and 2z, are two arbitrary points contained in D, and f(z) is any
Sfunction belonging to .

(II) Let ® be the unit circle |z| <1, and D, be the circle |z| =R (<1).
Then

<B,

lim B(®,) =1.
R0

LEMMA 6. Under the same conditions as in the theorem, if F(s)=*0,
and |arg F(s)| < 2mz in the half-strip S(e):

[t—tol =70 +e), o = 0y,
then

.3, @n XD (= Zus){1 — exp (o — )} |
Z’F(s)l{l‘AszeXD<- (;>} for seS("g),

where (i) A is the constant in lemma 1 and (ii) 7 (>1) is a constant in-
dependent of w.

Proof. By the well-known Perron’s formula ([7] p. 5), we get
(2.8 F(s) = é} @y exXp (— 4:8){1 — exp (A, — w)} — Ru(9),

where

: _ 1 (pwe o\ exp(w(z—s))
(D) Ro@ =y, LMF(Z) e—s)et1—5"

(ii)) RE)=0>p>0—1.
Setting f=0—1/2, M(0) = Sup-w<i<+w | Flo+it)|,

+o0 1

1 1 ICRAYS
< - — — ¥ o
RS Mo =g Jen(= 5| "y

_ 1 o

= 3Jen(-3).
Hence, by lemma 1 in which, replacing ¢ by ¢/2, we put

so=(d— é—)+ito, si=so—d  (Fig. 2),

@.9) | Bu9)] < Al s lexp( =3 ),

2
where |s; — s;| =#(0+ ¢/2). Therefore, by (2.8) and (2.9),
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% \ y EH(5+E/2)i7t(J+£)
: 5 |
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rf@rg/z)E y T
I B
‘ O’i//2~/_1 Ei//g s
Fig. 2.
@10) 3 @, exp(—dus){l —exp (dy — )} z|F<s)1{1~A Lsy) eXp(—f%i>}.
Ap <0 - F(s) 2
Let us consider the function-family {F.(s)} = {F(s—n)} in the rectangle
D: t—tol==(0+ ) lals )
where
e) = % v A+ 71'(3 + é) (Fig. 2).
Since | R(s:) — N(8) | = r(e), there exist an integer n; and two points s, s{,k
such that
(2.11) F(s)= Fru(8n),  Fl(s2) = Fus})),
where

(i) s:snk_nlcy 8228,216—7&;;,
(1) Sy s{,ke D’; D’ denoting the rectangle
[t—t | =n(@+e/2), |ol=1/2+4+ 7).
Setting
Fn(s) 1/4m 3)
fn = T e
O=(p) -
we get easily
fn('ito) = 1y I argfn(s) I <z fOl' s D.
Hence, the function-family {f.(s)} is normal in D, and bounded at <f, so
that {f.(s)} is uniformly bounded in D’ (C D). By the entirely similar argu-

ments, {1/f.(s)} is also uniformly bounded in D’. Thus, there exists a con-
stant 7(D’) >1 such that

71:<|fn(8)|<7’ for s D’ n=1,2, ---).

3) The following argument is due to Mandelbrojt ([2] p. 177).
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Hence, by (2.11)
; F(Sg) \

8m
| F(S) <T ’
so that, by (2.0)

Z a, exp (~ zns){l — exp (Zn - (U)}
Ap<w

B IF(s)l{l —Ar¥"exp (- %)} for seS(-;—),

which proves our lemma 6.

LEMMA 7. Under the same conditions as im the theorem, let us
denote by Nu(ti, t, 00) the number of zeros of Su(s)=h,<warexp(—As)
{1 —exp (Ax — w)} contained in the half-strip t, <t <t;, 6 <ay. Then

Nults, t, 00 2 0 d, = n@) — K,
T
where

(1) Ancw, 18 the greatest exponent contained in 0 < x<w, and (i) K is a

constant independent of w.

Proof. We have evidently

@.12) N(ty, tay o0) = lim (I + L + Is + 1),
where
[P 77
I= ;,1,‘5 " darg Su(s),
271' G +ity
RH=0,
1 o +ity
I = ‘j d arg S.(s),
21 ), 4ins
(=17
1 o +ity
Ii=-" [ d arg S.(s),
27 Jorie
R(H=0
Co+it
I,= ij o d arg S.(s),
27 Jova,
Je=24

Since S.(s) tends uniformly to F(s) as w— + o on the segment N(s)=ay,
t < 3(s) < t,, there exists a constant K independent of w such that

(2.13) || < K.
Since
Su(8) = @ncw; €XP (— A wy$){1 — eXp (Anwy — 0)}(1 + 0o(1))

on the segment N(s)=a, t; < J(s) <%, where o(1) tends uniformly to 0 as
o— — 00,
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t —
2.14) lim = — 1 Slinmdt: b=ty .

6>—c0 27 Ja 27
On the horizontal line t=¢, (=1, 2), we can put
Su(s) = X(t, o) +1Y(¢, o) t=t, 7=1,2),
where

n{w) n(w)
X, 0)= L 7i(t) exp (= d0), Y(t, 0) = 257.%(t) exp (— 40)

We have easily
Lis ™MW, L ™,

where m(t) is the number of real roots of X(¢, 6) in —o0c <6<+ . On the
other hand, we know that the number of real roots of S"-17.exp (— dio)
(7. and 4, being real) does not exceed n—1 ([6] p. 49, problem 77). Hence

(2.15) [ L]+ | L] = n(w) — 1 < n(w).
By (2.12), (2.13), (2.14) and (2.15),

Nw(tn ts, 00) = b —'t
2r

t I{n(w)_ n((l)) - K,

which proves our lemma 7.

3. Proof of the theorem.

We distinguish two cases.
Case I. p>0: By lemma 3, selecting suitable sub-sequences, if neces-
sary, we can find two sequences {s,}, {s.’} such tnat

log | F'(s,’

(3.1) Jim o€ '[ F((s",;'))'i|‘ Za>1,
where

(1) sp=a,+it, s/ =(0n— du)+ ity
3.2 (ii) limt, =T, [to—Tol = x(@+¢),

(i) [dn] = 4o+ d(e) + 70+ &),

Suppose that w=f(2) maps |z| <1 conformally onto the rectangle R;:

[Rw)| <k, | J(w)| <& in such a manner that £(0)=0, f/(0)=1. Putting

r=0§y§§<ki o(w) |,

where z = ¢(w) denotes the inverse function of w = f(2) (Fig. 8), by lemma 4,
we get easily
rs| o) | = | A dw =1+ ),

0sSw=p o=usp |F(2)]

so that
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3.3) r<4p.

On account of lemma 5 (II), we can find sufficiently small RO<E<])
such that

1< B(gl) <C(,

where ®, designates |z =< R. Taking sufficiently small p, by (3.3) we can
assume that

3.4) r<dp<R.

Now we map the rectangle R; in w-plane onto the rectangle Ry(n) in s-
plane by the linear transformation s=g,(w) (Fig. 3) such that

(i) s=gaw)= ‘;’o(w — )+ 8,

(i) su=gx(p), 8. =gx(0).

Then the strip |3(w)|=<e, corresponds to the strip |J(s) —tn| = (a1l dnl)/p.
Since 4, is bounded,Band limp,wt, =T, for any given & >0, taking suffi-
ciently small &, we can assume that the rec-
tangle Ry(n) are contained in the strip | J(s) — To|
< & for sufficiently large n.

Let us consider the function-family {F.(2)}
={F(g.(f(®))} in the domain ®: [2]<1. Then
{F,(2)} is not normal in ®. On the contrary,

t

ﬁg/\
N

&

R~

-(&
Fig. 3.

since liMpsw Fr(0)=oc0 by (2.7), Fa(z) tends uniformly to infinity in any
domain completely contained in ®. Then, by lemma 5 (I),

1 lgl FOl _ g
i@ < Tog| Futzo)| ~ P

where Fa(20) = F(s.), so that




170 CHUJI TANAKA

1 log | F'u(sx") |
B(Dy)  log|F(sn)]

which contradicts (38.1). Hence, {F.(2)} is not normal in ®©. In other words,
F(s) takes every value infinitely many times, except perphaps two (oo in-
cluded), in {Rs(n)}, a fortiori in | J(s) — Tp| < &.. Since &; is arbitrary, J(s) =T,
is a Julia-line. Letting ¢—0 in (3.2) (ii), the first part of our theorem is
established.

Case II. p=0: By theorem A, it is sufficient to prove the existence of
the argument-line in the case II of theorem A. In this case, we can deter-
mine g, such that, in the half-strip |t — | < 7(6 + &), o = 0y,

3.6) IF(8)| >k>0,

where k is a suitable constant. Applying lemma 7 to the half-strip |t — |
<70+ ¢/2), 0 <0, we have

N'-'-'(tly tzy do)zxn(w){<5+ ; )—

(8.5) <B®) < a,

@) L}
/In(w) jn(w) ’

so that by liMnsen/d, =0,

3.7 No(ty, t2, 00) > Ancw): “Z“

for sufficiently large w. If |arg F'(s)| < 2m=z in the half-strip |t — 0| < 2 (0 + &),
o0 < 0y, then by (3.6) and lemma 6, for sufficiently large », we have

ST anexp(— 4s){l —exp (a— @)} = £ >0,
‘kn<w ‘ 2

in the half-strip |t — %, | < 7(0 + ¢/2), o < gy, which contradicts (3.7). Hence, in
the half-strip |t —t)| < 7(0 + &), 0 < gy, | F(s)| tends uniformly to infinity, and
moreover Sup |arg F(s)| =+ co. Then there exists a sequence of points {s.}
such that
(i) lim|arg F(s,)| =+ o,
7-»o0

(i) limJ(s.) =t*, |t*—t|Sa(@+e),

from which it follows that J(s) =t* is the argument-line. Letting ¢—0, we
can conclude the existence of the argument-line in the strip | —¢| =< nd.
Thus the second part of our theorem is established.
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