ON JULIA-LINES OF DIRICHLET SERIES

By Chuji Tanaka

1. Introduction.

Let us put

$$
\begin{equation*}
F(s)=\sum a_{n} \exp \left(-\lambda_{n} s\right) \quad\left(s=\sigma+i t, 0 \leqq \lambda_{1}<\lambda_{2}<\cdots<\lambda_{n} \rightarrow \infty\right) . \tag{1.1}
\end{equation*}
$$

We begin with some definitions.
Definition 1. Let (1.1) be simply convergent in the whole plane. We call the horizontal line $t=t_{0}$ the Julia-line, provided that (1.1) takes every value, except perhaps two (∞ included), infinitely many times in any strip $\left|t-t_{0}\right|<\varepsilon, \varepsilon$ being any positive constant.

Definition 2. Under the same assumptions as above, the horizontal line $t=t_{0}$ is called the argument-line, provided that $|F(s)|$ tends uniformly to infinity, and $\arg F(s)$ assumes every argument $\theta(\bmod 2 \pi)$ infinitely many times in any strip $\left|t-t_{0}\right|<\varepsilon, \varepsilon$ being any positive constant.

Mandelbrojt has established the following theorems.
Theorem A. ([4] p. 16, [3] theorem 1.) Let (1.1) with $\lim _{n \rightarrow+\infty}\left(\lambda_{n} / n\right) \geqq G$ >0 be simply (necessarily absolutely) convergent in the whole plane. Then following alternatives are possible:
[I] there exists at least one Julia-line in the strip $\left|t-t_{0}\right| \leqq \pi / G$, where t_{0} is an arbitrary but fixed constant, or
[II] (1.1) tends uniformly to infinity in the strip $\left|t-t_{0}\right| \leqq \pi / G$.
THEOREM B. ([5] p. 268.) Let (1.1) with $\lim _{n \rightarrow+\infty}\left(\lambda_{n+1}-\lambda_{n}\right)>0$ be simply (necessarily absolutely) convergent in the whole plane, and be of positive order $\rho .^{1)}$ Then (1.1) has at least one Julia-line in any strip $\left|t-t_{0}\right|$ $\leqq \operatorname{Max}\left(\pi \bar{D}^{\cdot}, \pi / 2 \rho\right)$, where t_{0} is an arbitrary but fixed constant, and $\bar{D} \cdot$ is the superior mean density of $\left\{\lambda_{n}\right\}$ ([5] p. 51).

The object of this note is to prove the next theorem, which is a genera-
Received October 29, 1958.

1) The order ρ of (1.1) is defined by

$$
\rho=\lim _{\sigma \rightarrow-\infty}-\sigma \log ^{+} \log ^{+} M(\sigma), \quad \text { where } \quad M(\sigma)=\operatorname{Sup}_{-\infty<t<+\infty}|F(\sigma+i t)| .
$$

lization of Mandelbrojt's theorem. The proof of our theorem is based upon Mandelbrojt's ideas ([2] pp. 185-188).

Theorem. Let (1.1) with $\lim _{n \rightarrow+\infty}\left(\lambda_{n+1}-\lambda_{n}\right)=h>0$ and $\lim _{n \rightarrow+\infty} n / \lambda_{n}$ $=\delta(\leqq 1 / h)$ be simply (necessarily absolutely) convergent in the whole plane, and be of order ρ. If $\rho>0$, then (1.1) has at least one Julia-line in any strip $\left|t-t_{0}\right| \leqq \pi \delta, t_{0}$ being arbitrary but fixed. If $\rho=0$, then there exists at least one Julia-line or an argument-line in any strip $\left|t-t_{0}\right| \leqq \pi \delta$.

Remark. (1) In our theorem, the width of the horizontal strip is independent of ρ.
(2) On the relation between δ and \bar{D}, we know that

$$
\bar{D}^{\cdot} \leqq \delta \leqq e \bar{D}^{\cdot} \quad([5] \text { pp. } 51-53)
$$

As a corollary, we get an analogue of Fabry's gap-theorem.
Corollary. Let (1.1) with $\lim _{n \rightarrow+\infty}\left(\lambda_{n+1}-\lambda_{n}\right)>0, \lim _{n \rightarrow+\infty} n / \lambda_{n}=0$ be simply (necessarily absolutely) convergent in the whole plane, and be of order ρ. If $\rho>0$, then (1.1) has every line $t=t_{0}$ as the Julia-line, t_{0} being arbitrary but fixed. If $\rho=0$, then (1.1) has every line $t=t_{0}$ as the Julialine or the argument-line.

2. Lemmas.

To establish our theorem, we need some lemmas. The next lemma is a generalization of Mandelbrojt's lemma ([3] pp. 13-14).

Lemma 1. (Tanaka [8] p. 424). Under the same assumptions as in the theorem, we have

$$
\operatorname{Sup}_{\Re(s)=\Re\left(s_{0}\right)}|F(s)| \leqq A_{\left|u-s_{1}\right|=\pi(\delta+\varepsilon)}|F(u)|,
$$

where (i) ε is any given positive constant, (ii) s_{0} and s_{1} are two arbitrary points satisfying $\Re\left(s_{1}\right)=\Re\left(s_{0}\right)-\Delta(\varepsilon)$, where $\Delta(\varepsilon)=3 \delta \log \left(e^{6} / h \delta\right)+2 \varepsilon$, (iii) A is a constant depending upon ε, δ and $\left\{\lambda_{n}\right\}$.

Lemma 2. Let (1.1) be uniformly convergent in the whole plane ${ }^{2)}$ and be of positive order ρ. Then, for any positive Δ_{1}, there exists a constant α dependent upon Δ_{1} and ρ such that

$$
\varlimsup_{\sigma \rightarrow-\infty} \frac{\log ^{+} M\left(\sigma-\Delta_{1}\right)}{\log ^{+} M(\sigma)} \geqq \alpha>1,
$$

where
2) It means the uniform convergence-abscissa of (1.1) is equal to $-\infty$.

$$
M(\sigma)=\operatorname{Sup}_{-\infty<t<+\infty}|F(\sigma+i t)|
$$

Proof. Suppose that

$$
\begin{equation*}
\varlimsup_{\sigma \rightarrow-\infty} \frac{\log ^{+} M\left(\sigma-\Delta_{1}\right)}{\log ^{+} M(\sigma)}<\beta \tag{2.1}
\end{equation*}
$$

Then, there exists a constant $\sigma_{0}(<0)$ such that

$$
\log ^{+} M\left(\sigma-\Delta_{1}\right)<\beta \log ^{+} M(\sigma) \quad \text { for } \quad \sigma \leqq \sigma_{0} .
$$

Hence

$$
\begin{aligned}
& \log ^{+} M\left(\sigma_{0}-\Delta_{1}\right)<\beta \log ^{+} M\left(\sigma_{0}\right), \\
& \log ^{+} M\left(\sigma_{0}-2 \Delta_{1}\right)<\beta \log ^{+} M\left(\sigma_{0}-\Delta_{1}\right), \\
& \log ^{+} M\left(\sigma_{0}-n \Delta_{1}\right)<\beta \log ^{+} M\left(\sigma_{0}-(n-1) \Delta_{1}\right),
\end{aligned}
$$

so that

$$
\begin{equation*}
\log ^{+} M\left(\sigma_{0}-n \Delta_{1}\right)<\beta^{n} \log ^{+} M\left(\sigma_{0}\right) \tag{2.2}
\end{equation*}
$$

By the definition of ρ, there exists a sequence $\left\{\sigma_{k}\right\}\left(\sigma_{1}>\sigma_{2}>\cdots>\sigma_{k} \rightarrow-\infty\right)$ such that

$$
\begin{equation*}
\rho=\varlimsup_{\sigma \rightarrow+\infty} \frac{1}{-\sigma} \log ^{+} \log ^{+} M(\sigma)=\lim _{k \rightarrow+\infty} \frac{1}{-\sigma_{k}} \log ^{+} \log ^{+} M\left(\sigma_{k}\right) . \tag{2.3}
\end{equation*}
$$

We can easily choose a sequence of positive integers $\left\{n_{k}\right\}$ such that

$$
\begin{equation*}
\sigma_{0}-n_{k} \Delta_{1} \leqq \sigma_{k}<\sigma_{0}-\left(n_{k}-1\right) \Delta_{1} \quad(k=1,2, \cdots) . \tag{2.4}
\end{equation*}
$$

Hence, by (2.4) and (2.2)

$$
\log ^{+} M\left(\sigma_{k}\right) \leqq \log ^{+} M\left(\sigma_{0}-n_{k} \Delta_{1}\right)<\beta^{n_{k}} \log ^{+} M\left(\sigma_{0}\right),
$$

so that

$$
\frac{1}{-\sigma_{k}} \log ^{+} \log ^{+} M\left(\sigma_{k}\right)<\left\{1-\frac{\sigma_{0}+\Delta_{1}}{\sigma_{k}}\right\} \cdot \log ^{+} \frac{\beta}{\Delta_{1}}+\frac{1}{-\sigma_{k}} \log ^{+} \log ^{+} M\left(\sigma_{0}\right) .
$$

Letting $k \rightarrow+\infty$, we get

$$
\begin{equation*}
\exp \left(\rho \Delta_{1}\right) \leqq \beta \tag{2.5}
\end{equation*}
$$

Hence (2.1) implies (2.5). Therefore, from $\exp \left(\rho \Delta_{1}\right)>\alpha$, we can conclude that

$$
\varlimsup_{\sigma \rightarrow-\infty} \frac{\log ^{+} M\left(\sigma-\Delta_{1}\right)}{\log ^{+} \overline{M(\sigma)}} \geqq \alpha .
$$

Since $\rho>0$, we can evidently choose a constant α such that

$$
\exp \left(\rho \Delta_{1}\right)>\alpha>1
$$

which proves our lemma 2.
Lemma 3. Under the same assumptions as in the theorem, if $\rho>0$, then we can find two sequences $\left\{s_{n}\right\},\left\{s_{n}{ }^{\prime}\right\}$ (Fig. 1) and a constant α such that

$$
\lim _{n \rightarrow+\infty} \frac{\log \left|F\left(s_{n}^{\prime}\right)\right|}{\log \left|F\left(s_{n}\right)\right|} \geqq \alpha>1,
$$

where (i) $s_{n}=\sigma_{n}+i t_{n}, s_{n}{ }^{\prime}=\sigma_{n}{ }^{\prime}+i t_{n},\left|t_{n}-t_{0}\right| \leqq \pi(\delta+\varepsilon),\left|\sigma_{n}-\sigma_{n}{ }^{\prime}\right| \leqq \Delta_{1}+\pi(\delta$ $+\varepsilon$; (ii) t_{0} is an arbitrary real constant, Δ_{1} and ε are any positive constants, $\Delta(\varepsilon)$ is the constant in lemma 1 , and α is the constant in lemma 2.

Fig. 1.
Proof. By lemma 2, there exists a sequence $\left\{\sigma_{n}\right\}\left(\sigma_{1}>\sigma_{2}>\cdots>\sigma_{n} \rightarrow-\infty\right)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\log M\left(\sigma_{n}-\Delta_{1}\right)}{\log M\left(\sigma_{n}\right)} \geqq \alpha>1 \tag{2.6}
\end{equation*}
$$

On account of lemma 1 , in which we put

$$
\Re\left(s_{0}\right)=\sigma_{n}-\Delta_{1}, \quad s_{1}=s_{n}^{\prime \prime}=\left\{\sigma_{n}-\Delta_{1}-\Delta(\varepsilon)\right\}+i t_{0}
$$

we can choose $s_{n}{ }^{\prime}$ such that

$$
M\left(\sigma_{n}-\Delta_{1}\right) \leqq A_{\left|u-s_{n^{\prime \prime} \mid}\right|=\pi(\delta+\varepsilon)} \operatorname{Max}|F(u)|=A\left|F\left(s_{n}{ }^{\prime}\right)\right|
$$

Hence

$$
\begin{equation*}
\log \left|F\left(s_{n}^{\prime}\right)\right| \geqq \log M\left(\sigma_{n}-\Delta_{1}\right)-\log A \tag{2.7}
\end{equation*}
$$

Putting $s_{n}=\sigma_{n}+i t_{n}, t_{n}=\mathfrak{J}\left(s_{n}{ }^{\prime}\right)$, we have evidently

$$
\log \left|F\left(s_{n}\right)\right| \leqq \log M\left(\sigma_{n}\right)
$$

so that, by (2.7) and (2.6)

$$
\lim _{n \rightarrow+\infty} \frac{\log \left|F\left(s_{n}^{\prime}\right)\right|}{\log \left|F\left(s_{n}\right)\right|} \geqq \lim _{n \rightarrow+\infty} \frac{\log M\left(\sigma_{n}-\Delta_{1}\right)}{\log M\left(\sigma_{n}\right)} \geqq \alpha>1,
$$

which proves lemma 3.
Lemma 4. (Gronwall [1] pp. 316-318.) Let $f(z)\left(f(0)=0, f^{\prime}(0)=1\right)$ be regular for $|z|<1$ and map $|z|<1$ conformally onto a convex domain. Then

$$
\frac{1}{(1+|z|)^{2}} \leqq\left|f^{\prime}(z)\right| \leqq \frac{1}{(1-|z|)^{2}}
$$

Lemma 5. (Mandelbrojt [2] p. 176, p. 197; [5] p. 265.)
(I) Let $\mathfrak{F}=\{f(z)\}(|f(z)|>1)$ be the family of the analytic functions in \mathfrak{D}. Then, to any domain \mathfrak{D}_{1} completely contained in \mathfrak{D}, there corresponds a constant $\beta\left(\mathfrak{D}_{1}\right)(>1)$ dependent upon \mathfrak{D}_{1} such that

$$
\frac{1}{\beta}<\frac{\log \left|f\left(z_{1}\right)\right|}{\log \left|f\left(z_{0}\right)\right|}<\beta,
$$

where z_{0} and z_{1} are two arbitrary points contained in \mathfrak{D}_{1} and $f(z)$ is any function belonging to \mathfrak{F}.
(II) Let \mathfrak{D} be the unit circle $|z|<1$, and \mathfrak{D}_{1} be the circle $|z| \leqq R(<1)$. Then

$$
\lim _{R \rightarrow 0} \beta\left(\mathfrak{D}_{1}\right)=1 .
$$

Lemma 6. Under the same conditions as in the theorem, if $F(s) \neq 0$, and $|\arg F(s)|<2 m \pi$ in the half-strip $S(\varepsilon)$:

$$
\left|t-t_{0}\right| \leqq \pi(\delta+\varepsilon), \quad \sigma \leqq \sigma_{0},
$$

then

$$
\begin{aligned}
& \sum_{\lambda_{n}<\omega} a_{n} \exp \left(-\lambda_{n} s\right)\left\{1-\exp \left(\lambda_{n}-\omega\right)\right\} \\
\geqq & |F(s)|\left\{1-A \gamma^{2 m} \exp \binom{\omega}{2}\right\} \quad \text { for } s \in S\binom{\varepsilon}{2},
\end{aligned}
$$

where (i) A is the constant in lemma 1 and (ii) $\gamma(>1)$ is a constant independent of ω.

Proof. By the well-known Perron's formula ([7] p. 5), we get

$$
\begin{equation*}
F(s)=\sum_{\lambda_{n}<\omega} a_{n} \exp \left(-\lambda_{n} s\right)\left\{1-\exp \left(\lambda_{n}-\omega\right)\right\}-R_{\omega}(s), \tag{2.8}
\end{equation*}
$$

where
(i) $R_{\omega}(s)=\frac{1}{2 \pi i} \int_{\beta-i \infty}^{\beta+2 \infty} F(z)_{(z-s)(z+1-s)} \exp (\omega(z-s)) d z$,
(ii) $\Re(s)=\sigma>\beta>\sigma-1$.

Setting $\beta=\sigma-1 / 2, M(\sigma)=\operatorname{Sup}_{-\infty<t<+\infty}|F(\sigma+i t)|$,

$$
\begin{aligned}
\left|R_{\omega}(s)\right| & \leqq \frac{1}{\pi} M\left(\sigma-\frac{1}{2}\right) \exp \left(-\frac{\omega}{2}\right) \int_{0}^{+\infty} \frac{1}{\tau^{2}+(1 / 2)^{2}} d \tau \\
& =M\left(\sigma-\frac{1}{2}\right) \exp \left(-\frac{\omega}{2}\right) .
\end{aligned}
$$

Hence, by lemma 1 in which, replacing ε by $\varepsilon / 2$, we put

$$
\begin{gather*}
s_{0}=\left(\sigma-\frac{1}{2}\right)+i t_{0}, \quad s_{1}=s_{0}-\Delta \quad \text { (Fig. 2) } \\
\left|R_{\omega}(s)\right| \leqq A\left|F\left(s_{2}\right)\right| \exp \left(-\frac{\omega}{2}\right) \tag{2.9}
\end{gather*}
$$

where $\left|s_{1}-s_{2}\right|=\pi(\delta+\varepsilon / 2)$. Therefore, by (2.8) and (2.9),

Fig. 2.

$$
\begin{equation*}
\sum_{\lambda_{n}<\infty} a_{n} \exp \left(-\lambda_{n} s\right)\left\{1-\exp \left(\lambda_{n}-\omega\right)\right\} \geqq|F(s)|\left\{1-A \frac{F\left(s_{2}\right)}{F(s)} \exp \left(-\frac{\omega}{2}\right)\right\} . \tag{2.10}
\end{equation*}
$$

Let us consider the function-family $\left\{F_{n}(s)\right\}=\{F(s-n)\}$ in the rectangle

$$
D: \quad\left|t-t_{0}\right| \leqq \pi\left(\delta+\frac{3 \varepsilon}{4}\right), \quad|\sigma| \leqq \frac{1}{2}+r(2 \varepsilon),
$$

where

$$
r(\varepsilon)=\frac{1}{2}+\Delta+\pi\left(\delta+\frac{\varepsilon}{2}\right) \quad \text { (Fig. 2). }
$$

Since $\left|\Re\left(s_{2}\right)-\Re(s)\right| \leqq r(\varepsilon)$, there exist an integer n_{k} and two points $s_{n_{k}}, s_{n_{k}}^{\prime}$ such that

$$
\begin{equation*}
F(s)=F_{n_{k}}\left(s_{n_{k}}\right), \quad F\left(s_{2}\right)=F_{n_{k}}\left(s_{n_{k}}^{\prime}\right), \tag{2.11}
\end{equation*}
$$

where
(i) $s=s_{n_{k}}-n_{k}, s_{2}=s_{n_{k}}^{\prime}-n_{k}$,
(ii) $s_{n_{k}}, s_{n_{k}}^{\prime} \in D^{\prime} ; D^{\prime}$ denoting the rectangle

$$
\left|t-t_{0}\right| \leqq \pi(\delta+\varepsilon / 2), \quad|\sigma| \leqq 1 / 2+r(\varepsilon) .
$$

Setting

$$
f_{n}(s)=\binom{F_{n}(s)}{F_{n}\left(i t_{0}\right)}^{1 / 4 m},
$$

we get easily

$$
f_{n}\left(i t_{0}\right)=1, \quad\left|\arg f_{n}(s)\right|<\pi \quad \text { for } \quad s \in D
$$

Hence, the function-family $\left\{f_{n}(s)\right\}$ is normal in D, and bounded at $i t_{0}$, so that $\left\{f_{n}(s)\right\}$ is uniformly bounded in $D^{\prime}(\subset D)$. By the entirely similar arguments, $\left\{1 / f_{n}(s)\right\}$ is also uniformly bounded in D^{\prime}. Thus, there exists a constant $\gamma\left(D^{\prime}\right)>1$ such that

$$
\frac{1}{r}<\left|f_{n}(s)\right|<\gamma \quad \text { for } \quad s \in D^{\prime} \quad(n=1,2, \cdots)
$$

3) The following argument is due to Mandelbrojt ([2] p. 177).

Hence, by (2.11)

$$
\frac{F\left(s_{2}\right)}{F(s)}<\gamma^{8 m}
$$

so that, by (2.0)

$$
\begin{aligned}
& \sum_{\lambda_{n}<\omega} a_{n} \exp \left(-\lambda_{n} s\right)\left\{1-\exp \left(\lambda_{n}-\omega\right)\right\} \\
\geqq & |F(s)|\left\{1-A \gamma^{8 m} \exp \left(-\frac{\omega}{2}\right)\right\} \quad \text { for } \quad s \in S\left(\frac{\varepsilon}{2}\right),
\end{aligned}
$$

which proves our lemma 6.
Lemma 7. Under the same conditions as in the theorem, let us denote by $N_{\omega}\left(t_{1}, t_{2}, \sigma_{0}\right)$ the number of zeros of $S_{\omega}(s)=\sum \lambda_{k}<\omega a_{k} \exp \left(-\lambda_{k} s\right)$ $\cdot\left\{1-\exp \left(\lambda_{k}-\omega\right)\right\}$ contained in the half-strip $t_{1}<t<t_{2}, \sigma<\sigma_{0}$. Then

$$
N_{\omega}\left(t_{1}, t_{2}, \sigma_{0}\right) \geqq \frac{t_{2}-t_{1}}{2 \pi} \lambda_{n(\omega)}-n(\omega)-K,
$$

where
(i) $\lambda_{n(\omega)}$ is the greatest exponent contained in $0 \leqq x<\omega$, and (ii) K is a constant independent of ω.

Proof. We have evidently

$$
\begin{equation*}
N\left(t_{1}, t_{2}, \sigma_{0}\right)=\lim _{\sigma \rightarrow-\infty}\left(I_{1}+I_{2}+I_{3}+I_{4}\right), \tag{2.12}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{1}=\frac{1}{2 \pi} \int_{\substack{\sigma_{0}+i t_{1} \\
M t(s)=\sigma_{0}}}^{\sigma_{0}+i t_{2}} d \arg S_{\omega}(s), \\
& I_{2}=\frac{1}{2 \pi} \int_{\substack{\sigma_{0}+i t_{2} \\
\mathfrak{j}(s)=t_{2}}}^{\sigma+i t_{2}} d \arg S_{\omega}(s), \\
& I_{3}=\frac{1}{2 \pi} \int_{\substack{\sigma+i t_{2} \\
\mathfrak{R}(s)=\sigma}}^{\sigma+i t_{1}} d \arg S_{\omega}(s), \\
& I_{4}=\frac{1}{2 \pi} \int_{\substack{\sigma+i t_{1} \\
(s)=t_{1}}}^{\sigma_{0}+i t_{1}} d \arg S_{\omega}(s),
\end{aligned}
$$

Since $S_{\omega}(s)$ tends uniformly to $F(s)$ as $\omega \rightarrow+\infty$ on the segment $\Re(s)=\sigma_{0}$, $t_{1} \leqq \Im(s) \leqq t_{2}$, there exists a constant K independent of ω such that

$$
\begin{equation*}
\left|I_{1}\right|<K \tag{2.13}
\end{equation*}
$$

Since

$$
S_{\omega}(s)=a_{n(\omega)} \exp \left(-\lambda_{n(\omega)} s\right)\left\{1-\exp \left(\lambda_{n(\omega)}-\omega\right)\right\}(1+o(1))
$$

on the segment $\mathfrak{R}(s)=\sigma, t_{1} \leqq \Im(s) \leqq t_{2}$, where $o(1)$ tends uniformly to 0 as $\sigma \rightarrow-\infty$,

$$
\begin{equation*}
\lim _{\sigma \rightarrow-\infty} I_{3}=-\frac{1}{2 \pi} \int_{t_{2}}^{t_{1}} \lambda_{n(\omega)} d t=\frac{t_{2}-t_{1}}{2 \pi} \lambda_{n(\omega)} \tag{2.14}
\end{equation*}
$$

On the horizontal line $t=t_{j}(j=1,2)$, we can put

$$
S_{\omega}(s)=X(t, \sigma)+i Y(t, \sigma) \quad\left(t=t_{\jmath}, j=1,2\right)
$$

where

$$
X(t, \sigma)=\sum_{i=1}^{n(\omega)} \gamma_{i}(t) \exp \left(-\lambda_{i} \sigma\right), \quad Y(t, \sigma)=\sum_{i=1}^{n[\omega\rangle} \gamma_{\imath}^{*}(t) \exp \left(-\lambda_{i} \sigma\right)
$$

We have easily

$$
\left|I_{2}\right| \leqq \begin{gathered}
m\left(t_{2}\right) \\
2
\end{gathered}, \quad\left|I_{4}\right| \leqq \begin{gathered}
m\left(t_{1}\right) \\
2
\end{gathered}
$$

where $m(t)$ is the number of real roots of $X(t, \sigma)$ in $-\infty<\sigma<+\infty$. On the other hand, we know that the number of real roots of $\sum_{=1}^{n} \gamma_{2} \exp \left(-\lambda_{i} \sigma\right)$ (γ_{2} and λ_{2} being real) does not exceed $n-1$ ([6] p. 49, problem 77). Hence

$$
\begin{equation*}
\left|I_{2}\right|+\left|I_{4}\right| \leqq n(\omega)-1<n(\omega) . \tag{2.15}
\end{equation*}
$$

By (2.12), (2.13), (2.14) and (2.15),

$$
N_{\omega}\left(t_{1}, t_{2}, \sigma_{0}\right) \geqq \begin{gathered}
t_{2}-t_{1} \\
2 \pi
\end{gathered} \lambda_{n(\omega)}-n(\omega)-K,
$$

which proves our lemma 7.

3. Proof of the theorem.

We distinguish two cases.
Case I. $\rho>0$: By lemma 3, selecting suitable sub-sequences, if necessary, we can find two sequences $\left\{s_{n}\right\},\left\{s_{n}{ }^{\prime}\right\}$ such tnat

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\log \left|F\left(s_{n}^{\prime}\right)\right|}{\log \left|F\left(s_{n}\right)\right|} \geqq \alpha>1 \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\text { (i) } s_{n}=\sigma_{n}+i t, \quad s_{n}^{\prime}=\left(\sigma_{n}-\Delta_{n}\right)+i t_{n} \text {, } \tag{3.2}
\end{equation*}
$$

(ii) $\lim t_{n}=T_{0}, \quad\left|t_{0}-T_{0}\right| \leqq \pi(\delta+\varepsilon)$,
(iii) $\left|\Delta_{n}\right| \leqq \Delta_{1}+\Delta(\varepsilon)+\pi(\delta+\varepsilon)$.

Suppose that $w=f(z)$ maps $|z|<1$ conformally onto the rectangle R_{1} : $|\Re(w)| \leqq k,|\Im(w)| \leqq \varepsilon_{1}$ in such a manner that $f(0)=0, f^{\prime}(0)=1$. Putting

$$
r=\operatorname{Max}_{0 \leqq w \leqq p<k}|\varphi(w)|
$$

where $z=\varphi(w)$ denotes the inverse function of $w=f(z)$ (Fig. 3), by lemma 4, we get easily

$$
r \leqq \int_{0 \leqq w \leqq p}\left|\varphi^{\prime}(w)\right||d w|=\int_{0 \leqq w \leqq p\left|f^{\prime}(z)\right|}|d w| \leqq(1+r)^{2} p
$$

so that

$$
\begin{equation*}
r<4 p \tag{3.3}
\end{equation*}
$$

On account of lemma 5 (II), we can find sufficiently small $R(0<R<1)$ such that

$$
1<\beta\left(\mathfrak{D}_{1}\right)<\alpha,
$$

where \mathfrak{D}_{1} designates $|z| \leqq R$. Taking sufficiently small p, by (3.3) we can assume that

$$
\begin{equation*}
r<4 p<R . \tag{3.4}
\end{equation*}
$$

Now we map the rectangle R_{1} in w-plane onto the rectangle $R_{2}(n)$ in s plane by the linear transformation $s=g_{n}(w)$ (Fig. 3) such that

$$
\begin{aligned}
& \text { (i) } \quad s=g_{n}(w)=\frac{\Delta_{n}}{p}(w-p)+s_{n} \\
& \text { (ii) } s_{n}=g_{n}(p), \quad s_{n}^{\prime}=g_{n}(0)
\end{aligned}
$$

Then the strip $|\Im(w)| \leqq \varepsilon_{1}$ corresponds to the strip $\left|\Im(s)-t_{n}\right| \leqq\left(\varepsilon_{1}\left|\Delta_{n}\right|\right) / p$. Since Δ_{n} is bounded, and $\lim _{n \rightarrow \infty} t_{n}=T_{0}$, for any given $\varepsilon_{2}>0$, taking sufficiently small ε_{1}, we can assume that the rec-

 tangle $R_{2}(n)$ are contained in the strip $\left|\Im(s)-T_{0}\right|$ $<\varepsilon_{2}$ for sufficiently large n.

Let us consider the function-family $\left\{F_{n}(z)\right\}$ $=\left\{F\left(g_{n}(f(z))\right)\right\}$ in the domain $\mathfrak{D}:|z|<1$. Then $\left\{F_{n}(z)\right\}$ is not normal in \mathfrak{D}. On the contrary,

Fig. 3.
since $\lim _{n \rightarrow \infty} F_{n}(0)=\infty$ by (2.7), $F_{n}(z)$ tends uniformly to infinity in any domain completely contained in \mathfrak{D}. Then, by lemma 5 (I),

$$
\frac{1}{\beta\left(\mathfrak{D}_{1}\right)}<\frac{\log \left|F_{n}(0)\right|}{\log \left|F_{n}\left(z_{0}\right)\right|}<\beta\left(\mathfrak{D}_{1}\right),
$$

where $F_{n}\left(z_{0}\right)=F\left(s_{n}\right)$, so that

$$
\begin{equation*}
\frac{1}{\beta\left(\mathfrak{D}_{1}\right)}<\frac{\log \left|F_{n}\left(s_{n}{ }^{\prime}\right)\right|}{\log \left|F\left(s_{n}\right)\right|}<\beta\left(\mathfrak{D}_{1}\right)<\alpha \tag{3.5}
\end{equation*}
$$

which contradicts (3.1). Hence, $\left\{F_{n}(z)\right\}$ is not normal in \mathfrak{D}. In other words, $F(s)$ takes every value infinitely many times, except perphaps two (∞ included), in $\left\{R_{2}(n)\right\}$, a fortiori in $\left|\Im(s)-T_{0}\right|<\varepsilon_{2}$. Since ε_{2} is arbitrary, $\mathfrak{J}(s)=T_{0}$ is a Julia-line. Letting $\varepsilon \rightarrow 0$ in (3.2) (ii), the first part of our theorem is established.

Case II. $\rho=0$: By theorem A, it is sufficient to prove the existence of the argument-line in the case II of theorem A. In this case, we can determine σ_{0} such that, in the half-strip $\left.\left|t-t_{0}\right| \leqq \pi(\delta)+\varepsilon\right), \sigma \leqq \sigma_{0}$,

$$
\begin{equation*}
|F(s)|>k>0 \tag{3.6}
\end{equation*}
$$

where k is a suitable constant. Applying lemma 7 to the half-strip $\left|t-t_{0}\right|$ $\leqq \pi(\delta+\varepsilon / 2), \sigma \leqq \sigma_{0}$, we have

$$
N_{\omega}\left(t_{1}, t_{2}, \sigma_{0}\right) \geqq \lambda_{n(\omega)}\left\{\left(\delta+\begin{array}{c}
\varepsilon \\
2
\end{array}\right)-\frac{n(\omega)}{\lambda_{n(\omega)}}-\frac{K}{\lambda_{n(\omega)}}\right\},
$$

so that by $\lim _{n \rightarrow \infty} n / \lambda_{n}=\delta$,

$$
\begin{equation*}
N_{\omega}\left(t_{1}, t_{2}, \sigma_{0}\right)>\lambda_{n(\omega)} \cdot \frac{\varepsilon}{4} \tag{3.7}
\end{equation*}
$$

for sufficiently large ω. If $|\arg F(s)|<2 m \pi$ in the half-strip $\left|t-t_{0}\right| \leqq \pi(\delta+\varepsilon)$, $\sigma \leqq \sigma_{0}$, then by (3.6) and lemma 6 , for sufficiently large ω, we have

$$
\left|\lambda_{n}<\omega=a_{n} \exp \left(-\lambda_{n} s\right)\left\{1-\exp \left(\lambda_{n}-\omega\right)\right\}\right| \geqq \frac{k}{2}>0
$$

in the half-strip $\left|t-t_{0}\right| \leqq \pi(\delta+\varepsilon / 2), \sigma \leqq \sigma_{0}$, which contradicts (3.7). Hence, in the half-strip $\left|t-t_{0}\right| \leqq \pi(\delta+\varepsilon), \sigma \leqq \sigma_{0},|F(s)|$ tends uniformly to infinity, and moreover Sup $|\arg F(s)|=+\infty$. Then there exists a sequence of points $\left\{s_{n}\right\}$ such that
(i) $\lim _{n \rightarrow \infty}\left|\arg F\left(s_{n}\right)\right|=+\infty$,
(ii) $\lim _{n \rightarrow \infty} \Im\left(s_{n}\right)=t^{*}, \quad\left|t^{*}-t_{0}\right| \leqq \pi(\delta+\varepsilon)$,
from which it follows that $\mathfrak{\Im}(s)=t^{*}$ is the argument-line. Letting $\varepsilon \rightarrow 0$, we can conclude the existence of the argument-line in the strip $\left|t-t_{0}\right| \leqq \pi \delta$. Thus the second part of our theorem is established.

References

[1] Gronwall, T., Sur la déformation dans la représentation conforme sous les conditions restrictives. C. R. Acad. Sci. Paris 162 (1916), 249-252.
[2] Mandelbrojt, S., Sur les suites de fonctions holomorphes. Les suites correspondantes des fonctions dérivées. Fonctions entières. Journ. de Math. 8 (1929), 173-195.
[3] Mandelbrojt S., and J. J. Gergen, On entire functions defined by a Dirichlet series. Amer. Journ. Math. 53 (1931), 1-14.
[4] Mandelbrojt, S., Séries lacunaires. Actualités scientifiques et industrielles. 305 Paris (1936).
[5] Mandelbrojt, S., Séries adhérentes. Régularisation des suites. Applications. Paris (1952).
[6] Pólya, G., and G. Szegö, Aufgaben und Lehrsätze aus der Analysis. Bd. II. Berlin (1925).
[7] Tanaka, C., Note on Dirichlet series (VII). On the distribution of values of Dirichlet series on vertical lines. Kōdai Math. Sem. Rep. (1952), 5-8.
[8] TaNAKA, C., Note on Dirichlet series (X). Remark on S. Mandelbrojt's theorem. Proc. Japan Acad. 29 (1953), 423-426.

Department of Mathematics, Waseda University.

