
ON JULIA-LINES OF DIRICHLET SERIES

BY CHUJI TANAKA

1. Introduction.

Let us put

(1.1) F(a) = ̂ an exp (~λns) (a = <j + it, 0 ̂  λ, < λ2 < - - < λn -» oo).

We begin with some definitions.

DEFINITION 1. Let (1.1) be simply convergent in the whole plane. We
call the horizontal line t = t0 the Julia-line, provided that (1.1) takes every
value, except perhaps two (oo included), infinitely many times in any strip
\ t — to I < 8, ε being any positive constant.

DEFINITION 2. Under the same assumptions as above, the horizontal
line t = t0 is called the argument-line, provided that \ F(s) \ tends uniformly
to infinity, and argF(s) assumes every argument θ (mod2τr) infinitely
many times in any strip \t — to\<8, s being any positive constant.

Mandelbrojt has established the following theorems.

THEOREM A. ([4] p. 16, [3] theorem 1.) Let (1.1) with l im»>+ 0oW n/n)^G
>0 be simply (necessarily absolutely) convergent in the whole plane. Then

following alternatives are possible:
[ I] there exists at least one Julia-line in the strip \t — tQ\ ^ π/G,

where t0 is an arbitrary but fixed constant, or
[II] (1.1) tends uniformly to infinity in the strip \ t — to \ ̂  π/G.

THEOREM B. ([5] p. 268.) Let (1.1) with linw+oo(4+ι — Λn) >0 be simply
(necessarily absolutely) convergent in the whole plane, and be of positive
order p.Ό Then (1.1) has at least one Julia-line in any strip \ t —10 \
^ Max (πD', π/2p), where tQ is an arbitrary but fixed constant, and D' is
the superior mean density of {λn} ([5] p. 51).

The object of this note is to prove the next theorem, which is a genera-
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1) The order ρ of (1.1) is defined by

p= lϊm _ n log+ log+M((τ), where M(σ) = Sup \F(σ + it)\.
σ->—oo " — oc<7<+oo
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lization of Mandelbrojt's theorem. The proof of our theorem is based upon
Mandelbrojt's ideas ([2] pp. 185-188).

THEOREM. Let (1.1) with lirrw+oo (An+ι — λn} — h>0 and linw+0o n/λn

= δ (fgl/Λ,) be simply (necessarily absolutely) convergent in the whole plane,
and be of order p. If p > 0, then (1.1) has at least one Julia-line in any
strip \t — t0\^πδ, tQ being arbitrary but fixed. If p — 0, then there exists
at least one Julia-line or an argument-line in any strip \ t — UI ̂  πδ

REMARK. (1) In our theorem, the width of the horizontal strip is
independent of p.

(2) On the relation between δ and D', we know that

D ^δ^eD ([5] pp. 51-53).

As a corollary, we get an analogue of Fabry's gap-theorem.

COROLLARY. Let (1.1) with lirrw+oo (Λn+1 — λn) > 0, linw+oo n/λn = 0 be

simply (necessarily absolutely) convergent in the whole plane, and be of
order p. If ρ>0, then (1.1) has every line t = t0 as the Julia-line, t0 being
arbitrary but fixed. If p = 0, then (1.1) has every line t = t0 as the Julia-
line or the argument-line.

2. Lemmas.

To establish our theorem, we need some lemmas. The next lemma is a
generalization of Mandelbrojt's lemma ([3] pp. 13-14).

LEMMA 1. (Tanaka [8] p. 424). Under the same assumptions as in the
theorem, we have

Sup \F(s)\^A Max \F(u)\,
gKβ>9Kβ0) μ-βJ-TcCδ+ε)

where ( i ) ε is any given positive constant, (ii) s0 and Si are two arbitrary
points satisfying Sft(sι) = 5R(s0) — ̂ (ε), where Λ(ε) = 3<5 log (eQ/hδ) + 2ε, (iii) A is
a constant depending upon 8, δ and {Λw}.

LEMMA 2. Let (1.1) be uniformly convergent in the whole plane® and
be of positive order p. Then, for any positive Δ\, there exists a constant
a dependent upon z/i and p such that

where

2) It means the uniform convergence-abscissa of (1.1) is equal to — °o.
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M(σ)= Sup \F(0 + ί t ) \ .

Proof. Suppose that

(2.D EϊJ^^ω^.
α^-oo lθg + Λf(rf)

Then, there exists a constant <TO « 0) such that

log+ M(σ - z/ι)< β log+ M(<r) for

Hence

log+ MK- Λi) < 0 log+

log+ M(<TO - 2^0 < 0 log+

log+ M(<TO - ndi) < β log+ M(σ0 -(n-

so that

(2.2) log+ Λf(<τ0 - w^i) < &n log

By the definition of p, there exists a sequence {ίr^} (<TI > <τ2 > > tf* -̂  — °°)
such that

(2.3) /o= Tim ---log+log+Jlf(tf)= lim ---1--log+log*M(<rfc).
σ-> + oo — (J A-> + oo — ίΓ .̂

We can easily choose a sequence of positive integers {nk} such that

(2.4) <r0 — WfcΛ ^ ̂  < <^o - (%fc — l)^ι (fc = 1, 2, •).

Hence, by (2.4) and (2.2)

log+ M(σk) £ log+ M(σ0 - nkΛ,} < j8n» log+

so that

-̂ log+ log+ M(σk) < ί 1 - ^ + ̂  j log+ f + — i- log+ log+

— 0jc I -̂ J Δι —ak

Letting k-^ + oo, we get

(2.5) exp

Hence (2.1) implies (2.5). Therefore, from exp (pΛi) > a, we can conclude that

a +-oo log

Since p > 0, we can evidently choose a constant a such that

exp (joz/i) > or > 1,

which proves our lemma 2.

LEMMA 3. Under the same assumptions as in the theorem, if p > 0,
then we can find two sequences {sn}, {sn

f} (Fig. 1) and a constant a such
that
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where (i) sn = σn + ίtn, sn' = σn' + itn, \tn-tQ\^π(d + ε), \<τn--<rn \ ^ ΛΪ + π(d
-he); (ii) ί0 is cm arbitrary real constant, Δι and ε are any positive con-
stants, z/(ε) is the constant in lemma 1, αraϊ <* is the constant in lemma 2.

Fig. 1.

Proof. By lemma 2, there exists a sequence {σn} (<TI > <r2 > > <
such that

(2.6)

On account of lemma 1, in which we put

— oo)

we can choose sn

r such that

MK - Δύ ̂  A Max I F(u) \=A\ F(sn

f) \ .
|M-sn"j=<<5+ε)

Hence

(2.7) log I FM I ^ log M(^w - Δύ - log A.

Putting sn = On + ΐίw, ίw = S(sTO0» we have evidently

so that, by (2.7) and (2.6)

which proves lemma 3.

LEMMA 4. (Gronwall [1] pp. 316-318.) Let f ( z ) (/(O) = 0, /7(0) = 1) be re-
gular for I z I < 1 and map \z \ < 1 conformally onto a convex domain. Then

•*• < I ft(*\ I < _ !_•!: __
(1+1*1)* "^ ̂ l =(l
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LEMMA 5. (Mandelbrojt [2] p. 176, p. 197; [5] p. 265.)
(I) Let δ={/(z)} (|/(z)|>l) be the family of the analytic functions

in ©. Then, to any domain ©i completely contained in ©, there corres-
ponds a constant β(©ι) (>1) dependent upon ©i such that

1 / log|/(zι)|

where z0 and Zi are two arbitrary points contained in ©i awd /(z) is
function belonging to ft.

(II) Let © δe £/&β tmΐί circle \z\<l, and ©i δe ί/ie circle |z| ^.R (< 1).
Then

lim β(©i) - 1.
Λ->0

LEMMA 6. Under the same conditions as in the theorem, if F(s) ^ 0,
and \ arg F(s) \ < 2mπ in the half-strip S(ε):

then

2 α n exp(— λns){l —

f 1 - Aϊ^ exp (- ω\} for s e s( J ),
L \ z / j v ^ /

where (i) A is the constant in lemma 1 and (ii) T (> 1) is α constant in-
dependent of ω.

Proof. By the well-known Perron's formula ([7] p. 5), we get

(2.8) F(s=

where β ^ e x p ( - s ) ) / ^— s)

(ii)

Setting β = σ- 1/2, Af(<τ) = Sup-oc</<+oo I Ffa + iί) ,

Hence, by lemma 1 in which, replacing ε by ε/2, we put

So = iff — -- J + ΐίo, Si = So - Δ (Fig. 2),

(2.9) |Λω(β)|^

where |sι- s2 | =π(δ + ε/2). Therefore, by (2.8) and (2.9),
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cr-i/2-Δ

Fig. 2.

(2.10) Σ an exp (- λ,β){l - exp (λn - ω)} ^ \ F(s) | f 1 -
n<oo (_

exp - ~

D:

where

λ«—oo - - - - i F(s)

Let us consider the function-family {Fn(s)} = {F(s - n)} in the rectangle

1

(Fig. 2).

Since 1 81(82) — ̂ (s) I ̂  r(f)> there exist an integer nk and two points snjc, s'njc

such that

(2.11) F(s) = Fnk(snk), F(s2) = Fnk(s^k)t

where

(i) s = Snk-nk, s2 = s^k-nk,

(ii) sHk, s'nk e D'] Df denoting the rectangle

Setting
3)

we get easily

fn(ito) = 1, I arg/w(s) | < π for s e D,

Hence, the function-family {fn(s)} is normal in D, and bounded at ito, so
that {/n(s)} is uniformly bounded in Z)r (c D). By the entirely similar argu-
ments, {l//n(8}} is also uniformly bounded in D''. Thus, there exists a con-
stant T(D') > 1 such that

y<l/n(«) l<r for = l, 2,

3) The following argument is due to Mandelbrojt ([2] p. 177).
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Hence, by (2.11)

.-ftXfrO I ̂  γβm
1 F(s)

so that, by (2.0)

Σ α™ exp (— Ans){l — exp (λn — ω)}

which proves our lemma 6.

LEMMA 7. Under the same conditions as in the theorem, let us
denote by Nω(tι, t2, #o) the number of zeros of /Sω(s) = ΣλΛ.<ωα f cexp(— AjcS)
•{1 — expo** — ω)} contained in the half-strip tι<t<t2, o<σQ. Then

where

(i) Λ w < ω ) is the greatest exponent contained in Q^x<ω, and (ii) K is a
constant independent of ω.

Proof. We have evidently

(2.12) N(tl9 t2, <τ0) = lim (h + h + h + 74),σ->—co

where

1

1 fσ + ί<f2
ί =

1 fσ+^i

•=vL*

Since Sω(s) tends uniformly to F(s) as ω-> + oo on the segment
ti ̂  3(s) ̂  fe, there exists a constant K independent of ω such that

(2.13) \Iι\<K.

Since

Su»(β) = α n (ω) exp (- ̂ n(««)β){l - exp yn ( ω ) - ώ)}(l + o(l))

on the segment 9ϊ(s) = <r, ίi ̂  S(s) ̂  ί2, where o(l) tends uniformly to 0 as
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(2.14) lim 78= -
ω n^.

2π

On the horizontal line t — 1 3 (j — 1, 2), we can put

Sω(β) - X(t, σ) + iΓ(ί, σ) (t = tj, j = 1, 2),

where

^=l
exp (- Λi<r), Γ(ί, <r) =st*(ί) exp

We have easily

where m(ί) is the number of real roots of X(t, σ) in — oo <#< + oo. On the
other hand, we know that the number of real roots of *ΣT=ιϊι exp (—λiσ)
(Tι and λl being real) does not exceed n — 1 ([6] p. 49, problem 77). Hence

(2.15) I 72 1 + /4 1 ^ n(ώ) - 1< n(ω) .

By (2.12), (2.13), (2.14) and (2.15),

N»(tί9 t2, σ0) ^
 t2~U λn^-n(ω) - K,

Δπ

which proves our lemma 7.

3. Proof of the theorem.

We distinguish two cases.
Case I. p > 0: By lemma 3, selecting suitable sub-sequences, if neces-

sary, we can find two sequences {sn}, {sn'} such tnat

(3-D lim
« + + oo θ g 8 n

where

( i ) sn = σn + it, sn

f = (<r« - J«) + itn,

(3.2) ( i i) lim ίn =

(iiϊ) \Δn ^

Suppose that w=f(z) maps \z\<l conformally onto the rectangle Rι\
1 3t(w) \£k, \ 3(w) I ̂  f ! in such a manner that /(O) = 0, /;(0) = 1. Putting

r = Max i φ(w) \ ,

where z = ψ(w) denotes the inverse function of w=f(z) (Fig. 3), by lemma 4,
we get easily

\ \ d w \ = . 7/7~τ \dw
^^p I/ W I

so that
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(3.3)

On account of lemma 5 (II), we can find sufficiently small R(0<R<1)
such that

where ®ι designates | 3 1 ̂  Λ. Taking sufficiently small p, by (3.3) we can
assume that
(3.4) r<4p<R.

Now we map the rectangle RI in w-plane onto the rectangle Rz(ri) in s-
plane by the linear transformation s = gn(w) (Fig. 3) such that

8n,( i) s = gn(w) = -—(w -
P

(ii) 8n = gn(p), sn

r = 0n(0).

Then the strip \S(w)\^εί corresponds to the strip 1 3(s) - tn \ ^ (βi Λn\)/p.
Since Δn is bounded,! and o tn = TO, for any given ε2 > 0, taking suffi-

ciently small €ι, we can assume that the rec-
tangle Rz(ri) are contained in the strip 1 3ί(s) — TO |
<62 for sufficiently large n.

Let us consider the function-family {Fn(z)}
= {F(gn(f(z)))} in the domain ®: U |< 1. Then
{Fn(z)} is not normal in Φ. On the contrary,

Fig. 3.

since liπwoo Fn(0) = oo by (2.7), Fn(z) tends uniformly to infinity in any
domain completely contained in ©. Then, by lemma 5 (I),

where = -FW, so that
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<**><"
which contradicts (3.1). Hence, {Fn(z}} is not normal in ©. In other words,
F(s) takes every value infinitely many times, except perphaps two (oo in-
cluded), in {R2(n)}, a fortiori in | 3(s) — T0\ < ε2. Since s2 is arbitrary, 3(s) = T0

is a Julia-line. Letting β->0 in (3.2) (ii), the first part of our theorem is
established.

Case II. p = 0: By theorem A, it is sufficient to prove the existence of
the argument-line in the case II of theorem A. In this case, we can deter-
mine <TO such that, in the half -strip \t — t0 \ ̂  π(d + «), <r ̂  GO,

(3.6) \F(s)\>k>0,

where A: is a suitable constant. Applying lemma 7 to the half-strip \t — t0\
<T^<TO, we have

tfutfl, ί2, *o) ̂  Λncuof (* + o V ΊΓ^ - T
(Λ * / /n(uO Λw(

so that by linwoo w/Λw = d,

(3.7) JSTω(ίι, fa, *o)>ΛnCuυ γ

for sufficiently large ω. If | arg F(s) | < 2mπ in the half -strip 1 1 — tϋ \ ̂  π(δ + β),
^ ̂  ̂ o> then by (3.6) and lemma 6, for sufficiently large ω, we have

k— >0,
Δ

in the half -strip 1 1 — U ί^π(δ + ε/2), σ ̂  σQ, which contradicts (3.7). Hence, in
the half -strip \t — t0 \ ̂  π(δ+ ε), σ^σ0) \F(s)\ tends uniformly to infinity, and
moreover Sup |arg.F(s)| = + oo. Then there exists a sequence of points {sn}
such that

(i) Iim\&τgF(8n)\ = + °°,
W>00

(ii) Iim3(β») = t*, \t*-t0\^

from which it follows that S(s) = t* is the argument-line. Letting ε -> 0, we
can conclude the existence of the argument-line in the strip 1 1 — 10 \ ̂  πδ.
Thus the second part of our theorem is established.
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