
ON THE RANGE OF ANALYTIC FUNCTIONS
WITH POSITIVE REAL PART

BY YUSAKU KOMATU

1. Introduction.

In previous papers [3; 4], considering a class of single-valued analytic
functions regular and of positive real part in a circle or in an annulus, we
have dealt with mean distortion theorems extending a classical theorem of
Rogosinski [6]. The class in doubly-connected case has been restricted by
imposing a normalization along one boundary component. However, for the
present problem the most general class of similar nature obtained by reject-
ing this normalization will be also taken into consideration.

We shall consider namely three classes of functions which are defined as
follows.

Let S^o = (Φ(z)} be the class of analytic functions which are regular and
of positive real part in the unit circle | z \ < 1 and normalized by Φ(0) = 1.

Let $lq = {Φ(z)} be the class of analytic functions which are single-valued,
regular and of positive real part in the annulus (0 <) q < \ z \ < 1 and norma-
lized by the conditions

= 1 along \z\=q and Γ
J —

3Φ(qeί

Let $tq — {Φ(z)} be the class of analytic functions which are single-valued,
regular and of positive real part in the annulus (0<) q<\z\<l and norma-
lized by the condition

The class 9Ϊ0 is, of course, regarded as the limit case of $lq as q-*Q. On
the other hand, the equation of the normalizing condition for $ϊq involves r
merely apparently, since its left-hand member has the value independent of
r. In fact, it asserts only that the constant term in the Laurent expansion
of Φ(z)^$tq is equal to unity. Consequently, $tq is a subclass of $α. How-
ever, this subclass plays a distinguished role within the extended class. In
fact, as shown in theorem 1 below, the class &3 is constructed in terms of

this subclass in a simple manner.
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In general, let $ = {Φ(z)} be a class of functions defined in a domain D.
For any fixed z<=D, the value of Φ(z) e § may be regarded as a functional
of argument function Φ defined in g. From this point of view, we denote it
especially by W2[0], z being a parameter point. The range-set Ωz(τ$) for the
class $ is then defined as the set consisting of all possible values W£Φ~\
when Φ(z) extends over the class §; in symbol,

β.(89= U

The purpose of the present paper is to determine the range-sets precisely
for the classes enumerated above.

2. Representation formulas.

The tools of attack in the present paper are, as in the previous ones [3
4], also the integral representations of Stieltjes type valid for any function
of the respective classes. The representations for 9?0 and $tq have been
stated in the previous papers [3; 4] and will be re-formulated in the follow-
ing two lemmas.

LEMMA 1. It is necessary and sufficient for Φ(z)<^$to that Φ(z) is repre-
sentable by means of Herglotz integral

π f>^φ _L

J*-

with a real-valued function p(φ)l=pφ(ψ) defined for —π<φ^π which is
increasing and has the total variation equal to unity.

LEMMA 2. It is necessary and sufficient for Φ(z) e D?Q that Φ(z) is repre-
sentable by means of integral

(* /TΓ

Φ*(ze~ΐφ) dp(φ)
c

with a function p(φ) = pφ(φ) of the same nature as in lemma 1. The func-
tion Φ*(z) is defined by

where the elliptic zeta-function concerns (here and also throughout the
paper) the Weierstrassian theory with primitive periods

2a>i — 2π and 2ω3 = — 2i Ig q.

The representation formula in lemma 2 for the class $g will be now

generalized to that for $tq as stated in the lemma below. It will be sufficient
to give an outline of the proof since its substantial part has been established
in a previous paper [1].
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LEMMA 3. It is necessary and sufficient for Φ(z) e $ίq that Φ(z) is repre-
sentable by means of a formula

= Γ
J —

where ρ(φ)=pφ(ψ) and τ(ψ) = τφ(φ) are functions of the same nature as ρ(φ)
in lemma 1 and Φ*(z) denotes the function introduced in lemma 2.

Proof. Based on the characterizing properties of $tq, the function de-
fined by

p(r, φ)= — - (φ 3tΦ(reίθ)dθ (-π<φ^π, q<r<l)
2π J _ π

is, qua function of r, uniformly bounded with respect to <ρ and is, qua func-
tion of φ, of bounded variation for every value of φ. Moreover, for any r,
it is an increasing function of φ satisfying p(r, — π) = 0 and p(r, π) = 1.
Hence, we can apply the result obtained in the previous paper [1] yielding

Φ(z) = Γ ?-C(< lgz + φ) dp(ψ) - Γ -?-C8« I g z + φ) dτ(φ) + ic,
J — it 1* J — π 1

c being a real constant. Here p(φ) and τ(ψ) are obtained as the limits of
p(r, φ) as r tends to 1 and q along respective suitable sequences, so that
they are both increasing and have the total variation equal to unity. In
order to determine the value of c, we observe the integral of Φ(z)/z along
\z\=r (q<r<l) which, after divided by 2πi, becomes

z —
1 ΓOT

= —.-1 ig

1 C™ 1 ΓOT

= —T (πί + 2jyι(t Ig z + 0) dj0(0 . I 2ηι(i Ig 2 + φ) dτ(ψ) + ίc

- 1 1 27l f^
~~ π

This determines the value of c. The same result will follow alternatively
by observing directly the constant term in the Laurent expansion of Φ(z)
which is obtained by means of the expansions of zeta-functions followed by
termwise integration. Substituting the value of c thus determined, we get

)- ^(ilgz + φ)}dρ(φ)
π /

p-π O / -ft

Finally, in order to replace the Cs-function in the last integral by the ζ-
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function, we use the defining equation ζa(u) = ζ(u — ilgq)—ηz together with
the Legendre relation η1 (—ilgq) — η3π = πi/2. Then, remembering that ζ(u)
is an odd function, we readily get

ί
-π O / γ\

—A Cs(i lg 2 + 0 —J±-(ί lg 2 +

f 2 / V Λ ι 9 \ ?ιΛι (T= -.- c * ig - ̂  - -̂ -U ig -
]-π l\ \ 2 / 7 Γ V 2

Thus we obtain the desired representation

0(2) - Λ(s) + T(z) -

=
J

Conversely, consider a function Φ(2) of the last form constructed by
means of any p(φ) and τ(φ) of the assigned nature. Then, by lemma 2, the
function R(z) belongs to 3ϊβ. The expression of T(z) can be transformed,
by change of integration variable, into

= f" Φή

in which — τ(— ψ) is of the same nature as τ(ψ), so that the function T(q/z)
belongs also to 9Ϊ5. Hence, in particular, the real part of Φ(z) is bounded
below. Further, in view of the boundary behaviors of functions of $tq,
we have

lim ^RR(z) ^ 0, lim 9tT(z) = 1,
»->«! *•>»!

lim
»->«?

as 2 in q<\z\<l tends to any point zί on | 2 | = 1 or any point zq on 1 2 | = q.
Consequently, $lΦ(z) remains positive throughout the annulus q < \z\ <1.
Since the constant terms of R(z) as well as T(z) in their Laurent expansions
are both equal to unity, that of Φ(z) is also equal to unity. Hence Φ(z)

belongs surely to $lq.

It would be noted that the representation for $tq given in lemma 3 may
be expressed more briefly by

- ?- Γ ( C,(i lg z + φ) -
1 J— -π \v J —

However, we have intentionally retained a term involving lg 2 in every

integral in order to make the integrand to be single-valued, while this term

has naturally appeared in the representation for %lq given in lemma 2. The

representation for &α reduces to that for 0?g when we put τ(φ) = (φ+ π)/2π

(or simply τ(φ) = φ/2π). In fact, we then have
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.«> = !•

Now, from the argument employed in the second half of the proof of
lemma 3, we can derive a consequence showing the structure of the class

$ίq in terms of the restricted class $tq.

THEOREM 1. Any function Φ(z) e $lq is expressed in the form

Φ(z) = R(z) + T(z) - 1; R(z) e= 5Rβ, T(z) e 9y

where 3V designates the class consisting of all functions T(z) such that
T(q/z) belongs to $iq, and the decomposition is unique. Conversely, any
function of this form belongs to $iq. In other words, the class
is the direct sum of two classes {R(z) — l}ΛooesRg and {T(z) —

Proof. It is only necessary to prove the uniqueness of the decomposi-
tion since the remaining part of the theorem has been verified in the proof
of lemma 3. For that purpose, let any decomposition of Φ(z) be

Φ(z) =

Equating two decompositions of Φ(z), we have

The left-hand member can be prolonged analytically beyond \z\=q while the
right-hand member can be prolonged analytically beyond z\ = l. Hence,
every member remains regular throughout the closed annulus q ̂  | z ^ 1.
The boundary value of its real part vanishes everywhere. Consequently, it
must reduce to a purely imaginary constant (or zero). But the constant
term in its Laurent expansion also vanishes so that this constant is equal
to zero.

A remark is stated on theorem 1. The decomposition of Φ(z)^lq given
in the theorem is not of such nature that every component is of positive real
part. By adjusting the kernels in the representation of lemma 3 by means
of harmonic measures, we would obtain a representation

valid for Φ(z) e ̂ . Two integrals in the last expression are both of positive
real part and moreover their real parts are single-valued throughout the
annulus q<\z\<l. However, they are not single-valued and really have
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the purely imaginary periodicity moduli equal to — 2πi/\g q and 2πi/lg q,
respectively, which cancel each other.

3. Range for 9^0.

We first observe the range-set Ωz(3lo). Several properties of this set will
be previously evident. For instance, since with any pair Φ0(z) and Φι(z)
from 9ΐ0 the function (1 — λ)Φ0(z) + λΦ^z) belongs to ^R0 for any constant λ with
0 < λ < 1, the set is convex; with Φ(z) e D?0 the function Φ(εz) belongs to $Ϊ0

for any constant e with | ε \ = 1 so that the set depends on z through its
absolute value alone, namely ^2(9ί0) = ̂ ι*ι(^o); with Φ(z)e^0

 tne function
1/0(2) belongs to 9 0̂ so that the set remains invariant under the transforma-
tion w 1 1 / w , etc. But theorem 2 below for explicit determination of Ωz(3to) is
really a well-known classical result. In fact, it is nothing but a transform
of Schwarz lemma by means of a linear transformation from the unit circle
onto the right half-plane. Nevertheless, we shall re-state the result and
give a proof based on lemma 1. The proof given here will serve as a model
in dealing with other classes by a similar method.

THEOREM 2. The range-set ββ(9y with \z\=r (0 ̂  r < 1) laid on the w-
plane is the closed circular disc defined by

w-1 <r

w + 1 ==T'

Let ω be any boundary point of Ωr&o) and zϋ any assigned point with
\z0\=r<l. Then the equation Φ(zΰ) = ω holds for Φ(z) e % if and only if
Φ(z) is the linear function given by

φ(z\ _
^ (ω + I)z0 - (ω - 1)2 '

' Proof. The representation for Φ(z) e 9Ϊ0 given in lemma 1 implies by
virtue of the properties of p(ψ) that the set £2(9?0) is a subset of the closed
circular disc with the circumference described by w — (eτφ + z)/(etφ — z) as <p
varies from — π to π. In fact, any half-plane ^R(e~^w)^d containing this
circumference surely contains the point Φ(z). This disc is expressed by
\(w — l)/(w + 1.)\^\z\. As noticed above, the range-set is convex. Hence,
in order to show that this set coincides with the whole disc, it is sufficient
to verify that the circumference of the disc belongs to the set. Now, for
any ω with (ω — l)/(ω + 1) = r and any assigned z0 with | ZQ \ = r, define the
constant ε by

ε + z0 . ω + 1
-co i. e. ε= , zQ.

8 — ZQ ω — 1

Then we have \ε \ = 1. Again by virtue of the properties of ρ(ψ) associated
to Φ(z), the relation
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o _ *c

holds if and only if dp(φ) vanishes everywhere except at φ = arg ε where p(ψ)
has the jump with the height equal to unity. The function corresponding
to this p(φ) is given by

g + z _ (fo + I)z0 + (ω - 1)2
β-0 (ω

Thus the range-set coincides with the whole disc and the remaining part of
the theorem is simultaneously established.

In theorem 2 just proved, for a fixed z0 with ZQ Φ 0, when ω describes the
whole boundary of ΩZoffio), then the quantity ε defined by (ε + z0)/(ε — ZQ) = ω
describes the whole unit circumference monotonously. Hence, for any fixed
ZQ with 1 20 1 = r, the boundary of ΩZO&ΪO), i.e. I (w — ϊ)/(w + 1) | = r, and the
family of rational functions {(ε -f z)/(ε ~ z)} with | ε =1 correspond in one-to-
one way. While for any point ω0 interior to J2r(9ΐo) there correspond infinitely
many functions Φ(z) of 9?0 such that Φ(z0) = ω0 for an assigned z0 with
\ZO\=T, there is a unique linear function of the form

Φ(z) = 1 - λ + Λ--4"— ( O ^ Λ < 1
ε — z

satisfying this condition. Actual values of λ and ε are given by

2λ
i /*°'

CUQ—1/

for ω0 = 1 we put simply λ = Q, ε being arbitrary.

4. Range for 3tq.

The class Dϊρ may be regarded as a straightforward generalization of the
class 9Ϊ0, the latter being the limit case of the former as q-+Q. The range-
set Ωz($tq) can be determined also after the model of the case 9Ϊ0. By similar
reasons as above, we see that this set is convex and depends substantially
on I z I alone.

THEOREM 3. The range-set Ωz(^q} with \z\=r (q^r<l) laid on the w-
plane is the closed convex set bounded by the image-curve of \z\ =r by the
mapping

w = Φ*(z) = v/C(i lg z) - ^-
^ V 7r

Let ω be any boundary point of S2rffiq) and z0 any assigned point with
zQ\ ~r>q. Then the equation Φ(ZQ) = ω holds for Φ(z) e $lq if and only if

Φ(z) is the function given by
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where the real value a is defined uniquely (within modulo 2π) by the con-
dition Φ(zQ) — ω.

Proof. The present theorem can be proved quite similarly as theorem
2 by making use of lemma 2 instead of lemma 1. We have only to notice
that the curve described by w = Φ*(ze~l(p), for a fixed z with z \ — r (q < r < 1),
as ψ varies from — π to π is an oval which is strictly convex everywhere.
Now, this curve may be regarded also as the image of \z\=r by the
mapping w — Φ*(z) which transforms the annulus q < \ z \ < 1 univalently onto
the right half -plane cut along a vertical rectilinear segment; cf. [4, §3].
Hence, by virtue of a result previously established, it is strictly convex; cf.
[2, corollary 2 of theorem 5.1].

For any point ωQ interior to Ωr($tq) there correspond infinitely many
functions Φ(z) e $tq such that Φ(z0) — ωQ for an assigned z0 with \z0\= r. How-
ever, among them there exists a unique function of the form

satisfying this condition. Actual values of λ and e are determined as follow:
There exists a unique boundary point of Ωr($tq) lying on the half-line
arg (w — 1) — arg (ω0 — 1) which is denoted by ω. Then the values of λ and ε
are obtained by the equations

λ(ω — 1) = ω0 — 1, Φ*(εz0) = ω.

5. Range for SJ\.

We now proceed to consider the general class SJΪ5. Its connection to the
restricted class ^ has been established in theorem 1. Accordingly, its

range-set Ωz$q) will be readily determined by means of theorem 3. Its con-
vexity as well as apparent dependence on arg z follows obviously also by a
similar reasoning as before. For brief statement of the theorem, we under-
stand that the cross sum of two point sets A and B means the set consist-
ing of all the points which are of the form a 4- b with a e A and b e B.

THEOREM 4. The range-set Ωz$q) with \z\-r (q<r<l) is the closed

set given by the cross sum of Ωz($lq) and Ωq/z(^q) ~ Ωffiq

f) followed by the

leftward translation by unity. Let ω be any boundary point of Ωr(yϊq) and

zQ any assigned point with zQ\—r. Then the equation Φ(z0) — ω holds for

Φ(z) e $tq if and only if Φ(z) is the function given by

Φ(z) = Φ*(ze-™) + Φ* —%- - 1
V ze~ιv J

where the real values a and β are defined uniquely (within modulo 2π) by
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the condition Φ(z0) = ω. More precisely, let ω(t) (q<t<l) denote the point
of contact of the tangent drawn to the boundary of Ωt(?fcq) which is parallel

to the tangent of Ωzfyq) at ω. Then a and 0 are determined by the equations

Φ*(zoe-la) = ω(r) and (

respectively.

Proof. The first part of the theorem follows readily from theorem 1
combined with theorem 3. To verify the second part, we notice that the
point of contact ω(t) is uniquely determined for any assigned ω and t since
the set Ωffiq) is strictly convex. Further the same reason implies that the
decomposition of the boundary point ω into the form a -f b — 1 with a e Ωz(3tq)
and b e Ωq/z(^Rq) is unique and is really given by

ω = ω(r) + ω{ - •--}— 1
\ r )

(while the decomposition of an interior point is not unique). Consequently,
the second part is also established.

A similar remark as stated subsequently to theorem 3 holds here also.
In fact, remembering theorem 1, it is readily verified that for any interior

point ίD0 e Ωr($tq) there corresponds a unique function Φ(z) e &g of the form

which satisfies Φ(z0) = ω0 for an assigned z0 with j z0 1 = r. Actual values of
Λ, ε and ε' may be determined similarly as before. Of course, there exist

infinitely many functions Φ(z) e &3 which is subject merely to the condition
Φ(ZQ) = ω0 for an interior point ω0 e Ωr($tq) and an assigned point z0 with

Finally we state a supplementary remark. According to the circum-
stances, it will be convenient to introduce a tangential polar coordinate
system on the w-plane with the pole at w = l and the initial ray lying on
the positive real axis. With respect to this system, let pt(Ψ) denote the sup-
porting function of the oval Ωffiq) (q<t<l) which is bounded by the curve

w = Φ*(teίθ), ~π<θ^π.

Analytically stated, let the function pt(ψ) be defined by

Pt(ψ)= Max 9t(e-^(Φ*(teίθ)-l)).
--π<θ^'τc

Let further θt(ω) be the real value uniquely (within modulo 2π) determined
by the equation φ*(ίeίθ^ω^) = ω(t) which is equivalent to

pt(ψt(ώ)) = gt(e- *«'°\Φ*(teiθ*'a>) - 1)),
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ψt(ω) being the angular coordinate of the supporting line of ΩtΦ>q) at ω, i. e.

arg (w — 1) = ψt(u>) being the equation of the perpendicular drawn from w = l

to the supporting line (tangent) of Ωtφlq] at ω. Then theorem 4 may be

re-stated in terms of supporting functions also as follows.

COROLLARY. Let pt(Ψ) denote the supporting function of Ωffiq) with

respect to a tangential polar coordinate system with the pole at w — \.

Then the range-set tiz(&q} is the closed convex set with the supporting
^unction

Pr(ψ) + Pq/r(Ψ) (T=\Z\)

with respect to the same system. For any boundary point ω of Ωz$q) and

any assigned point z0 = reίθ°, the equation Φ(z0) = ω holds for Φ(z) e $tq if
and only if Φ(z) is the function given by

Φ(z) = Φ*(ze-ίΛ) + Φ*(—
\ ze

where the real constants a and β are given by

a. = UQ — θr(ω) and β = ΘQ + θq/r(ώ)

and θt(co) is defined by φ*(teίgtW] = ω(t) with ω(t) defined in theorem 4.

Finally, we observe here as a supplement the mapping character of a
function defined by

Φ(z) - Φ(z; «, j9) = Φ*(ze~^ + Φ*(—^Λ -1,
V ze /

a and β being any real constants. While for extremal function for theorem
4, there exists a certain relation between a and j9, such a relation is indif-
ferent in the following discussions. As shown previously [2, §3] and referred
to above, the function w=Φ*(z) maps the annulus q<\z\<l univalently onto
the right half-plane cut along a vertical rectilinear segment laid on $ίw = 1
which is bisected by the real axis. Based on the boundary behavior of Φ*(z),
it is prolongable into a function meromorphic throughout the punctured
plane 0< \z\<<χ>. In view of the inversion principle, we get the functional
relations

— Φ*(z), Φ*

On the other hand, based on the unicity of the mapping under the normali-
zation Φ*(l) = oo, we have

Φ*(z) = Φ*(z).

Consequently, Φ*(z) satisfies the identities

0*
Z

1Λ = -Φ*(z), Φ*(q2 }=2- Φ*(z),
z J \ z J
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whence follow Φ*(z/q2) = - 2 + Φ*(z) and Φ*(q*/z) = 2 + Φ*(q/z). By means of
these relations we see that the function Φ(z) = Φ(z', a, β) satisfies

= - 2 +

For convenience, we introduce a new variable u and its function Ψ(u) by

u = ilgz, Ψ(u) = Φ(z).

Then, the last equation shows that Ψ(u) possesses a period — 2ί Ig q. On the
other hand, since Φ(z) is single-valued with respect to z, Ψ(u) possesses another
period 2π. Hence, the function Ψ(u) meromorphic in u is an elliptic function,
its primitive periods being 2π and —2i Ig q. Its irreducible poles lying at
— a and — β -f i Ig q are both of order 1 and hence the order of Ψ(u) is equal
to 2. Now, the basic annulus q<\z\<l corresponds in the ^-plane to a half
of the fundamental period parallelogram (rectangle). All these properties of
Ψ(u) = Φ(z) can be also deduced by making use of its explicit expression in
terms of zeta-functions. On the other hand, 3tΦ(z) remains positive in the
basic annulus and its boundary value vanishes everywhere except at sin-
gularities e™ and gβίβ. Consequently, we conclude that the image of
q<\z\<l by the mapping w = Φ(z; a, β) is the two-sheeted right half -planes
connected crosswise along a cut between two branch-points. The points
at infinity lying on the boundary components originate from z = eta and

6. Generalization.

We have observed in previous papers [3; 4] a linear operator X which
has 3Ϊ0 or $tq as its domain of argument function and produces by applying
to any Φ(z) of its domain a single-valued regular analytic function ~£[Φ(z)~],
and which is homogeneous of degree zero, i. e., for any constant Γ, the
function X\_Φ(z)~\ is transferred after substitution z Tz into J7[Φ(Γz)]. We
suppose here also as before that the operator X is commutative with the
integration with respect to p(ψ) in the representation for Φ(z) stated in
lemma 1 or 2. By virtue of the last supposition, it would have been sub-
stantially only necessary to define merely the J>operation applied to the
kernel of the representation. In fact, the operation in the whole domain
would naturally follow by means of the supposition. Now, we shall show
that theorems 2 and 3 admit straightforward generalizations with reference to
such an operator. Let, in general, the class of functions {~C[Φ(z)~]} in which
Φ(z) extends over a class $ be denoted by .£[??]. We begin with a generali-
zation of theorem 2.

THEOREM 5. Let X be a linear operator defined for SJΪ0 and of the
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nature stated above. Then, for any fixed z with \ z \ = r < 1, the range-set
ΩZ(J^I_^Q]) is the smallest convex hull which contains the image-curve Cr of
I z I = r by the (not necessarily univalent) mapping w = J7[(l-f-2)/(l — 2)].
Any boundary point ω of the hull is attained by -£[$(2)] with Φ(z) e 9?0 at
an assigned point ZQ = re1^ if and only if Φ(z) is a rational function of
the form

Here ah and ph (h = 1, , m) are subject to the conditions

[ 1 _j_ rp-Wh Ί

Jίv*-*] = β* (* = !.-.»).

m m

ph ̂  0 (A = 1, , m), Σ /OΛ = 1, Σ />λωΛ = ω,

ωh (h = 1, , m) denote the points on the boundary of the convex hull
where the supporting line at ω touches the curve Cr, the multiplicity of
contact being taken into account; the integer m may depend on ω.

Proof. Based on the representation formula for £R0 given in lemma 1
together with the assumption imposed on J7, we get, for any Φ(z) e Dΐ0,

-/W*)] = J -π Γ /?*9 4-
-A**-

Since ρ(<ρ) is an increasing function with the total variation equal to unity,
this relation implies readily that the value of -£[$(2)] for an assigned z with
1 2 1 = r belongs to the smallest convex hull which contains the curve described
by w = £{_(&'* + z)/(e*φ — 2)] as ψ varies from — π to π. By virtue of the
homogeneity of J7, this curve coincides with Cr as the configuration. Hence
the range-set is a subset of the convex hull stated in the theorem. Now,
since the analytic curve Cr is regular, it has then a finite number of points
common with any straight line. Introducing a tangential polar coordinate
system on the w-plane with the pole at an arbitrary point w0 interior to the
hull and the initial ray parallel to the positive real axis, let the angular
coordinate of the supporting line at a boundary point ω of the hull be de-
noted by Ψ((o). The quantity defined by

qua function of θ, then attains its maximum, MM say, for ti — — ah (h = 1,
•••, m) and for these values of ti alone (within modulo 2ττ). Hence we have

- Γ
J -

and the equality sign in the last inequality holds if and only if the quantity
dp(ψ) associated to Φ(z) vanishes everywhere except for
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φ~θQ-\-ah (mod2τr) (h = l, ,m)

and hence Φ(z) is a rational function of the form

m

pn ̂  0 (h = 1, , m), Σ J°Λ = 1,

|f>Λ denoting here the height of jump of p(ψ) at #0 + ^Λ, i. e. ρh = ρ(0Q + ah + 0)
— p(θo + atι — 0). In order to assure the equation J7[Φ(20)] = ω, it is only
necessary to supplement a condition

Thus the theorem has been established in its whole scope.

Now, several sorts of choice are possible for X, among which some
have been illustrated in [3]. Here we mention an illustrating example of
theorem 5 corresponding to a particular choice of X. Let z be any fixed
point in | z | < l and Wz\_zΦ'(z)~\ denote the functional defined for 9ί0 by which
the value zΦr(z) at z corresponds to each argument function Φ(z) e 9ΐ0

COROLLARY. The range-set defined by

^ [SW'W U Wz[zΦ'(z}~\

is the smallest closed convex hull which contains the image-curve Cr of
I z I = r by the mapping w — 2z/(l — z)2. The boundary of the hull consists
of the whole curve Cr for r^2—^3 but it consists of an arc of Cr given
by w — 2reίθ/(l — reίθ)2, —ai^θ ^a^ and a rectilinear segment connecting its
end-points for 2 — V 3 < r < 1, a^ — aL(r) being determined by cos a\ = — (1 — 6r2

+ r4)/(2r(l + r2)), 0<^ι<7r. Any boundary point ω of the hull is attained
by zΦ'(z) with Φ(z) e 9ί0 if and only if Φ(z) is a rational function of the
form

or

provided that ω lies on the (closed) curvilinear part or the (open) recti-
linear part of the boundary, respectively. Here a is determined by ω
— 2re~m/(l — re~la)2 and λ with 0 < λ < 1 is determined by Φ(z0) = ω.

Proof. By taking especially
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dz '

we see that the corollary is an immediate consequence of theorem 5 except
an explicit statement on the shape of the smallest convex hull containing Cr.
Now, for the function

2z

we get

ι , κreίθf"(reίθ) = (l-r2)(l
f'(reiθ) 1 - 2r2 cos 2β + r4

which is non-negative for all values of β if and only if r ^ 2 — V 3 . Hence,
the curve Cr is (strictly) convex for such a value of r while otherwise it
possesses a dented arc centred at — 2r/(l + r)2; cf. [5]. For the latter case,
in order to construct the boundary of the convex hull, we have to replace
the arc by the rectilinear segment connecting f(re±τ^\ where αri is the value
of 6 given in the corollary which is obtained by the condition that ΐRf(reίQ)
attains its minimum.

Actual calculation shows that explicit values concerned are given by

1
2 r2) v - , ~. ' -r4 ± i(l - r2)J- 1 + 14r2 - r4),

/(re±l*0 - 4v^^2)2 (- ί1 + r') ± ̂ V- 1 + 14r2 - r4).

A result on 9ϊς analogous to theorem 5 may be stated as follows.

THEOREM 6. Let X be a linear operator defined for Dϊα and of the nature
stated at the beginning of the present section. Then, for any fixed z with
\z\=r (g<r<l), the range-set Ωz(-£ΐ.$tqΊ) is the smallest closed convex hull
which contains the image-curve Cr of \z\=r by the (not necessarily uni-
valent) mapping w — J7[Φ*(2)], Φ*(z) = (2/i)(ζ(i Ig z) — (ηι/π)i Ig z). Any bound-
ary point ω of the hull is attained by -C\_Φ(z)~\ with Φ(z) e ̂ q at an assigned
point ZQ = reίθo if and only if Φ(z) is of the form

Here ah and p^ (h — 1, , m) are subject to the conditions

J7[Φ*(re-ϊtfΛ)] = ωh (h = 1, - - , m),

and ωh = ωh(r) (h = l, , m) denote the points on the boundary of the convex
hull where the supporting line at ω touches the curve Cr, the multiplicity
of contact being taken into account; the integer m may depend on ω.
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Proof. The present theorem is proved quite similarly as theorem 5. In
fact, we have only to replace the Poisson kernel (e*φ -j- z)/(eΐ(p ~ z) in lemma 1
by the kernel Φ*(2β~ίφ) in lemma 2.

A corollary analogous to that of theorem 5 may be formulated here also.
Then the function 2z/(l - z? = (d/d Ig z)((l + z)/(l - z)) will have to be replaced
by -2(£>(i Ig z) + ^/π) = (d/d Ig z) Φ*(z).

In order to establish a generalization of theorem 4 correspondingly to

theorems 5 and 6, let X be a linear operator defined for $tq and of a similar
nature as before. By virtue of the decomposition theorem 1, it suffices to

suppose first that the operator is applicable to every function of the classes
9tq as well as 3V or merely to their kernels in respective representations.
In fact, according to theorem 1, the X-operator applied to any function

Φ(z) e $tq is then naturally defined by

THEOREM 7. Let X be a linear operator defined for $fβ as above. Then,

for any fixed z with \z\ — r (q <r < 1), the range-set Ω z(-C\J&q~]) is the cross

sum of .0β(-Γ[9tg]) and ^U'[^/]) = β?/zUΐ^]) followed by the leftward
translation by J7[l]. Any boundary point ω of the range-set is attained by
J7[Φ(z)] with Φ(z) <= $tq at an assigned point ZQ — rΛ if and only if Φ(z) is

of the form
m n

<*>(*)= Σ ̂  Φ*(ze-M») + 5>,

Here <xh, βk, ph and τk (h = l, •••, m; k = l, •••, n) are subject to the con-
ditions

and ωh(r) (h = l, •••, m) and ωk(q/r) (k = l, •••, n) denote the points on the
boundaries of r̂(J7[^]) and ^/r(J7[^]) = ̂ (^[Dϊg7]), respectively, where

the supporting lines parallel to that of Ωz(J^[^q'\) at ω touch the image-
curves Cr and Cq/r of \z —r ana z\ — q/r, respectively, by the mapping
w = J7[Φ*(«)], the multiplicity of contact being taken into account.

Proof. The proof of the present theorem proceeds similarly as in theo-
rem 4 by modifying after the model of the proof of theorem 5.
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