ON CONTINUABILITY OF BILINEAR DIFFERENTIALS

BY AKIKAZU KURIBAYASHI

Schiffer and Spencer [3] have derived a condition under which bilinear differentials are continuable. In this paper, applying the results due to Aronszajn [1], we shall give a condition in terms of positive definite kernels.

Let *D* be a domain in the z-plane. A function $\psi(z, \overline{\zeta})$ of $z, \zeta \in D$ is called a Hermitian kernel on *D*, if it satisfies $\psi(z, \overline{\zeta}) = \psi(\zeta, \overline{z})$. If for any points $y_1, y_2, \dots, y_n \in D$ and any complex numbers $\xi_1, \xi_2, \dots, \xi_n$ the inequality

$$\sum_{j,j=1}^{n} \psi(y_i,\,ar y_j) \xi_i \,ar \xi_j \geqq 0 \qquad (n=1,\,2,\,\cdots)$$

is satisfied, then $\psi(z, \zeta)$ is called a positive definite kernel on D. Further, we denote by P_D the aggregate of all positive definite kernels $\psi(z, \overline{\zeta})$, which are analytic in $z, \overline{\zeta}$ respectively. Let $\psi, \varphi \in P_D$. We denote $\varphi \ll \psi$ if for any points $y_1, y_2, \dots, y_n \in D$ and any complex numbers $\xi_1, \xi_2, \dots, \xi_n$

$$\sum_{j=1}^{n} \psi(y_i, \, \overline{y}_j) \xi_i \xi_j - \sum_{i,j=1}^{n} \varphi(y_i, \, \overline{y}_j) \xi_i \xi_j \ge 0 \qquad (n = 1, \, 2, \, \cdots).$$

Now, generally, the following lemma is well known (cf. [4]).

LEMMA 1. Let E be an abstract set. If a function k(x, y) of $x, y \in E$ satisfies

$$\sum_{i,j=1}^{n} k(y_{i}, y_{j}) \bar{\xi}_{i} \xi_{j} \ge 0 \qquad (n = 1, 2, \cdots)$$

for any points $y_1, y_2, \dots, y_n \in E$ and any complex numbers $\xi_1, \xi_2, \dots, \xi_n$, we can construct a Hilbert space which has k(x, y) as its reproducing kernel.

Proof. Let F_1 be the family of functions f_1 which are of the form

$$f_1(x) = \sum_{j=1}^n \alpha_j k(x, y_j)$$

where y_1, \dots, y_n are any points of E, a_1, \dots, a_n any complex numbers and n any natural number. Let the inner product be defined by

$$(f_1, g_1) = \sum_{j,i=1}^{\max(m,n)} \alpha_j \gamma_i k(u_i, y_j), \qquad (f_1, f_1) = ||f_1||^2,$$

where

Received July 10, 1958.

AKIKAZU KURIBAYASHI

$$g_1(x) = \sum_{i=1}^m \Upsilon_i k(x, u_i) \in F_1$$

Then we have a normed space and k(x, y) is a reproducing kernel of F_1 , that is, if $f \in F_1$,

$$f(y) = (f(x), k(x, y))$$

for any $y \in E$. Therefore we have

$$|(f_1, k(x, y))| \leq ||f_1|| ||k(x, y)||$$

and we can easily see that $||f_1|| = 0$ is equivalent to $f_1 \equiv 0$. Completing F_1 , we get a Hilbert space F and k(x, y) remains to possess the reproducing property for F.

LEMMA 2 (Moore [2]). To every positive matrix k(x, y) there corresponds one and only one class of functions with a uniquely determined quadratic form in it, which forms a Hilbert space admitting k(x, y) as a reproducing kernel.

LEMMA 3 (Aronszajn [1]). If k is the reproducing kernel of the class F of functions defined in the set E with the norm $|| \ ||$, then k restricted to a subset $E_1 \subset E$ is the reproducing kernel of the class F_1 of all restrictions of F to the subset E_1 . For any such restriction, $f_1 \in F$, the norm $||f_1||$ is equal to the minimum of ||f|| for all $f \in F$ whose restriction to E_1 is f_1 .

LEMMA 4 (Aronszajn [1]). If k and k_1 are the reproducing kernels of the classes F and F_1 with the norms || || and $|| ||_1$, respectively, and if $k_1 \ll k$, then $F_1 \subset F$, and $||f_1||_1 \ge ||f_1||$ for every $f_1 \in F_1$.

LEMMA 5 (Aronszajn [1]). If k is the reproducing kernel of the class F with the norm $|| \quad ||$, and if the linear class $F_1 \subset F$ forms a Hilbert space with the norm $|| \quad ||_1$ such that $||f_1||_1 \ge ||f_1||$ for every $f_1 \in F_1$, then the class F_1 possesses a reproducing kernel k_1 which satisfies $k_1 \ll k$.

Applying these lemmas, we have following results.

THEOREM 1. Let $\psi(s, t) \in P_V$, where V denote an arbitrary open set in D. If

$$\psi(s, t) \ll k(s, \overline{t})$$
 in V,

then $\psi(s, t)$ is continuable to the whole D and

$$\psi(s, t) \ll k(s, t)$$
 in D.

Here k(s, t) denotes the Bergman's kernel corresponding to D.

Proof. We apply Lemma 4 to k and $k_1 = \psi$ in V, k being also restricted to V. Let F_k be the space corresponding to k. In view of the analyticity

106

of $\mathcal{L}^2(D)$ we have

$$F_k = \mathcal{L}^2(D), \qquad ||f_k||_k = ||f_k||.$$

Let F_{ψ} be the space corresponding to ψ . Now, by Lemma 4, we have

$$F_{\psi} \subset F_k = \mathcal{L}^2(D)$$

and

$$\||f_{\psi}\|_{\psi} \ge \|f_{\psi}\|$$
 for every $f_{\psi} \in F_k$,

where $|| \quad ||_{\Psi}$ and $|| \quad ||$ denote the norms corresponding to F_{Ψ} and $\mathcal{L}^2(D)$, respectively. Hence $\psi(z, \bar{\zeta})$ belongs to $F_{\Psi} \subset \mathcal{L}^2(D)$ for any fixed $\zeta \in D$, i.e. it is continuable to the whole D and $\psi(z, \bar{\zeta})$ is analytic in D. As $\psi(z, \bar{\zeta}) = \overline{\psi(\zeta, \bar{z})}$, it is also analytic in $\bar{\zeta}$. Therefore we can apply Lemma 5. Namely, the class F_{Ψ} possesses a reproducing kernel k_1 satisfying $k_1 \ll k$. But by Lemma 2 we obtain $k_1 = \psi$. Thus we have $\psi \ll k$ in D.

We can obtain the inverse of this theorem as follows.

THEOREM 2. Let $\psi(s, \bar{t})$ belong to P_D and also to $\mathcal{L}^2(D)$ for fixed $t \in D$. Then there exists a positive number λ such that

$$\lambda \psi(s, \bar{t}) \ll k(s, \bar{t}).$$

Proof. Let D_1 be a subdomain of D such that $\overline{D}_1 \subset D$, and its boundary be obtained from that of D by a suitable analytic deformation depending on a parameter ε . Let $k_1(s, \overline{t})$ be the Bergman's kernel function of D_1 . Let further \overline{S} be any compact subdomain of D_1 . It is known [3] that under these circumstances

$$l_F(s, \bar{t}) = -k_1(s, \bar{t}) + k(s, \bar{t}) = O(\varepsilon)$$

uniformly with respect to s, $t \in \overline{S}$. The kernel $k_1(s, \overline{t})$ may be expressed in terms of a complete orthonormal system $\{\varphi_j\}$:

$$k_1(s, \overline{t}) = \sum_{j=1}^{\infty} \varphi_j(s) \overline{\varphi_j(t)}.$$

Now $\psi(s, \bar{t})$ is regular in \bar{D}_1 , and we can apply Mercer's theorem which implies

$$\psi(s, \ ar{t}) = \sum_{j=1}^{\infty} \lambda_j^{-1} \varphi_j(s) \overline{\varphi_j(t)}.$$

Here, $\{\lambda_j\}(\lambda_j > 0, j = 1, 2, \cdots)$ is the corresponding sequence of characteristic numbers of the equation

$$\lambda\psi\varphi=\varphi.$$

We may suppose that λ_1 is the least among the characteristic numbers. Thus we have

$$\sum_{i,j=1}^{n} k_{1}(z_{i}, \overline{z}_{j}) \xi_{i} \overline{\xi}_{j} = \sum_{l=1}^{\infty} \sum_{i,j=1}^{n} \varphi_{l}(z_{i}) \overline{\varphi_{l}(z_{j})} \overline{\xi}_{i} \overline{\xi}_{j},$$

107

AKIKAZU KURIBAYASHI

$$\sum_{i,j=1}^{n} \psi(z_{i}, \, \overline{z}_{j}) \, \xi_{i} \overline{\xi}_{j} = \sum_{l=1}^{\infty} \sum_{i,j=1}^{n} \varphi_{l}(z_{i}) \overline{\varphi_{l}(z_{j})} \frac{\xi_{i} \xi_{j}}{\lambda_{l}}$$

and hence

$$\begin{split} &\sum_{i,j=1}^{n} k_{1}(z_{i}, \overline{z}_{j})\xi_{i}\overline{\xi}_{j} - \lambda_{1}\sum_{i,j=1}^{n} \psi(z_{i}, \overline{z}_{j})\xi_{i}\overline{\xi}_{j} \\ &= \sum_{l=1}^{\infty} \sum_{i,j=1}^{n} \varphi_{l}(z_{i})\overline{\varphi_{l}(z_{j})}\xi_{i}\overline{\xi}_{j} \left(1 - \frac{\lambda_{1}}{\lambda_{l}}\right) \\ &= \sum_{l=1}^{\infty} \left(1 - \frac{\lambda_{1}}{\lambda_{l}}\right) \left|\left|\sum_{i=1}^{n} \varphi_{l}(z_{i})\xi_{i}\right|\right|^{2} \ge 0 \end{split}$$

i.e.

$$\lambda_1 \psi(s, \, \overline{t}) \ll k_1(s, \, \overline{t}).$$

Since $k_1(s, \bar{t}) - k(s, \bar{t}) = O(\varepsilon)$ holds uniformly for $s, t \in \vec{S}$, we have

 $\lambda_1 \psi(s, \bar{t}) \ll k(s, \bar{t}) + O(\varepsilon)$ in \bar{S} .

Consequently, letting ε tend to zero, we have

$$\lambda_1\psi(s, t) \ll k(s, t)$$
 in D .

References

- [1] ARONSZAJN, N., Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950), 337-404.
- [2] MOORE, E. H., A property on positive definite matrices. Bull. Amer. Math. Soc. 23 (1916), 59.
- [3] SCHIFFER, M., and D. C. SPENCER, Functions on Finite Riemann Surfaces. Princeton (1954).
- [4] YOSIDA, K., The theory of Hilbert Space. (Japanese)

SHIBAURA INSTITUTE OF TECHNOLOGY.

108