ON ANALYTIC FUNCTIONS WITH POSITIVE
REAL PART IN A CIRCLE

By Y0saku KoMATU

1. Introduction.

Let R = {@(z)} be the class of analytic functions which are regular and of
positive real part in the unit circle |z2|<1 and normalized by @(0)=1.
Rogosinski [6] has developed a systematic study on this class. It relates
closely to the papers of Carathéodory [1, 2] on the variability region of the
coefficients of Taylor expansion of @(z) & R.

Among several problems Rogosinski has, in particular, dealt with the
estimation on the length of image-curve of |2| =7 (0 <7 <1) by a (not neces-
sarily univalent) mapping @(z)=R. He has reported in the paper cited
above two different proofs for the result. One due to himself depends on
a generalization of Schwarz lemma on bounded functions and another on
the Poisson integral which has been, so he says, really informed him by G.
Szeg6. Though the latter proof is straightforward and simple, a limiting
process has to be taken into account so that the part on fully determining
the extremal functions has been missed out.

The last-mentioned lack in Szegé’s proof can, however, be removed by
making use of the representation of Herglotz type instead of Poisson’s.
The Herglotz representation is really well known but it will be frequently
referred to in subsequent arguments so that we re-formulate it here for
the sake of convenience explicitly as a lemma; for instance, cf. [3].

LEMMA 1. It is necessary and sufficient for @)= R that O(z) is repre-
sentable by means of Herglotz integral

D(z) = r

"tz
e —z

do(p)

T

where p(¢) is a real-valued function defined for —n<@=nm which is in-
creasing and has the total variation equal to unity, i.e.

do(¢)=z0 (—n<¢=n), Sf do(g)=1.

Based on the integral representation stated in lemma 1, we shall first give
an alternative proof of Rogosinski’s theorem. It proceeds formally analogous
as Szego’s but it is effective in determining the whole of extremal fune-
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tions. It will further serve as a model for dealing with more general pro-
blems. Now, the theorem to be proved may be formulated as follows:

THEOREM 1. Let L(r)= L(r; @) be the length of the image-curve of |z|=7r
by a mapping P(z)sR. Then we have

Lir)=r r | 0/(re®)| 46 < 14’””

— 2

and the equality sign in the estimation appears for any fixed r if and only
if O(z) is a linear function which maps |z| <1 onto the right half-plane,
i.e. D(z) 18 of the form (1+e2)/(1 —ez) with |e|=1.

Proof. The representation for @(z) given in lemma 1 implies
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whence readily follows the desired estimation. Any function o(¢) associated
to an extremal function @(z) is characterized by the relation

[F e oo =" T dut)
-z (€7 — re®)? PP —S_W (e" — re®)? Py

valid for every € throughout —x < # <, since both members are continu-
ous in ¢#. This condition is equivalent to the requirement that for every
fixed ¢ the quantity e /(e® —re’®)®> has the same argument for every ¢
(—nw<¢@=m) with dp(p)>0. But, we can show, moreover, that for any
fixed @ this quantity has never the same argument for any distinct values
of ¢. In fact, as ¢ varies from — = to =, the quantity

rei%ei® ret®-®

(" — ,,.eis)z' - (1 — re@-»)2

describes the curve which is described by re®/(1 —re®)® as ¢ varies from
— 7 to =. This curve is nothing but the image-curve of |z| =7 by Koebe’s
function z/(1 —2)%.. Since it is simple and strictly star-like with respect to
the origin, any two distinet points on the curve have never the same
argument. Consequently, in order that p(¢) is associated to an extremal
function, it is necessary and sufficient that o(¢) remains unchanged except
a single jump with the height necessarily equal to unity. Hence, the form
of extremal function is given by

1+4e2

=) = 1—ez

, e=e "%,
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¢o being a real value with —x < ¢ <= where the associated function p(¢)
jumps.

For the functional estimated in theorem 1, the range of integration with
respect to 6 corresponds to the whole circumference —n <0 <rn. However,

the length of the image-curve of any arc on [2|=7 can be also estimated
in a similar manner. In fact, we can state more generally the following

extension.

THEOREM 2. Let E be any measurable set contained in —rn<O=<m.
Then, for any 9(z) R, we have

1+ 7 tan j@E)’

; 8r
@/ 0 < . —
TJE! (re®) | dO = 1o g8 arctan(1 , 1

where mE denotes the measure of E. In case mE >0 the equality sign
holds for any fixed v if and only if E differs from an interval a<60<p
by a set of measure zero and D(z) is of the form (1+ez)/(1—ez) with
e=e @R/ op s=¢ " for f<a+2r or B=a+2m, respectively, ¢, being
an arbitrary real number.

Proof. We obtain quite similarly as in the proof of theorem 1 the
estimation

. df
/ 7.0 - e
jEl(l)('re )1d0§2§E e e

Now, the integrand of the last integral, i.e. 1/(1 —2rcos # + 7% is an even
function of ¢ which decreases strictly as ¢ increases from 0 to n. Hence

we get
df mE/3 de 4 147 mE
e e 2D e = T t — —-tan — — L
L!l—re“’P“ jo [1—reof ~ 1—p2 2T¢ an(l——r Ty )
The assertion about extremal functions is also verified similarly as in
theorem 1.

2. Lemmas.

The main purpose of the present paper is first to generalize Rogosinski’s
theorem 1 to some extent by means of the representation for @(2) R
referred to in lemma 1 and then to establish several mean distortion theo-
rems on the class % in a systematic manner. Namely, we observe a linear
operator £ applied to @(2) and an increasing convex function F(X). Our
problem to be discussed is then to obtain the precise estimate for the fune-

tional defined by
j" F(| £T0(re)]])db 0<r<i)
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within the class R in terms of a definite function of » and further to de-
termine extremal functions for the estimation.

The first part of the problem can be really dealt with similarly as in
theorem 1. It will be shown that the functional under consideration is
majorized by its value attained by substituting (1+¢z)/(1 —ez) with |e|=1
for @(z), i.e. this linear function possesses always the extremal character.
However, other extremal functions can appear for certain operators ..
Accordingly, the second part of the problem is not so simple if we attempt
to determine the whole of extremal functions. It will be convenient to
establish some preparatory lemmas which will serve for this purpose. We
begin with a lemma on an elementary mapping which will play in the
principal lemma an auxiliary role of cancelling the zero-points or poles of a
function without altering its argument.

LEMMA 2. Let ¢=0 be a point in the interior or on the boundary of a
cireular disc |z|<r. Then the function w(z, ¢) which maps |z|<r onto
the whole plane cut along a slit lying on the positive real axis and s
normalized by w(0, ¢)= o, w(e, ¢) =0 and |Res (0; w)| =7 is uniquely deter-
mined and its explicit expression is given by

— p-targc 1 /"2
w(iZ,c)=e (c——z)( _—{;E)'

Let further m be any positive integer. Then the Sunction defined by

-1

2z, ¢)= [] wlz, ce®=m)

k=0

1s a single-valued function of z" regular for z=x0 but not of any higher
power of z.

Proof. The uniqueness assertion of the mapping function is readily veri-
fied, for instance, by means of a theorem on radial slit mapping. That it is
expressed as written in the lemma may be shown directly. In fact, we
have

w(re®, ¢) = *1~10~7'ef"12,
le]
so that the image of |2|=7 by w(z, ¢) is a segment on the positive real
axis. Since w(z, ¢) is regular except a simple pole at the origin, it is surely
univalent in [z|<7. It is evident that the normalization conditions are
also satisfied. Next, it is readily seen from its explicit expression that
w(z, c¢) satisfies for any real ¢ the relation

w(ze?, ¢) = w(z, ce™*?)

which implies
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. n-1
9(262“”/“, C) — H w(zehn/n’ ce2kmn/n)
£=0

n-1
=] w(z, ce** P =/") = Q(z, c).
k-0

Thus, £(z, ¢) being invariant under the substitution z|ze*~*/", it is a single-
valued function of 2”. Since it has a pole of order » at the origin, it
cannot be a single-valued function of a higher power of z.

Now we state the principal lemma which is fundamental for our sub-
sequent discussions.

LEMMA 3. Let ¥(2) be an analytic function meromorphic in |z| < r which
18 non-constant and regular along |z|=1r. Let n denote the greatest integer
such that ¥(z) is a single-valued function of z*. Further let p(¢) be a real-
valued function defined for —x<¢=n which is increasing and has the
total variation equal to P>0. Then, in order that the relation

E \g—ﬁ w'(,’.ei(e—w) d‘[}(s[,) — jiﬂ l qr(,,.ei(e—qn)) ] dP(sﬂ)

holds identically with respect to # throughout —w<O0=m, it 1s mecessary
and sufficient that o(¢) remains unchanged except possibly at mn jump-
points which are distributed equidistantly in —n<@=n. Here m is a
positive integer defined as follows: Let the sets of zero-points and of poles
of ¥ (2) contained im 0<|z|<r which are trreducible with respect to their
arguments taken by mod2r/m be {a:}s.: and {b.}).., respectively, which
are counted acccrding to respective multiplicities, and let N be the greatest
integer such that the function defined by

Y(2) =¥() 1] 2 b) | 1 26, ax)
p=1 ! A=1

18 a single-valued function of z%, 2(z, ¢) being the function introduced in
lemma 2. Then we put N=mn.

Proof. The sufficiency assertion is readily verified. In fact, let p(¢)
remain unchanged except at mn jumps

Goton=0+2(G-Im+kn/mn (O=k=n—1,1=<j<m)

with the heights p;: =0, respectively. Since Y(z) is single-valued in 2™", we
then have

¢ . [ B .
U (re- O %) = Y('re“""?“’)n Q(ret®*-*p q;) | 1—1 Q(ret %% b,)
A=1 [ op=1

so that, by virtue of arg £(z, ¢) =0 valid along |z| =17, there follows
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; §fn w'("'ei(9~¢)) dp(‘P) r

— Y,’.ei(e—%) &S ° D(ret®-eo- jk), a;‘) p Q(re““"""""fk’, bp)
|Ylreoe)| 23 g: « J1 9

p=1

— ‘W qu(,,.ei«;—w [ d50(50)~

The necessity proof proceeds as follows. If the relation under consideration
holds identically with respect to 6, the quantity arg ¥(ze**) with any fixed
z=17re"® must have the same value depending only on 6 for every value of
¢ with do(¢) >0 provided ¥(ze **) does not vanish. Hence, £(z, ¢) being real
and positive along |z| =7, arg Y(2¢"*) has also the same property. Let ¢,
and ¢; be any values of ¢ with dp(¢)>0, and we observe the function
defined by
Y(ze %)

= gy
Since Y(z) is regular and non-vanishing throughout 0<|z|=Z7r, X(2) is re-
gular for |z| <7 even at z2=0. Further it remains real and positive along
|z]|=7. In general, any bounded set lying entirely on the real axis cannot
be the boundary of the image of [z|<r by a (not necessarily univalent)
mapping regular there unless it degenerates to a single point. Consequently,
X(z) must be a constant which is real and positive. Let the Laurent ex-
pansion of Y(z) be

Y(2) =3 cvz™

where {n,} is a strictly increasing (finite or infinite) sequence of integers
for which the sequence of corresponding coefficients {cy} does not involve
zero. We then get

Y(ze **0) = X(0) Y(ze~ 1)
and obtain further, by comparing the coefficients of 2™,
e~ = X(0)e ™1
for any ». Since X(0) is real positive, we get X(0)=1, whence follows
(1 — @o) =0 (mod 2r)

for any vr. Now since N=mn is equal to the greatest common measure of
the set {n,}, there exist two members of the set, n, and ns say, such that
N is just the greatest common measure of them. Hence, for some integers
% and v, we have un.—vns=N. Consequently, the above relations applied
to ny =n, and to ny =ns imply

N(p1—¢0)=0 (mod 27).
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Thus, ¢, and ¢, being arbitrary pair where do(¢) does not vanish, it has
been shown that p(¢) must possess the property stated in the lemma.

For subsequent purpose it will often become necessary to know the actual
values of the integers m» and m defined in lemma 3. Accordingly, as a
supplement of this lemma, we pick out particular cases for which we for-
mulate the following lemma.

LEMMA 4. In lemma 3, if {a,} and {b.} are, in particular, both vacuous,
namely if ¥(z) is regular and non-vanishing throughout 0<|z|=r, then we
have m=1. Further if ¥'(0)%0, then we have n=1.

It may be noted by the way that, if ¥(z) has zero-points or poles, then
m may be actually greater than unity. It may be illustrated by an ex-
ample. Let 0<|a| <7 and put, as before,

2z, a)= nf ]1 w(z, ae?™/m),
%&=0

Then this function is a single-valued function of 2* but not of any higher
power of z. Hence, the function defined by

U(z) =20z, a)

with any positive integer m is also of the same nature. But, for any p(p)
with the jumps alone at mn values ¢;=2((j —Dn+k)xr/mn 0=k=n-—1,
1=<j=<m) with any respective heights p;;, we get

7 ' | n-1 m n-1
S_ U(rei®®) dolg) | = }‘ 321 > Ve o) o) = le e ) p
m n-1 7 .
B z; kzz) Wr(rei(e—ﬂvjk)) ijk — § |Qf(,,.ez<e-<p>) | dP(‘,D)-
=1 &= -7

3. Main results.

We are now in position to formulate our main theorems. We observe a
linear operator .£ which has R as its domain of argument funection and
produces by applying to any O(z)=R an analytic function .£[®(2)] single-
valued about the origin. It is supposed that the operator is homogeneous
of degree zero, i.e., for any constant ¢, the function .£[®(2)] coincides after
substitution 2z]ecz with £{®(cz)]. In particular, we have

e* 4z 14 e %27 1+CT=€""°2
JC TR — | o R a2 .
‘f[e’?—z [l—e‘”’z 9&;[1_:

THEOREM 8. Let £ denote a linear operator defined for ® and L[0(z)]
applied to D)= R be an analytic function meromorphic in |z|<r(<1)
and regular along |z|=r. Let L be commutable with the integration with
respect to p(p) in the representation for O(z) stated in lemma 1. Let
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further F(X) be a bounded increasing convex (and hence necessarily con-
tinuous) function defined for the range of |.L].
we have

Then, for any @) R,
K F(lf[@(re“’)]l)dﬁégf F( ,cH’L

re? ] )as.
—7re |

The function (1+¢€2)/(1—ez) is for any constant ¢ with |e¢|=1 always an
extremal function of this estimation.
Proof. The representation for @(z) given in lemma 1 implies

) g i io - «
|ctowen]i= |7 o[ SoTre ) <

P ,,.eie
i,lie +7re®

e® — rei’e] do(),
since the operation £ and the integration with respect to p(¢) are supposed
commutable.

The increasing character and the convexity of F(X) imply
further

F(| L[D(re™)] I)§F<_V I[e“’ + re®

oLt ] dew)
< r F(' I[w +“"i°] ) do(e)
= . ei/p _ 7'610 i ’

since p(¢) is increasing for —7 <@ <= and has the total variation equal to
unity. Hence, integrating with respect to ¢, we get

S_ﬂF(I_C[@(frei")]|)d6§$ldﬁS:F<l f[iifﬁiz] )dete)
S: aote) " F(|c[E 0] )ao- S:F<l <[ tres]|)ae.

—re® re’
For @(z) =(1+¢ez2)/(1 —ez) with |e|=1, it is evident that the equality sign
holds surely in the estimation.

In dealing entirely with extremal functions in the estimation stated in

theorem 3, we first consider especially the case where F(X) is linear.
Then, by virtue of the homogeneity of the relation to be considered, we
have only to observe the case F(X)=X.

THEOREM 4.

Under the conditions imposed on L inm theorem 3, suppose
Surther that £L(1+2)/(1—2)] 18 non-constant and let n denote the greatest

integer such that it is a single-valued function of z".

Then the relation
1+ re®
+ [ 1—7e® J

j: | LT Ore™)] |df= r

-7

holds if and only if @(z) is of the form

0

m n-1 2((-Dn+k)me/mn
e + ez
¢(Z) = 3__,;_1 E_' p =

K 9((s-1 1y
=0 62((] Dr+kd>mL/mn — &z
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where & is a constant with |e|=1 and {piu} is a set of real mumbers
satisfying

and m is a positive integer defined in lemma 8 in which ¥(2) is replaced
by L[(1+2)/1—-2)].

Proof. Based on the proof given above for theorem 3, we see that the
extremal character of @(z) is characterized in terms of its associated funec-

tion p(¢) by the requirement
ew_’_,,.eiO]
— 1~ ld
l:e“"—re“’

7 e + re®®
X_WI[;{; e@e:, (SD)I—s
to be valid identically with respect to §. We now apply lemma 3 to the
function defined by

o(e)

1+27
re=r) 17,
whence follows that for any extremal function @(2) its associated func-
tion p(¢) remains unchanged except possibly at ¢o+2((j—1n+k)n/mn
0=k=n—1,1<j=m) with the heights p;, =0, respectively, say; here m,
n and {p;:} satisfy the conditions mentioned in the theorem. Thus, any
extremal function must have the form stated in the theorem with &=e ",
Conversely, for any function of this form the relation under consideration
holds good, as seen in the proof of lemma 3.

In case F'(X) is non-linear and hence strictly convex, the condition in
theorem 4 imposed on extremal function is to be modified by supplementing
a further condition.

THEOREM 5. Under the conditions imposed on .L and F(X) in theorem 3,
let further the imcreasing function F(X) be strictly convex. Then the
equality sign in the estimation given im theorem 3 holds for any fixed r
if and only if @(z) is of the form given in theorem 4 and all those mem-
bers among m quantities

‘I[ 1 +,rei(e—<°,,-2(1-1)at/m) :' ‘

1 — ,rei(e—%—z(J-l)’N/m)

(4=1,---,m)

which correspond to the mon-vanishing S%iZ; pjx have the same value for
any 0 throughout —n<O=m.

Proof. The condition that the equality sign appears in the estimation
given in theorem 3 is equivalent to the requirement that the function p(¢)
associated to an extremal function @(z) satisfies beside the relation
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E ez‘P + ,,.eze ‘ ei¢ + ,,.eie
L = g R
S_ﬂ [e”’ e“’] dplg) § l{e”—re“’]

a further relation

£ et® +-,r€1,9 . I gt® + ret® 5)
Fq-ﬂ "C[e re“’] ae (¢)> S_@F< Lo re“’][ aely)
also identically with respect to #. The first relation implies the consequence

stated in theorem 4. Now, for any function of the form written in theo-
rem 4, we get

P[4t res] o) =

and
w 1<P+,rew
X_WFGIL;“” 're“’]
since £[(1+2)/(1—2)] is a single-valued function of 2z*. F(X) being sup-
posed strictly convex, the right-hand members of the last two equations

are equal for any 7 if and only if the last-stated condition of the theorem
is satisfied.

do(p)

MS

n

n-1 1+,’.ez(e Po-2¢7-1DT/m)
2 Ok «f[ e —2(-

1 = 1 — per@-Po-20- Dm/my

m n-1 1+/’.ez(e Po-2Q-Dxm/ M
> d‘O(‘f) = ;1 ,?/—’:)pj"F(‘ {:1 — pet@-e0-2G- 1'>ﬂ/m>:l [)

A remark may be supplemented. Let d denote the greatest common
measure of the set consisting of those integers among {j};.: for which
S1%2 pjr does not vanish. Then the last condition of theorem 5 is equivalent
to the requirement that the quantity | £[(1+4re®) /(1 —re®]|, qua function
of #, has 2d=/m as a period. In particular, if 3'%2 01 does not vanish for
an integer j relatively prime to m, the condition is satisfied with d =1.

In case m =1, the last condition of theorem 5 degenerates to the trivial
one, whence follows the following corollary:

COROLLARY. The equality sign in the estimation given inm theorem 8 (and
a fortiori that given im theorem 4) holds for any fized r if and only if
@(z) is of the form

n-1 eZIc'M/n_,_ez

@(Z) ZE) Ly eZk'm. "i/n 78727

with
n-1
lel=1, pz00sksn-1, S e=1,

provided F(X) is strictly increasing and the value of the integer m defined
wn lemma 3 in which ¥(z) is replaced by LT(1+2)/(1 —2)] is equal to unity.

Though the following result is an immediate consequence of the corollary
of theorem 5 combined with lemma 4, we write down it here for its fre-
quent use in the subsequent discussions.
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THEOREM 6. Under the conditions imposed on L and F(X) in theorem 3,
let £[(1+2)/(1—2)] be non-constant, regular and non-vanishing for 0 <|z|
<r and F(X) be strictly increasing. Then the equality sign in the estima-
tion given in theorem 3 holds for any fixed r if and only if ®(z) is of the
form given in the corollary of theorem 5. If, moreover, L[(1+2)/(1—2)]
satisfies an additional condition that its derivative does mot vanish at
2=0, then the extremal function must be of the form (14 ez)/ (1 —ez) with
lel=1.

In theorems 4, 5 and 6, it has been supposed that L[(1+2)/(1—z2)] does
not reduce to a constant. However, it is to be noted that, if it reduces to
a constant, the operator . degenerates identically to a constant, i.e. its
range consists of a single constant function. In fact, we then get by means

of lemma 1 £[0R)]=.L[(1+2)/A—2)] for any &(z) < R.

Here we supplement a remark on the corollary of theorem 5. We now
suppose for a while that the operator £ is also applicable termwise to the
Taylor series of argument function of which the bases 2¥ (v=0,1,2, ---) do
not belong to R except the first one. Then we get, in particular,

o[ 1 HE ] = oy S o
1—2 V=1

Consequently, the condition that this function is single-valued with respect
to 2" is equivalent to the system of conditions

L[2¥]1=0 for v=x0 (mod n),

[ itz [lffj

i[l—z]_i’ 1—2" |

In particular, the quantity £[®(z)] is then for any @(z) also a single-valued
function of 2*. Thus, if we put

whence follows

LI0@]=¢")  and .,c[ }jg] = gH(am) = ,,g[ ifz]

the inequality stated in theorem 3 becomes

|” Pagememmpan = j

T F(¢rem) ) de

which is evidently equivalent to

r F(l«p(tew)l)dagr F(lg*tes))do,  t=rm.

The last relation coincides formally with that given in theorem 38 with ¢
instead of r and applied to an operator which transforms @(z) into ¢(z).
The corollary of theorem 5 then asserts that for such an operator the
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equality sign in the last estimation is realized not only by a function of
the form (1+#72")/(1—72") with [5|=1 but also by any function of the

form mentioned there.

4. Consequences.
Rogosinski’s original theorem 1 is, of course, a particular case of theorems
3 and 6. In fact, putting

r=2% and FX)=X
dz

we get from theorem 3
T ; = 2 dnr
/(re’® = - o df = .
’I‘j‘_wl@(re )lda“j_.ﬂrll—relelz 0 1—17r2
Since then the funection
1+27_ 2=
SR et
does not vanish in 0< |z| <1 and has the non-vanishing derivative at 2=0,
theorem 6 implies that the extremal function is of the form (14 ¢2z)/(1 — e2)

with |e|=1.

In theorem 38, several sorts of choice are possible for .£ as well as F.
Thus, for instance, we may take as £ any operator which transforms @(z)
into a linear combination of ¢« (r;z) (u=0,1,---, M;5=1,---,J), I, being
arbitrary constants with |r,| <1/r. Among such operators we choose here
as illustrating examples two special ones and state the following theorem
which involves in itself Rogosinski’s theorem 1 as a particular case.

THEOREM 7. (i) Let n be a positive integer, v a non-negative integer and
p=1 a real number. Then, for any O(z) R, we have

T};sﬁ T’(ng" 0 1+ 1re® Pd0

rv 1 — e
The equality sign holds for any fixed r if and only if @(z) is of the form

n-1
2 e—zvkﬂz/n @(v)(,,.ei(e—zkac/n))
k=0

0<r<i).

n-1 e2k4rz/n+£z
O(z) = e TER
(2) ,;_’:)pk e2ETI/N _ oy
where ¢ and {p;} %20 are defined as in the corollary of theorem 5.
(ii) Let n be an even positive integer, v a non-negative integer and p=1

a real number. Then, for any &) R, we have

_1_5“
O

T oY 200 (7
orY 1 —rne*®

O<r<l).

"21 (_l)ke—zwm/n @fv)(,,.ef(e—zkn/n)) pdﬂ < S
k=0 -

-
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The equality sign holds for any fixed r if and only if @(2) is of the form

n/2-1 eikTL/n + &z

U = 205 gunirn gy
with
le]=1, pe=0 (0§/¢§i—1>, " pe=1.
2 =0

Proof. (i) Applying theorems 3 and 6 to the pair

o] =2 -F —%—Tg@(ze‘z""”") and F(X)=X?,

dz¥
the desired result follows readily after reducing both members by »*?. In
fact, we have only to remember the identity

1 n-1 1 ze—zkﬂz/n 1 n-1 o .
i 2 + ok — s E 1 + 2 2 zhefzhkﬂw/n
n ko 1 — ze T/ n =0 #=0

& 142
1423 o= 2H2

in which the last member shows, in particular, that £[(1+2)/(1—2)] is
single-valued in 2" but not in any higher power of z, and then to transform
the estimate by changing the integration variable ¢ into ¢/n, whence follows

s" pd0=r 0¥ 1+47rme® |

or’ 1+ rme®
(ii) We can proceed similarly as above. We now take

dv
dz¥

> 14 (re)"
d(re®)y 1— (re®)"

LT0(2)] = 2 %g(—l)"@(ze"”“”") and F(X)=X?

and remember the identity

1 -2k .
RIS — 1) 1+ze®™/m 1 %l 1 9N phg-2hk i/
2 (=1 copmiyn = 2 (11423 2%
n E=0 1 —ze %7/ n E=o =1
0 2zn/2
_ w+i/2n —
_zgz - 1_ n
w=0 2

in which the last member shows, in particular, that £[(1+2)/(1—2)] is
single-valued in 2"/% but not in any higher power of z. The estimate then
becomes after change of variable

j‘ﬂ dv 2(7-ei())n/2 ,pd”: ﬁfn

d(reid)" 1 — (re®®n
For F(X)=X?, the inequality on convex functions used in the proof
of theorem 8 reduces to Holder’s. More particularly, it degenerates for
F(X)=X to a trivial one, as seen in the proof of theorem 1.

av 27‘"/23i9 » 9
ory 1— rreio




FUNCTIONS WITH POSITIVE REAL PART IN A CIRCLE 7

On the other hand, it may be noted that in theorem 7 the operation
2¥(d/dz)” involved in £ can be replaced, for instance, by (zd/dz)* = (d/d Ig z)
whence follows an analogous theorem.

It will be readily verified that, corresponding to the formulation of
theorem 2, the range of integration in the estimation may be replaced by
any measurable set E instead of —7n <6 <=s. For instance, the estimation
in theorem 7 (i) reduces for » =1 after this generalization to

mB/2 10
25 Trres[as (v =0),
j |0 (re)pdg <! *° e
E - | ovp mE/2 dé
¢12) 2&) |17— ’I'e‘(’l(““)p =12 )

and the equality sign holds in every case for any fixed » if and only if @(2)
is of the form stated in theorem 2 provided mE is positive.

We remember here by the way that we could consider the functional
(d/dz)’(@(z) — 1) instead of (d/dz)*@(z). Then the above estimation for v=0
would be replaced by

mE/2 do

together with the same extremal functions, in conformity with the result
given above for v >0; cf. also a remark at the end of this section.

Here it is noted, by the way, that the integral of the form

Sx(r a)———j‘6 dﬁ». =§6~ : a

! 0|1 —re®|* o (1 —2rcost 4+ r2)*/2
with any constant ¢ =0 can be evaluated in terms of elementary functions
provided 4 is an even integer. Here we are interested in the case 2>0.
Actual calculation will show that there exists, in general, a recurrence
formula

2

d
XTA/Q‘I(l — )2 dr (r*28x(r, o).

S)x+2(7'r d) =

We may suppose 0<os=r. Since we have, in particular,

o dh 2 1+7r o
Sy(r, o) =§0 '|1——rei9[2: 1 g arctan(\ 1 -’__T tan 9 ),

the quantity Si(r, o) with an even positive integer 4 as suffix can be obtained
from Si(r, 6) by means of repeated differentiation combined with elementary
operations. We observe, for instance, the particular case 6 ==. Then, since
we have Sy(r, n)=n/(1—17r?%, it is evident that Sia(r, ) with such a 2 is
a"rational function of 2. Moreover, it will be verified, for instance, by
induction with respect to 4/2 that Si(r, =) is expressed by the formula
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As2-1 2/2_ 1 2
S , = T Y‘ < . ) 27
A(r, ) (1= oyt ; r
provided 4 is an even positive integer. On the other hand, for such a 1 the
quantity defined by
o 1+ re®
ol 1—1re?®

e (0 2047y V2
dﬁ_&(l——%cosd-ﬁ-rz 1) do

Txr, o) = S
is connected with Si(r, o) by the relation
A2 (22
Txr, o) = 21 (—=1)*2 "< B >2"(1 + r2Sor(r, 0) — (—1)*/2.
=

In particular, the quantity T.(r, n) with an even positive integer 4 as suffix
is a rational function of »* which can be explicitly written down.

As the next example illustrating a consequence of theorems 3 and 6, we
state here the following theorem:

THEOREM 8. Let p=1. Then, for any 0z)E R, we have

T 1 |

S 2lg o "= re®l dl (0< r<D.
—x 1—re®

The equality sign holds for any fixed r if and only if ©(z) is of the form
1+ez)/A—ez) with |e] =1.

S’ D(te) dt ipddg r
0 —7

Proof. We may put in theorems 3 and 6
L0(z)] = i rq)(z) dz— :_ g O(te)dt (z=re®) and F(X)= X7,
0 0

whence readily follows the desired estimation after reducing both members
of that obtained from theorem 8 by 1/r?. In applying theorem 6, we have
only to verify that £I1+2)/(1—2)]=—2"121g (1A —2)+2) does not vanish in
0<|z|<1. Itcan be shown moreover that L[®(z)] for any &(z) = R vanishes
nowhere in |z|<1. In fact, the condition @(z) =R implies by virtue of a
theorem due to Noshiro [4] and Wolff [7] (see the remark below) that its
integral is univalent in |z| <1, so that [®(z)] does not vanish in |2z| <1.

REMARK. In this occasion, for the sake of convenience, a very brief proof
will be given of the theorem due to Noshiro and Wolff in a slightly precise
form:

Let f(z) be regular and satisfy Rf'(z)>0 in a convex domain D. Then,
for any points z; and z; in D, we have

e — 23

In particular, f(z) is then univalent in D.
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In fact, the point z; + t(z; — 2;) describes, as the real parameter ¢ varies
from 0 to 1, the segment connecting z; and 2, which lies in D. Hence, we get

g [z —fle) _ 51 RF(21 + t(zs — 1)) dit > 0.
2y — 21 0

Cf. Ozaki [5].

While the funetion —lg X is convex for X >0, it is not increasing so that
theorem 3 cannot be applied directly for F(X)= —1g X. However, a sup-
plementary inequality can be derived with reference to this function.

THEOREM 9. Let L satisfy the condition mentioned in theorem 8. Then,
for any O(z)E R, we have

1 ( i < (1_ j v ' [ }_Jr_ref"_}

o | Elctoreniansig (5|7 | [ 1E a0
O<r<l).

Under the conditions imposed on L im the corollary of theorem b5, the

equality sign appears for any fixed r if and only if O(z) is of the form
stated there and further | LL(1+ re®) /(1 —1re®)]| is independent of 6.

Proof. By taking F(X)= X/2r in the estimation given in theorem 3,

we get
1 0 <;L§" [17“9‘]
- X_ﬂlaf[@('re o<, | || [T |as
This combined with the concavity of lg X then implies

1 j " ig | clogen)la sl (%j |LT0re] | d0)

2r
1 14-re®
<
=1g(27r j_n[,c[l Me} d0>.
In the last relation, the equality sign of the first inequality holds if and
only if | £L]®@(re®) 1| is independent of #, while that of the second holds if
and only if @(z) is of the form stated in the corollary of theorem 5, provided

L satisfies the conditions imposed there. But, for any @(z) of the last-stated
form, we have

2k / n-1 1
e +sz]__zp "EHJ:Z] I[l_tﬁ

110@1= S e L] Grin T2 = S 1— ez

and hence | £[P(re®)]| and | _£[(1+7re®) /(1 —re®)]| are simultaneously inde-
pendent of 6 or not.

Finally, it is to be noticed that throughout the present paper the results
obtained for R can be suitably modified for several other classes similar to
R. The most essential point in our discussion is that any member of the
class admits an integral representation of the form
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o(z) = jf K(e "z)dp(¢)

with a certain kernel K(e **z) which is in itself a member of the class for
every value of ¢ and corresponds to (e +2)/(¢*” —2) in case of R. It may
be seen, however, that theorems mentioned in §83 involve substantially such
extension. In fact, the transform £[(1+2)/(1—2)] may be of quite general
nature so that £[@(2)] and .L[(1+2)/(1 —2)] can then be replaced by L£[9(2)]
L[ K(e *2)], respectively.

5. Applications.

Corresponding to length-distortion stated in theorem 1, we can derive as
a consequence of itself an analogous estimation on areal distortion.

THEOREM 10. Let E be any measurable set contained in —n<0=n.
Then, for any @)= R, we have

Sr r d,,.s I@/(,,.eie) |2 dﬁ < [ 8”'2 arctan <T}+T,> -+ ’r 5 (T(l — 'I‘) + }i—_”;>
B -7 1—7r T

" (1 —7r2 1
1+ 72)? 2tr :,T
Ty tan - - 2TC
o2 AN Y@=y

0=r,<r<l

where we put v =tan (mE/4) and denote by mE the measure of E. In case
mE >0 extremal functions are characterized by the same condition as
stated in theorem 2.

Proof. As a particular case of theorem 7 (i) we have noticed subsequently
to its proof an estimation

; mE/2 df 4 d 2r 1+7r
/) 0\ |2 < — . = - L N
§E|<D(re )| d0_4j0 11— et = 1— g2 dr(l o arctan (11 'r>>

Integration with respect to », after multiplied by r, leads readily to

r d ( 2r , arctan <rl +7‘—>) dr

r / 0\ |12 S " ~ o
g rd’rL]@(M ) d0_4gr01_72 L, LA

7o
and actual evaluation of the last integral gives the desired result. The
assertion on extremal functions is also evident.

The estimate in theorem 10 expresses, of course, the area of the image-
domain of the curvilinear quadrilateral |argz|<mE/2, ro<|z|<r by the
mapping (1+2)/(1—z). In theorem 10, the case where E covers the whole
circumference and 7, becomes 0 may be of practical interest so that it will
be especially stated below.

COROLLARY. Let A(r)= A(r, @) be the area of the image-domain of |z|<r
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by a mapping O(z) € R which is counted according to the multiplicity. Then
we have

A('r)zj:rdrs |0/(re)2df < - 277 O<r<1),

1-r >
and the equality sign appears for any fixed r if and only if @(z) is of the
Jorm (1+¢e2)/(1 —ez) with |e|=1.

The estimate in this corollary is naturally equal to the limit value of the
estimate in theorem 10 as r,—0 and mE—>2r, i.e. t—>oo. If we would
attempt to obtain this corollary alone, direct calculation would lead to the
result in simpler way. In fact, we have

= 4dd "1+ r?) 4rr®
j cm 1=t "8’{ Qe T gy

A(r) = SO rd

On the other hand, this corollary may be regarded also as a particular case
of a more general theorem 11 which will be formulated below. However,
it will be of some interest that this particular case is also a consequence
of theorem 1 combined with eclassical isoperimetric inequality which can be
shown to be valid also in case of multivalent mapping. In fact, we have
simply
2 < dnr \2_ dnr?
Alr)=- L(r) 4r <‘1—r2‘> T -y

Any extremal function for the second inequality maps |z| <7 univalently
onto a circle and hence it possesses simultaneously the extremal character
for the first inequality. On the other hand, the same result may be re-
garded alternatively as a consequence of a well-known estimation for Taylor
coefficients of @(z)R. In fact, let the Taylor expansion of @(z) be

2R)=1+ 302,
Then, by means of the representation stated in theorem 1, we get
|cv|=\2j” e dplg)| <2 v=1),
and hence
A(r) = S rdr§ | @' (re®®) |2 di= S rdrzngﬂc\flzrz“‘z

4rr?

oo o0
=X v rYE4dn D ur = .
rvlelrsdr (1 —r2)?

The extremal functions are characterized here by |¢,| =2 for any v =1 while
even a single equation |¢;| =2 implies @(z) = 1+ ¢2) /(1 —¢ez) with [e| =1.

From the integral representation given in theorem 1, we see that, for
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any 2z in |z] <1, the point @) =R laid on the w-plane lies always in the
interior of the circle described by w = (e + 2)/(¢"* —2) as ¢ varies from —=
to n. Consequently, the range of @(z) originating from |z|<r(<1) is con-
tained in the range-circle of (1+2)/(1—2) as 2z varies throughout (2| <7r.
But @(2) may be multivalent so that this inclusion does not necessarily
take place in the sense of subordination. However, the areal distortion il-
lustrated above shows that the area of the image of |2]| <» by @(z) which
is counted according to multiplicity does not exceed the area of the image-
circle of |2| <7 by the mapping (1+2)/1 —=2).

Now, theorem 10 is a particular case of theorem 11 formulated below
which is in itself an immediate consequence of theorems 3 and 6.

THEOREM 11. Under the same assumptions as in theorem 3, we have

j" rdr S " F(cL0tre®)]) df < jr drfﬂ F(| Hj_r :ﬁj/ ) 40

(O§TO</"<1)r

and the function (1+¢e2)/(1 —ez) s for any ¢ with |e|=1 always an ex-
tremal function of this estimation. By supplementing further assump-
tions of theorem 6, we can conclude that the equality sign appears, for
any fixed ry and r, if and only if @(z) is of the form stated in theorem 6.

6. A supplement.

In conclusion, we supplement here a slight remark. Rogosinski [6] has
also pointed out that the length of the image-curve of any radial segment
argz=40, 0<|z|<r by a mapping &(z) =R can be estimated by

yltp’(tei")ldtg 2
0 1—7»

But this result is a quite immediate consequence of a distortion theorem
on the class % which may be re-formulated here as follows:

LEMMA 5. For any @(z) N, we have

1+1z]

@iz 11 N
- vl 2 —1.2
A=zl b=tz

The equality sign holds at any assigned point te® with 0<t<1 if and
only if @) =1 +e2)/(1—ez) with &= e,

Proof. From lemma 1 we have, for any @(z)c R,
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o i
OV (2) = T 9
= e — P
[[ @Bty =12
With 7
)20 (—r<gsm, | detg)=1,

whence readily follows the desired results.

By means of this lemma, Rogosinki’s result stated above can be quite
readily verified. In fact, we may formulate the following theorem:

THEOREM 12. Let 0= r,<r<1. Then, for any @(z) =R, we have

i 21g LT (7o) (v=0),
S ' @(v)(teie) [ dt g 1 1
" y—1)! — =
(=112 Ay (I_W> w=1,2, ---).

The equality sign in every case holds for assigned values of ro, v and 0 if
and only if @(z) is given by (e +2)/(e® —2).
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