
ON ANALYTIC FUNCTIONS WITH POSITIVE
REAL PART IN A CIRCLE

BY YUSAKU KOMATU

1. Introduction.

Let $ = {Φ(z)} be the class of analytic functions which are regular and of
positive real part in the unit circle | z \ < I and normalized by Φ(0) = 1.
Rogosinski [6] has developed a systematic study on this class. It relates
closely to the papers of Caratheodory [1, 2] on the variability region of the
coefficients of Taylor expansion of Φ(z) e 3ΐ.

Among several problems Rogosinski has, in particular, dealt with the
estimation on the length of image-curve of | z \ = r (0 < r < 1) by a (not neces-
sarily univalent) mapping Φ(z) e 9ΐ. He has reported in the paper cited
above two different proofs for the result. One due to himself depends on
a generalization of Schwarz lemma on bounded functions and another on
the Poisson integral which has been, so he says, really informed him by G.
Szegδ. Though the latter proof is straightforward and simple, a limiting
process has to be taken into account so that the part on fully determining
the extremal functions has been missed out.

The last-mentioned lack in Szego's proof can, however, be removed by
making use of the representation of Herglotz type instead of Poisson's.
The Herglotz representation is really well known but it will be frequently
referred to in subsequent arguments so that we re-formulate it here for
the sake of convenience explicitly as a lemma; for instance, cf. [3].

LEMMA 1. It is necessary and sufficient for Φ(z) e Oΐ that Φ(z) is repre-
sentable by means of Herglotz integral

ί
™ 0iφ I

_>ΐ-
where f>(ψ) is a real-valued function defined for — π < φ 5Ξ π which is in-
creasing and has the total variation equal to unity, i.e.

\
J--

Based on the integral representation stated in lemma 1, we shall first give
an alternative proof of Rogosinski's theorem. It proceeds formally analogous
as Szegδ's but it is effective in determining the whole of extremal func-
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tions. It will further serve as a model for dealing with more general pro-
blems. Now, the theorem to be proved may be formulated as follows:

THEOREM 1. Let L(r) = L(r; Φ) be the length of the image-curve of \ z \ — r
by a mapping Φ(z) e 3̂ . Then we have

L(r) Ξ r Γ Φ'(reίQ) \ dθ ̂  ^r

2

and the equality sign in the estimation appears for any fixed r if and only
if Φ(z) is a linear function which maps z \ < 1 onto the right half-plane,
i.e. Φ(z) is of the form (1 -f εz)/(l — εz) with \ε\ =1.

Proof. The representation for Φ(z) given in lemma 1 implies

Γ \Φ'(reiθ)\dθ = Γ dθ\ Γ . 2e^ . (>dp(φ)
\ I I I (0^ /V <9*«\2 ' '

J — 7C J — 7ΐ \ J — T C \ t / / & )

~\ dθ\ . ~ e dρ(φ] = dρ(φ) \ .----- ------: - - dθ
J-<π J-<π (β — rewγ J-OT J-^ | i —re I

-Π.1Ϊ
whence readily follows the desired estimation. Any function p(<p) associated
to an extremal function Φ(z) is characterized by the relation

. L W-re"? dp(ψ) ' = j

valid for every θ throughout —π<6^π, since both members are continu-
ous in θ. This condition is equivalent to the requirement that for every
fixed θ the quantity e'lφ/(e^~ reiθ)2 has the same argument for every φ
(—π<φ^π) with dp(φ)>Q. But, we can show, moreover, that for any
fixed 6 this quantity has never the same argument for any distinct values
of if. In fact, as if varies from — π to π, the quantity

reiθeίφ γtfw-w

(eίφ -'re'*)2' = (1 - re1"-™)2

describes the curve which is described by reiθ/(l — re*0)2 as β varies from
— π to π. This curve is nothing but the image-curve of \z\=r by Koebe's
function z/(l — z)2. Since it is simple and strictly star-like with respect to
the origin, any two distinct points on the curve have never the same
argument. Consequently, in order that p(φ) is associated to an extremal
function, it is necessary and sufficient that p(φ) remains unchanged except
a single jump with the height necessarily equal to unity. Hence, the form
of extremal function is given by

— εz
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<po being a real value with — π < ψo ̂  π where the associated function p(φ)
jumps.

For the functional estimated in theorem 1, the range of integration with
respect to 6 corresponds to the whole circumference — π < θ ̂  π. However,
the length of the image-curve of any arc on \z\=τ cari be also estimated
in a similar manner. In fact, we can state more generally the following
extension.

THEOREM 2. Let E be any measurable set contained in — π<θ^π.
Then, for any Φ(z) <Ξ Sft, we have

r { \ Φ'(re») \dθ^Λ

 Sr - arctan (-} + r tan
]Έ 1 — r \ 1 — r 4

where mE denotes the measure of E. In case mE > 0 the equality sign
holds for any fixed r if and only if E differs from an interval a < θ < 0
by a set of measure zero and Φ(z) is of the form (1 + sz) / (1 — εz) with
£_. e -icoc+β)/2 or ε = e-ί<pϋ for j9<^-j_2τr or β = a-\-2π, respectively, φ0 being
an arbitrary real number.

Proof. We obtain quite similarly as in the proof of theorem 1 the
estimation

\Φ>(re«)\dθ<iί} , . Θ J 2 .
dθ

l-reί(

Now, the integrand of the last integral, i.e. 1/(1 — 2r cos θ + r2) is an even
function of θ which decreases strictly as 6 increases from 0 to π. Hence
we get

dff ^9

"̂ '" S2 Jo

The assertion about extremal functions is also verified similarly as in
theorem 1.

2. Lemmas.

The main purpose of the present paper is first to generalize Rogosinski's
theorem 1 to some extent by means of the representation for Φ(z) e 9ΐ
referred to in lemma 1 and then to establish several mean distortion theo-
rems on the class 9ί in a systematic manner. Namely, we observe a linear
operator x applied to Φ(z) and an increasing convex function F(X). Our
problem to be discussed is then to obtain the precise estimate for the func-
tional defined by
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within the class 9Ϊ in terms of a definite function of r and further to de-
termine extremal functions for the estimation.

The first part of the problem can be really dealt with similarly as in
theorem 1. It will be shown that the functional under consideration is
majorized by its value attained by substituting (I + εz) / (I — εz) with | ε | = l
for Φ(z), i.e. this linear function possesses always the extremal character.
However, other extremal functions can appear for certain operators ~Γ.
Accordingly, the second part of the problem is not so simple if we attempt
to determine the whole of extremal functions. It will be convenient to
establish some preparatory lemmas which will serve for this purpose. We
begin with a lemma on an elementary mapping which will play in the
principal lemma an auxiliary role of cancelling the zero-points or poles of a
function without altering its argument.

LEMMA 2. Let c^O be a point in the interior or on the boundary of a
circular disc \z\^r. Then the function ω(z, c) which maps \z\ <r onto
the whole plane cut along a slit lying on the positive real axis and is
normalized by ω(0, e) = oo, ω(c, c) = 0 and | Res (0; ω)\ = r2 is uniquely deter-
mined and its explicit expression is given by

ω(z, c) == e~l^c(c - z) 1 - 4- .
V czj

Let further n be any positive integer. Then the function defined by

n-l

Ω(z> c) = Π ω(z> ce2k/πl/n)

is a single-valued function of zn regular for z^Q but not of any higher
power of z.

Proof. The uniqueness assertion of the mapping function is readily veri-
fied, for instance, by means of a theorem on radial slit mapping. That it is
expressed as written in the lemma may be shown directly. In fact, we
have

ω(reίθ, c) = -η -\c - reίQ\2,

so that the image of \z\=r by ω(z, c) is a segment on the positive real
axis. Since ω(z, c) is regular except a simple pole at the origin, it is surely
univalent in | z \ < r. It is evident that the normalization conditions are
also satisfied. Next, it is readily seen from its explicit expression that
tϋ(z, c) satisfies for any real φ the relation

which implies
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n-1

= [ ω(z, ce2(*-1)Λt/n) = Ω(z, c).
A-O

Thus, Ω(z, c) being invariant under the substitution z\ze2tnl/n, it is a single-
valued function of zn. Since it has a pole of order n at the origin, it
cannot be a single-valued function of a higher power of z.

Now we state the principal lemma which is fundamental for our sub-
sequent discussions.

LEMMA 3. Let Ψ(z) be an analytic function meromorphic in \ z \ < r which
is non-constant and regular along \z\=r. Let n denote the greatest integer
such that Ψ(z) is a single-valued function of zn. Further let p(φ) be a real-
valued function defined for — π < ψ ̂  π which is increasing and has the
total variation equal to P>0. Then, in order that the relation

Γ Ψ(reUQ-^)dto(φ) =Γ
J — 77 J — π

holds identically with respect to 6 throughout — π < θ ̂  π, it is necessary
and sufficient that p(ψ) remains unchanged except possibly at mn jump-
points which are distributed equidistantly in — π<φ^π. Here m is a
positive integer defined as follows: Let the sets of zero-points and of poles
of Ψ(z) contained in 0 < | z \ ^ r which are irreducible with respect to their
arguments taken by mod2π/n be {αλ}Lι and {δμ}{Lι, respectively, which
are counted according to respective multiplicities, and let N be the greatest
integer such that the function defined by

P / α
Y Y 0 Λ — W(y\ TT 0(9 TO ' TT 0(? n^\j. \6) — i \&) I I t'/-\'^'> ^w// I I "G\ ι ^*Ά/

μ=l / λ=l

is a single-valued function of ZN, Ω(z, c) being the function introduced in
lemma 2. Then we put N~mn.

Proof. The sufficiency assertion is readily verified. In fact, let ρ(φ)
remain unchanged except at mn jumps

with the heights ρjk ^ 0, respectively. Since Y(z) is single-valued in zmn, we
then have

-^-^\ αλ) Π Ω(re"*-9'-W, 6
λ=-l , μ=l

so that, by virtue of arg Ω(z, c)=0 valid along \z\ =r, there follows
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Γ
J — <

= Γ I
J — <π

I f j *(e"*D~ ' «*'**-*J*\ δμ)Π
λ=l

The necessity proof proceeds as follows. If the relation under consideration
holds identically with respect to θ, the quantity argFXze'*9) with any fixed
z = reίQ must have the same value depending only on θ for every value of
φ with dp(<p) > 0 provided ¥(ze~ίφ) does not vanish. Hence, Ω(z, c) being real
and positive along 1 2 1 = r, arg Y(ze~ίφ) has also the same property. Let φQ

and <pι be any values of ψ with dp(<p)>Q, and we observe the function
defined by

Since Y(z) is regular and non- vanishing throughout 0 < \ z \ ̂  r, X(z) is re-
gular for \z\^r even at z = Q. Further it remains real and positive along
\z\=r. In general, any bounded set lying entirely on the real axis cannot
be the boundary of the image of \z\^r by a (not necessarily univalent)
mapping regular there unless it degenerates to a single point. Consequently,
X(z) must be a constant which is real and positive. Let the Laurent ex-
pansion of Y(z) be

where {nv} is a strictly increasing (finite or infinite) sequence of integers
for which the sequence of corresponding coefficients {cv} does not involve
zero. We then get

and obtain further, by comparing the coefficients of znv,

for any v. Since -X"(0) is real positive, we get X(ϋ) = 1, whence follows

nv(φι — (fo) = 0 (mod 2ττ)

for any v. Now since N=mn is equal to the greatest common measure of
the set {wv}, there exist two members of the set, nr and ns say, such that
N is just the greatest common measure of them. Hence, for some integers
u and v, we have unr — vns = N. Consequently, the above relations applied
to ftv = nγ and to nv = ns imply

- ψo) Ξ 0 (mod 2π).
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Thus, <fo and <pι being arbitrary pair where dp(φ) does not vanish, it has
been shown that p(φ) must possess the property stated in the lemma.

For subsequent purpose it will often become necessary to know the actual
values of the integers n and m defined in lemma 3. Accordingly, as a
supplement of this lemma, we pick out particular cases for which we for-
mulate the following lemma.

LEMMA 4. In lemma 3, if {a^} and {6μ} are, in particular, both vacuous,
namely if Ψ(z) is regular and non-vanishing throughout 0 < | z \ ^ r, then we
have m = 1. Further if ^(O)^ 0, then we have n — \.

It may be noted by the way that, if Ψ(z) has zero-points or poles, then
m may be actually greater than unity. It may be illustrated by an ex-
ample. Let 0 < I a \ < r and put, as before,

β(z, a) = n[\ω(z, ae™"ί/n).
k=Q

Then this function is a single-valued function of zn but not of any higher
power of z. Hence, the function defined by

ψ(z) = zmnΩ(z, a)

with any positive integer m is also of the same nature. But, for any p(ψ)
with the jumps alone at mn values φjk — 2((j — Y)n + k
l g y < Ξ m ) with any respective heights pjk, we get

ί
-π

-

mn-l m n-1

= Σ H>)dp(φ)< = |Σ Σ

= Σ Σ! I Ψ(re"ϋ-W) I pjk = Γ I Ψ(re^θ-^) \ dp(<p).

3. Main results.

We are now in position to formulate our main theorems. We observe a
linear operator jβ which has ^R as its domain of argument function and
produces by applying to any Φ(z) e Dΐ an analytic function j?[Φ(^)] single-
valued about the origin. It is supposed that the operator is homogeneous
of degree zero, i.e., for any constant c, the function J7[0(z)] coincides after
substitution z\cz with X[Φ(c2)]. In particular, we have

e» + z ] _ Γ 1 + e-»z Ί _ Γl + CΊ t = e~
_7 J - Xz L 1 - e~*z J ~ ̂ il-cl

THEOREM 3. Let X denote a linear operator defined for Φ and
applied to Φ(z) e 9Ϊ be an analytic function meromorphic in | « |<r(<l)
and regular along \z\ —r. Let X be commutable with the integration with
respect to p(φ) in the representation for Φ(z) stated in lemma 1. Let
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further F(X) be a bounded increasing convex (and hence necessarily con-
tinuous) function defined for the range of |J7|. Then, for any
we have

ί
π

~π

( π / Γ "I i rp
ί0

^\ F( X |-, +

 ίθJ--π \ L J — re

The function (1 + εz)/(l — εz) is for any constant ε with | ε | = l always an
extremal function of this estimation.

Proof. The representation for Φ(z) given in lemma 1 implies

since the operation X and the integration with respect to p(φ) are supposed
commutable. The increasing character and the convexity of F(X) imply
further

ί
^
-.

since p(ψ) is increasing for ~π<φ^π and has the total variation equal to
unity. Hence, integrating with respect to #, we get

g dθ
re
re"

dp(<p)

For Φ(z) = (I + εz) / (I — εz) with | e | = 1, it is evident that the equality sign
holds surely in the estimation.

In dealing entirely with extremal functions in the estimation stated in
theorem 3, we first consider especially the case where F(X) is linear.
Then, by virtue of the homogeneity of the relation to be considered, we
have only to observe the case F(X) = X.

THEOREM 4. Under the conditions imposed on Ji in theorem 3, suppose
further that J?[(l + z)/(l — z)] is non-constant and let n denote the greatest
integer such that it is a single-valued function of zn. Then the relation

π

--π

C"π Γ 1
= A

j-τr L J

holds if and only if Φ(z) is of the form

m n-ί

Σ Σ j
3 = 1 fc = Q €Z
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where ε is a constant with \ ε \ = 1 and {pjk} is a set of real numbers-
satisfying

and m is a positive integer defined in lemma 3 in which ¥(z) is replaced
by [̂(1 + *)/(!-*)]•

Proof. Based on the proof given above for theorem 3, we see that the
extremal character of Φ(z) is characterized in terms of its associated func-
tion p(ψ) by the requirement

-Γ
to be valid identically with respect to θ. We now apply lemma 3 to the
function defined by

whence follows that for any extremal function Φ(z) its associated func-
tion p(<p) remains unchanged except possibly at <p0 + 2((j—ϊ)n + k)π/mn
(Q^k^n — 1, l^j^m) with the heights pj1c ^ 0, respectively, say; here m,
n and {pjk} satisfy the conditions mentioned in the theorem. Thus, any
extremal function must have the form stated in the theorem with s = e~i<t>!>.
Conversely, for any function of this form the relation under consideration
holds good, as seen in the proof of lemma 3.

In case F(X) is non-linear and hence strictly convex, the condition in
theorem 4 imposed on extremal function is to be modified by supplementing
a further condition.

THEOREM 5. Under the conditions imposed on X and F(X) in theorem 3,
let further the increasing function F(X) be strictly convex. Then the
equality sign in the estimation given in theorem 3 holds for any fixed r
if and only if Φ(z) is of the form given in theorem 4 and all those mem-
bers among m quantities

ί C Θ" 9"" 2~ 1 ) o r / m : >

U =1» ••'» W)

which correspond to the non-vanishing Σ^lJ/?^ have the same value for
any θ throughout —π

Proof. The condition that the equality sign appears in the estimation
given in theorem 3 is equivalent to the requirement that the function p(ψ}>
associated to an extremal function Φ(z) satisfies beside the relation
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a further relation

also identically with respect to θ. The first relation implies the consequence
stated in theorem 4. Now, for any function of the form written in theo-
rem 4, we get

/C™ i Γ el<ί> -f- relQ Ί 1 \ (m n~1 ι Γ1 -^.γeί^~φ<)~2^J~ι:>'π/

and

since J7[(l + 2)/(l —2)] is a single-valued function of zn. F(X) being sup-
posed strictly convex, the right-hand members of the last two equations
are equal for any r if and only if the last-stated condition of the theorem
is satisfied.

A remark may be supplemented. Let d denote the greatest common

measure of the set consisting of those integers among {j}T=ι for which

Σ*=o/tyfe does not vanish. Then the last condition of theorem 5 is equivalent
to the requirement that the quantity | J7[(l + reίθ)/(l — re*0)] |, qua function
of ti, has 2dπ/m as a period. In particular, if Σ^o^fc does not vanish for
an integer j relatively prime to m, the condition is satisfied with d = l.

In case w = l, the last condition of theorem 5 degenerates to the trivial
one, whence follows the following corollary:

COROLLARY. The equality sign in the estimation given in theorem 3 (and
a fortiori that given in theorem 4) holds for any fixed r if and only if
Φ(z) is of the form

with

provided F(X) is strictly increasing and the value of the integer m defined
in lemma 3 in which Ψ(z) is replaced by -£[(! + 2) /(I — 3)] is equal to unity.

Though the following result is an immediate consequence of the corollary
of theorem 5 combined with lemma 4, we write down it here for its fre-
quent use in the subsequent discussions.
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THEOREM 6. Under the conditions imposed on X and F(X) in theorem 3,
let X[(l + z)/(l-z)] be non-constant, regular and non-vanishing for 0 < | z \
^ r and F(X) be strictly increasing. Then the equality sign in the estima-
tion given in theorem 3 holds for any fixed r if and only if Φ(z) is of the
form given in the corollary of theorem 5. //, moreover, J7[(l + z ) / ( l —z)']
satisfies an additional condition that its derivative does not vanish at
2 — 0, then the extremal function must be of the form (1 + εz) / (1 — εz) with

M=ι.

In theorems 4, 5 and 6, it has been supposed that J7[(l + z)/(l —z)'] does
not reduce to a constant. However, it is to be noted that, if it reduces to
a constant, the operator X degenerates identically to a constant, i.e. its
range consists of a single constant function. In fact, we then get by means
of lemma 1 X[Φ(z)] = X[(l + z)/(l - z)] for any

Here we supplement a remark on the corollary of theorem 5. We now
suppose for a while that the operator X is also applicable termwise to the
Taylor series of argument function of which the bases zv (y = 0, 1, 2, •) do
not belong to 9ΐ except the first one. Then we get, in particular,

Γ 1 -J_ * Ί oo
A r Λh-^m-2Σx[^].

L I — ̂ J v=ι

Consequently, the condition that this function is single-valued with respect
to z n is equivalent to the system of conditions

J7|>v] = 0 for ^0 (moan),

whence follows

In particular, the quantity J?[Φ(z)] is then for any Φ(z) also a single-valued
function of z11. Thus, if we put

-CWzft = ψ(z») and x\ J.+-
LI — z J L I—

the inequality stated in theorem 3 becomes

which is evidently equivalent to

'Si F(\ψ*(tf°)\)dσ,

The last relation coincides formally with that given in theorem 3 with t
instead of r and applied to an operator which transforms Φ(z) into ψ(z).
The corollary of theorem 5 then asserts that for such an operator the



FUNCTIONS WITH POSITIVE REAL PART IN A CIRCLE 75

equality sign in the last estimation is realized not only by a function of
the form (1 + ηzn}/(l — ψn) with |^ | = 1 but also by any function of the
form mentioned there.

4. Consequences.

Rogosinski's original theorem 1 is, of course, a particular case of theorems
3 and 6. In fact, putting

r=d
dz

we get from theorem 3

and F(X) = X,

Since then the function

2z
1-sJ "(I-*)2

does not vanish in 0< \z\ < 1 and has the non-vanishing derivative at z — 0,
theorem 6 implies that the extremal function is of the form (1 + ez) / (1 — sz)
with I ε I = I .

In theorem 3, several sorts of choice are possible for X as well as F.
Thus, for instance, we may take as X any operator which transforms Φ(z)
into a linear combination of Φ(^(r/z) (μ = 0, 1, •••, Λf; jί = 1, •-, J), ϊj being
arbitrary constants with \ T 3 \ < l/r. Among such operators we choose here
as illustrating examples two special ones and state the following theorem
which involves in itself Rogosinski's theorem 1 as a particular case.

THEOREM 7. ( i ) Let n be a positive integer, v a non-negative integer and
p ̂  1 a real number. Then, for any Φ(z) e £ΐ, we have

I
n J-,

71-1

Σ! < dθ:

+ rnei

' "

equality sign holds for any fixed r if and only if Φ(z) is of the form

n-ΐ βZkπi/n \ c/y^~l o ~p CίC

έn' * /,2fc^ι7n _ CO,

where ε and {^}"=o (ire defined as in the corollary of theorem 5.

(ii) Let n be an even positive integer, v a non-negative integer and
a real number. Then, for any Φ(z) e Dϊ, we have

n - s(-] J 7C

-,

dθ

(0 < r < 1).
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The equality sign holds for any fixed r if and only if Φ(z) is of the form

with

n n/2-l

Σ

Proof, ( i ) Applying theorems 3 and 6 to the pair

-/'[<%)] = & -~ •— Σ] Φ(ze-*k«*/n) and
az* n &=o

the desired result follows readily after reducing both members by rvp. In
fact, we have only to remember the identity

1 n-l
^-_- V
n έi

-| n-1
J- 4- 2 V zh(>h(>-2fίk™ί/n

in which the last member shows, in particular, that .£[(1 + 2)/(l — z)] is
single-valued in zn but not in any higher power of z, and then to transform
the estimate by changing the integration variable 6 into ff/n, whence follows

rJ -7C

14- (reίQ)n

' Γit — -7C

(ii) We can proceed similarly as above. We now take

: zV Λ v — Σ (—1)* Φ(ze~2ίc™ί/n) and

dθ.

= Xp

and remember the identity

v~~l / ~t \k •*•

. — ze~ (- 1)* 2 Σ

= 2 "

in which the last member shows, in particular, that -Γ[(l+2)/(l —3)] is
single-valued in zn/2 but not in any higher power of z. The estimate then
becomes after change of variable

2(reίQ)n/2

1 - (reίo)n '< 2rn/V

For jPίZ)^^^, the inequality on convex functions used in the proof
of theorem 3 reduces to Holder's. More particularly, it degenerates for
F(X) = X to a trivial one, as seen in the proof of theorem 1.
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On the other hand, it may be noted that in theorem 7 the operation
zv(d/dz)v involved in X can be replaced, for instance, by (z d/dzy = (d/d Ig z)v

whence follows an analogous theorem.

It will be readily verified that, corresponding to the formulation of
theorem 2, the range of integration in the estimation may be replaced by
any measurable set E instead of — π < θ ̂  π. For instance, the estimation
in theorem 7 (i) reduces for n = 1 after this generalization to

ϊΓ
Jo I-re1 dθ

and the equality sign holds in every case for any fixed r if and only if Φ(z)
is of the form stated in theorem 2 provided mE is positive.

We remember here by the way that we could consider the functional
(d/dz)v(Φ(z) -1) instead of (d/dz)vΦ(z). Then the above estimation for v = 0
would be replaced by

^2p+1ΓE/2 C

Jo |1 — reM

together with the same extremal functions, in conformity with the result
given above for y>0; cf. also a remark at the end of this section.

Here it is noted, by the way, that the integral of the form

dθ

with any constant <?^0 can be evaluated in terms of elementary functions
provided λ is an even integer. Here we are interested in the case λ > 0.
Actual calculation will show that there exists, in general, a recurrence
formula

We may suppose 0 ̂  0 ̂  π. Since we have, in particular,

the quantity Sλ(r, σ) with an even positive integer λ as suffix can be obtained
from S2(r, σ) by means of repeated differentiation combined with elementary
operations. We observe, for instance, the particular case β — π. Then, since
we have 82(1*, π) = π/(l — r2), it is evident that Sλ(r, π) with such a λ is
a""rational function of r2. Moreover, it will be verified, for instance, by
induction with respect to λ/2 that Sλ(r, π) is expressed by the formula
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π λ/2-1 / 2 /O __ 1

«'.«»-α-ίv-S( '
provided λ is an even positive integer. On the other hand, for such a λ the
quantity defined by

= Γ
Jo . — 2r cos t) + r2

is connected with Sλ(r, σ) by the relation

λA2 - f λ / 2 \

K^L \ K J

In particular, the quantity Tλ(r, π) with an even positive integer λ as suffix
is a rational function of r2 which can be explicitly written down.

As the next example illustrating a consequence of theorems 3 and 6, we
state here the following theorem:

THEOREM 8. Let p^l. Then, for any Φ(z)^$i, we have

Φ(teίθ)dt Pdθ^ Γ 21g . -j1 ---Γ-reiθ P^ (0 < r < 1).
— π I J 0 J — π J- ί"β

equality sign holds for any fixed r if and only if Φ(z) is of the form
[ + εz)/(l-εz) with \ε\=l.

Proof. We may put in theorems 3 and 6

= 1 (*
z Jo

Φ(z)dz= Φ(teiQ)dt (z = reίθ) and
r Jo

whence readily follows the desired estimation after reducing both members
of that obtained from theorem 3 by l/rp. In applying theorem 6, we have
only to verify that J7[(l 4- z ) / ( l — z ) ' ] = — z~l(2 Ig (1 — z) + z) does not vanish in
0 < I z I < 1. It can be shown moreover that J7[Φ(z)] for any Φ(z) e ^R vanishes
nowhere in z \ < 1. In fact, the condition Φ(z) e Dί implies by virtue of a
theorem due to Noshiro [4] and Wolff [7] (see the remark below) that its
integral is univalent in | z \ < 1, so that -C\_Φ(z)~\ does not vanish in \z\ < 1.

REMARK. In this occasion, for the sake of convenience, a very brief proof
will be given of the theorem due to Noshiro and Wolff in a slightly precise
form:

Let f(z) be regular and satisfy $lf'(z)>Q in a convex domain D. Then,
for any points Zi and z2 in D, we have

In particular, f(z) is then univalent in D.
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In fact, the point Zi + t(z2 — Zi) describes, as the real parameter t varies
from 0 to 1, the segment connecting z\ and z2 which lies in D. Hence, we get

= Γ1 ftf,(Zl + t(z2 _ Zί)) dt > o.
%2 — Zί Jo

Cf. Ozaki [5].

While the function — Ig X is convex for X>0, it is not increasing so that
theorem 3 cannot be applied directly for F(X) = — Ig X. However, a sup-
plementary inequality can be derived with reference to this function.

THEOREM 9. Let JC satisfy the condition mentioned in theorem 3. Then,
for any Φ(z) e £R, we have

(0 < r < 1).

Under the conditions imposed on J, in the corollary of theorem 5, the
equality sign appears for any fixed r if and only if Φ(z) is of the form
stated there and further \ J7[(l-f-reίθ)/(l — re'0)] | is independent of θ.

Proof. By taking F(X) = X/2π in the estimation given in theorem 3,
we get

- _

This combined with the concavity of Ig X then implies

In the last relation, the equality sign of the first inequality holds if and
only if | J![Φ(reίθ)] \ is independent of θ, while that of the second holds if
and only if Φ(z) is of the form stated in the corollary of theorem 5, provided
X satisfies the conditions imposed there. But, for any Φ(z) of the last-stated
form, we have

and hence |J7[Φ(reίθ)]| and | J7[(l + reίθ)/(l -re'9)] | are simultaneously inde-
pendent of θ or not.

Finally, it is to be noticed that throughout the present paper the results
obtained for 9ϊ can be suitably modified for several other classes similar to
3ί. The most essential point in our discussion is that any member of the
class admits an integral representation of the form
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= Γ
J-π

with a certain kernel K(e~i<?z) which is in itself a member of the class for
every value of <ρ and corresponds to (eίφ + z) / (eίφ — z) in case of 9ϊ. It may
be seen, however, that theorems mentioned in §3 involve substantially such
extension. In fact, the transform J7[ (1 + 2)7(1 — 2)] may be of quite general
nature so that J?[Φ(z)] and J7[(l + z)/(l — z)] can then be replaced by -C\_Φ(z)~\
J$_K(e-ίφz)'], respectively.

5. Applications.

Corresponding to length-distortion stated in theorem 1, we can derive as
a consequence of itself an analogous estimation on areal distortion.

THEOREM 10. Let E be any measurable set contained in — π < θ ̂  π.
Then, for any Φ(z) e 9ΐ, we have

|2 *>
τ2)2 2τr~

(0 g r0 < r < 1)

where we put τ = tan (mE/£) and denote by mE the measure of E. In case
mE > 0 extremal functions are characterized by the same condition as
stated in theorem 2.

Proof. As a particular case of theorem 1 (i) we have noticed subsequently
to its proof an estimation

2o |l-re rθ |4 1-r2 (Z

Integration with respect to r, after multiplied by r, leads readily to

Γ r d r f |Φ /(rβ< β) | 2dίg4Γ- v-
r- 2 ^ f , 2r

 2 arctan fτ J + -rΛ
Jr0 JjE Jr 0 l-r 2 d r V l - r 2 \l-rj)

and actual evaluation of the last integral gives the desired result. The
assertion on extremal functions is also evident.

The estimate in theorem 10 expresses, of course, the area of the image-
domain of the curvilinear quadrilateral | arg z < mE/2, r0 < | z \ < r by the
mapping (l + z)/(l — z). In theorem 10, the case where E covers the whole
circumference and r0 becomes 0 may be of practical interest so that it will
be especially stated below.

COROLLARY. Let A(r) ~ A(r, Φ) be the area of the image-domain of \z\<r
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by a mapping Φ(z) e Oΐ which is counted according to the multiplicity. Then
we have

Cr ΓOT

A(r)=\ rdr\ \Φ'(re^)^ dθ ̂  -
Jo J-τr (

,
(L — T)

and the equality sign appears for any fixed r if and only if Φ(z) is of the
form (l-i-βz)/(l-£z) with |e | = l.

The estimate in this corollary is naturally equal to the limit value of the
estimate in theorem 10 as r0->0 and mE-*2π, i.e. r->oo. If we would
attempt to obtain this corollary alone, direct calculation would lead to the
result in simpler way. In fact, we have

^Γ i f* *dff 0 Γr(l + r2) , 4ττr2

^\ rdr\ — --------- --- -=Sπ\ - 2^ dr = -.
Jo J-w |l-re t θ |4 Jo (1-r2)3 (1 - r2)2

On the other hand, this corollary may be regarded also as a particular case
of a more general theorem 11 which will be formulated below. However,
it will be of some interest that this particular case is also a consequence
of theorem 1 combined with classical isoperimetric inequality which can be
shown to be valid also in case of multivalent mapping. In fact, we have
simply

4τrr2

- -
(1 — r2)-

Λ/ \ ̂  r / \?A(r) ^ - . L(r)2 ----- - - -2 2 -

Any extremal function for the second inequality maps \z\<r univalently
onto a circle and hence it possesses simultaneously the extremal character
for the first inequality. On the other hand, the same result may be re-
garded alternatively as a consequence of a well-known estimation for Taylor
coefficients of Φ(z) e SR. In fact, let the Taylor expansion of Φ(z) be

V = l

Then, by means of the representation stated in theorem 1, we get

I n l -

and hence

\Φ'(reίo)\2dθ= Γr dr 2π f j
--7C Jo V = l

CO 00 Δ.TΓT2

= π Σ v I cv I 2 r2v ίS 4τr Σ vr2^ = ,
v=ι v = ι

The extremal functions are characterized here by | cv =2 for any ^ ̂  1 while
even a single equation \Cι =2 implies Φ(z) = (1 + εz) / (1 — εz) with | ε |= l .

From the integral representation given in theorem 1, we see that, for
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any z in | z | < l , the point Φ(z)eΣft laid on the w-plane lies always in the
interior of the circle described by w — (eίφ + z) / (eiφ — z) as <p varies from — π
to π. Consequently, the range of Φ(z) originating from |z |<r(<l) is con-
tained in the range-circle of (1 + z)/(1 — z) as z varies throughout \z\<r.
But Φ(z) may be multivalent so that this inclusion does not necessarily
take place in the sense of subordination. However, the areal distortion il-
lustrated above shows that the area of the image of | z \ < r by Φ(z) which
is counted according to multiplicity does not exceed the area of the image-
circle of \z I < r by the mapping (1 + z)/(l — z).

Now, theorem 10 is a particular case of theorem 11 formulated below
which is in itself an immediate consequence of theorems 3 and 6.

THEOREM 11. Under the same assumptions as in theorem 3, we have

r fπ fr Γπ

r dr F(\ X[Φ(reίβ)] \)dθ£\ rdr\
r0 J -<π Jr 0 J-

--
- ~ dθ

and the function (l + εz)/(l — εz) is for any ε with \ε\ = l always an ex-
tremal function of this estimation. By supplementing further assump-
tions of theorem 6, we can conclude that the equality sign appears, for
any fixed r0 and r, if and only if Φ(z) is of the form stated in theorem 6.

6. A supplement.

In conclusion, we supplement here a slight remark. Rogosinski [6] has
also pointed out that the length of the image-curve of any radial segment
argz = θ, Q<\z\<r by a mapping Φ(z)e 9ϊ can be estimated by

[\Φ\teίθ)\dt^.2r~.
Jo l — r

But this result is a quite immediate consequence of a distortion theorem
on the class ΣK which may be re-formulated here as follows:

LEMMA 5. For any Φ(z) e 9ί, we have

The equality sign holds at any assigned point teίφ° with 0 < t < 1 if and
only if Φ(z) = (1 -f εz)/(l — εz) with ε = e~ίφ*.

Proof. From lemma 1 we have, for any
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with

whence readily follows the desired results.

By means of this lemma, Rogosinki's result stated above can be quite
readily verified. In fact, we may formulate the following theorem:

THEOREM 12. Let 0 ̂  r0 < r < 1. Then, for any Φ(z) e SR, we

equality sign in every case holds for assigned values of r0, r and θ if
and only if Φ(z) is given by (eϊ() + z) / (eίθ — z).
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