REMARKS ON HAAR MEASURE

BY SHIGEYA MARUYAMA

1. In this note we make simple remarks on Haar measures, which give an alternating expression of their uniqueness.

Let G be a locally compact topological group and K, Z be closed subgroups of G into which G splits, i.e. $G = K \cdot Z$, $K \cap Z = e$.

Denote by dg, dk, dz left invariant Haar measures on G, K, Z respectively, where $k \in K$, $z \in Z$, then it is known that relations $dg = \varDelta(g)dg^{-1}$, $dz = \delta(z)dz^{-1}$, $dk = \delta'(k)dk^{-1}$ hold in which $\varDelta(g)$, $\delta(z)$, $\delta'(k)$ are continuous one dimensional representations of G, Z, K, respectively.

2. Our first remark is the following:

For any $f \in L^1(G)$ we have

$$\int f(g) \, dg = \iint f(kz) \, rac{arphi(z)}{\delta(z)} \, dz \, dk = \iint f(zk) \, rac{arphi(k)}{\delta'(k)} \, dk \, dz$$

when measures dg, dk and dz are properly normalized.

Proof. Let f(g) be a continuous function on G which has a compact carrier. We prove the above relations for such functions since we lose no generalities by this restriction. Put

$$\bar{f}(k) = \int f(kz) \,\omega(z) \,dz$$

where $\omega(z) = \Delta(z)/\delta(z)$, then $\overline{f}(k)$ is continuous on K and of carrier compact. Conversely, any such function $\varphi(k)$ on K i.e. continuous on K and of carrier C compact $(C \subset K)$, can be represented as an \overline{f} for some f(g). In fact, let C' be an open set of G containing C and whose closure is compact. If we take a function $f_1(g)$, continuous on G, of carrier compact, non-negative and $f_1(g) \neq 0$ for $g \in C'$, then the function f(g) defined by

$$f(g) = f(kz) = \begin{cases} \varphi(k)f_1(kz) / \int f_1(kz) \, \omega(z) \, dz, & \text{if the denominator} \neq 0, \\ 0, & \text{otherwise,} \end{cases}$$

is continuous, of carrier compact and satisfies the relation $\bar{f}(k) = \varphi(k)$. Hence, for any $\varphi(k)$, there exists at least one f(g), for which $\bar{f} = \varphi$. Consider the correspondence

Received March 3, 1958.

$$arphi o \int f(g) \, dg$$

where f(g) stands for $\varphi(k)$ in the above situation, i.e. $\overline{f} = \varphi$. Then, by the additivity, this correspondence can be uniquely determined if $\varphi = 0$ implies

$$\int f(g)\,dg=0.$$

We show that the last is true for the sake of completeness. Firstly, the condition

$$\bar{f} = \int f(kz) \, \omega(z) \, dz = 0$$

is equivalent to

$$\int f(gz)\,\omega(z)\,dz=0$$
 for any $g\in G.$

For, if we decompose g = k'z' then

$$\int f(gz) \,\omega(z) \,dz = \int f(k'z'z) \,\omega(z) \,dz = \int f(k'z) \,\omega(z')^{-1} \,\omega(z) \,dz = \omega(z')^{-1} \int f(k'z) \,\omega(z) \,dz.$$

Thus, if $\bar{f} = 0$, then

$$\int u(g) \left(\int f(gz) \, \omega(z) \, dz \right) dg = 0$$

for any measurable u(g). But

$$\begin{split} &\int u(g) \left(\int f(gz) \, \omega(z) \, dz \right) dg = \int \omega(z) \, dz \int f(gz) \, u(g) \, dg \\ &= \int \omega(z) \, dz \left(\int f(g) \, u(gz^{-1}) \, \varDelta(z)^{-1} \, dg \right) = \int f(g) \left(\int u(gz^{-1}) \, \delta(z)^{-1} \, dz \right) dg \\ &= \int f(g) \left(\int u(gz) \, dz \right) dg. \end{split}$$

On the other hand, the function u(g) can be taken such that

$$\int u(gz)\,dz=1$$

for g belonging to the carrier of f(g). Hence we obtain

$$\int f(g) \, dg = 0.$$

Above correspondence

$$arphi
ightarrow \int f(g) \; dg = I(arphi)$$

is obviously left invariant, i.e.

55

SHIGEYA MARUYAMA

$$I(\varphi(k_0^{-1}k)) = I(\varphi(k))$$

and hence

$$I(\varphi) = \int \varphi(k) \ dk.$$

Thus

$$\int f(g) \, dg = \iint f(kz) \, \omega(z) \, dz \, dk.$$

By interchanging K and Z, we have

$$\int f(g) \, dg = \iint f(zk) \, \omega'(k) \, dk \, dz.$$

3. Our second remark is the following:

Let d'g be a measure on G having the same field of measurable sets as that of dg, i.e. every continuous function of compact carrier is measurable with respect to d'g. If d'kg = d'g and $d'gz = \Delta(z) d'g$ where $k \in K$, $z \in Z$, then d'g is equal to dg up to a constant factor.

Proof. The proof proceeds in the same way as in the proof of uniqueness of Haar measure. Let $\varphi(g)$, $\theta(g)$ be any two continuous functions of compact carriers. We consider the integral

$$I = \int \varphi(g) \, dg \int \theta(h) \, d'h = \int \theta(h) \left(\int \varphi(g) \, dg \right) d'h.$$

In the inner integral of the last member, we replace g by $k'^{-1}gz'^{-1}$ where h=k'z', then we get

$$I = \int \theta(h) \Big(\int \varphi(k'^{-1}gz'^{-1}) \, \varDelta(z'^{-1}) \, dg \Big) \, d'h.$$

Uniqueness and continuity of the decomposition h = k'z' imply that both elements $k' = \kappa(h)$ and $z' = \zeta(h)$ are continuous in h, and thus $\varphi(k'^{-1}gz'^{-1}) \varDelta(z'^{-1})$ is a continuous function in h. By the theorem of Fubini, we can change the order of integration and we get

$$I = \int \left(\varDelta(z')^{-1} \theta(h) \varphi(k'^{-1} g z'^{-1}) d'h \right) dg.$$

Again, in the inner integral, we replace h by khz where g = kz, then $k' = \kappa(h)$ and $z' = \zeta(h)$ are replaced by $\kappa(khz) = k\kappa(h) = kk'$ and $\zeta(khz) = \zeta(h)z = zz'$, respectively. From our assumption for d'h

$$egin{aligned} I &= \int \Bigl(\int arpi(z')^{-1} arpi(z)^{-1} \, heta(khz) \, arphi(k'^{-1} z'^{-1}) arpi(z) \, d'h \Bigr) \, dg \ &= \int arpi(z')^{-1} \, arphi(k'^{-1} z'^{-1}) \Bigl(\int eta(khz) \, dg \Bigr) d'h. \end{aligned}$$

By our first remark this is equal to

56

REMARKS ON HAAR MEASURE

$$=\int \varDelta(z')^{-1} \varphi(k'^{-1}z'^{-1}) \Big(\iint \theta(khz) \omega(z) \, dz \, dk \Big) \, d'h.$$

Finally we replace in the above integral z by $z'^{-1}z$ and k by kk'^{-1} , then

$$\begin{split} I &= \int \varDelta(z')^{-1} \varphi(k'^{-1} z'^{-1}) \Big(\iint \theta(kz) \, \omega(z')^{-1} \, \omega(z) \, \delta'(k')^{-1} \, dz \, dk \Big) \, d'h \\ &= \int \theta(g) \, dg \int \varDelta(z')^{-1} \, \omega(z')^{-1} \, \delta'(k')^{-1} \, \varphi(k'^{-1} z'^{-1}) \, d'h. \end{split}$$

Thus we have

$$\int \varphi(g) \, dg \int \theta(h) \, d'h = \int \theta(g) \, dg \int \varDelta(z')^{-1} \, \omega(z')^{-1} [\partial'(k')^{-1} \, \varphi(k'^{-1}z'^{-1}) \, d'h.$$

If we take as θ a fixed function θ_0 for which

$$\int \theta_0(g) \, dg \neq 0,$$

then we have

$$\int \varDelta(z')^{-1} \, \omega(z')^{-1} \, \delta'(k')^{-1} \, \varphi(k'^{-1}z'^{-1}) \, d'h = c \int \varphi(g) \, dg$$

where

$$c = \int heta_0(g) \, d'g \int heta_0(g) \, dg = ext{const.}$$

Now put

$$\varphi(g) = \varphi(kz) = \varDelta(z)^{-1} \, \omega(z)^{-1} \, \delta'(k)^{-1} \, \psi(k^{-1}z^{-1})$$

for any continuous function $\psi(g)$ with a compact carrier, then we have

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.