
SOME LIMIT THEOREMS CONCERNING

WITH THE RENEWAL NUMBERS

BY HlDENORI MORIMURA

Let {Xt} be a sequence of independent random variables and let {αj be
a sequence of real numbers. Denoting as Sn = Σ?^> we shall interest the
weighted mean of renewal numbers in the interval (a, x -\- h), which is
defined by

(1) A(x, h) = Σ a n P ( x < S n ^ x + h).
n = l

If both {E(Xl)} and {aτ} are stable sequences1' with average m and α,
respectively, and if some further conditions are satisfied, then it is known
that A(x,h)->ah/m (x-too) by Cox and Smith [1].

But when {E(X$} is not stable, A(x, h) is not necessarily convergent to a
finite limit as #->oo. In this case, instead of A(x,h), the variable

will converge to ah/m as X~>oo, under suitable conditions. This fact was
shown by the analogous argument of [2] by Prof. T. Kawata.

From a practical problem it was necessary to us to find the distribution

of A(x, h) or Ah(X) when {aτ} is a sequence of independent random variables
having the mean α. We shall treat in the present paper this problem when
at are the random variables identically distributed and obeying the ex-
ponential distribution.

First of all, we shall prepare the following lemmas.

LEMMA 1. Let Xt (^ = 1,2, •••) be independent random variables having
the distribution function Ft(x) such that E(Xi) = mz>0. Suppose that the
following conditions are satisfied:

(2) f° e-'xdFi(x)<oo for 0^s^s0,
J-oo

(3) lim
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1) Cox and Smith [1] gave the following

DEFINITION. A sequence {μj such that lim ^Σlίn^ΐ-^' uniformly in n, will
p->

be called stable with average μ.
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(4) lim

where both (3) and%(4) hold uniformly with respect to i and 0<s^s0. //
"=1Wί -> m > 0

(5) Km

LEMMA 2. TAe conditions of the Lemma 1 are assumed. Furthermore if
{at} is a sequence of real numbers satisfying that (l/tt)ΣJUaί -> a (w -> °°),
then

1 Λ-3Γ °° /?/?

(6) lim i Σa»-P(»<S»^a:+fe)<fcκ = -~.
^->oo JL Jo n-i m

These two lemmas are due to Prof. T. Kawata2). From Lemma 2, the
following theorem will be proved directly.

THEOREM 1. Let Xl(i=lf 2, •••) be independent random variables satis-
fying the conditions of Lemma 1. Furthermore, if {ai} is a sequence of
random variables which obey the strong law of large numbers, i.e.,

pίlim —
\n->co n

then the random variable

( 7 ) Ah(X) = i Γ Σ anP(x <Sn^x
Λ. Jo »=ι

will converge to ah/m as X-+OQ with probability 1.

In other words, the distribution of Ah(X) converges to the unit distribu-
tion. Hence we shall introduce the normalized variables by

__ Άh(X) - ah/m
- B(X) '

where B(X) is the normalizing factor. In the following, we shall investigate

the distribution of A'h(X) when ttί(i = l, 2, •••) are distributed identically
with the probability density given by

(8) P(χ < at g x + dx) = ~e~x/adx
a

= 0

Then we have following

2) Lemma 1 is the theorem given in the paper [2], Lemma 2 can be proved by
the analogous argument with Lemma 1.
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THEOREM 2. Let Xl (i = 1, 2, •) be independent random variables having
the positive mean mlt and let at (i = 1, 2, •••) be independent random vari-
ables having the probability density (8). Assume that (lΛOΣjϊLιmί~^ (n-> oo),

( 9 ) B*(X) = Σ f v [*P(* <Sn£x + h) dxV.
*-l IA Jo J

TAen £Ae distribution of Ah(X} will be approximately ΛΓ(0, α2) as -X"->oo.

Proof. Put

αrn(^Γ) = v ί̂ ^ < S» ̂  ̂  + A) ̂ ^A Jo

Obviously, for every n, 0^an(X)^l. By Lemma 1,

do) ]*n(*) = 0(1) as

»=1

First of all, we shall show that

(11) B2(X) = o(l).

Suppose

(12) B*(X) = Σ «2(χ) ̂  o(l) as
w=l

Then we have, for some n,

(13) an(X)Φo(l) as

For, if for eVery n,

o) as

then

as Λ->oo,

which will be contrary to (12). Now, (13) will be rewritten as

(14) f XP(X <Sn^x+h)dx = CnX+ o(X)
Jo

where Cn is a positive constant. Thus, for some constant k > 0,

(15) (X+kP(x<Sn^x-\
Jx

On the other hand,

ί
x+kπ, ~ , ,

P (x <Sn^x + h)dx '-
x

X+k+h



50 HIDENORI MORIMURA

where Gn(x) = P(Sn ^ x), and this will tend to zero as JΓ-> oo. This is contrary
to (13). Thus, we can conclude that (11) holds. Next, since

Σ al(X) £ sup an(X) Σ <x*(X) = o(l) B*(X) = o(B\X));
n = l n n=l

repeating this argument, we have

(16) iχ(X) = oCB2(JQ) as X->oo,

for every k ̂  3.
Under the above preparations, we shall now enter into the main discourse

in proving Theorem 2. Since the characteristic function of Ah(X) is

\
\

)'
rx

where the exchange between (l/X)\ -dx and Σ~=ι in (7) may be allowed
Jo

with probability 1. Taking the logarithm of (17), we have

ah

Expanding this and noting (16), we have for large X,

ah
B(X) 2 B\X)\ mB(X)

crί2 1 ^^,2(γ}
2

όfπ °° ~\ rχ

= -^frΣJ 4 P(x
Jΰ(A) w=i A Jo

2

which is the characteristic function of the normal distribution. Thus the
theorem has been proved.

An analogous argument gives the following theorem in the case where
{Xl} is a sequence of identically distributed random variables. In the case
where {E(Xi)} is a stable sequence, a similar theorem will be proved under
the conditions given by [1].

THEOREM 2'. Let Xl(i = l,2, )be independent random variables identi-
cally distributed with the mean ra>0. // we replete Ah(X) and B(X) by

(18) A'(x, h) = - - Σ an n -~,
n (X) L"=ι m J
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(19)- B'*(x) = Σ {P(x <SΛ£x + h)Y,
n=ϊ

respectively, then the conclusion of Theorem 2 remains valid.

In the remaing part of the paper, we shall calculate B/2(x) in the case
where tne central limit theorem will hold on

THEOREM 3.3) If Xt(i = l,2, •••) are independent random variables identi-
cally distributed and having the mean m>0 and the variance v, and if al

(i = 1, 2, •••) are independent random variables having the probability den-
sity (8), then the distribution of

V2 (~)'" Jf, anP(x< Sn^x + h)- ah]
h [n=ι m]

tends to N(Q, a?) as x-><χ>.

Proof. Based on Theorem 2', it is sufficient to show the relation

(20) B"(x) = o Y x~ί/2 + o(x~l/2).
2Vπmv

By the central limit theorem, for large n, the distributions of Sn are ap-
proximately N(nm, nv); more precisely, there is a positive constant N(ε)
such as

(21) n ,
V2πnv

and

(22) Σj ^(^^)<Λ » uniformly respect to x,
ri = 2V fl"

for all n > N(ε), where ε is a negligibly small positive constant. Now, by
the mean value theorem on integral,

(23) =
" * 2πnv

r YJ ^e-(x + 0n?ι-nmtf/2nvβ(n^ χ _j_ ff'j^ _j_ ^2 V| ^2(^, X + ̂ ),

where 0 < ^Λ, θ'n < 1. Choosing so large a; > ΛΓm that P(x <Sn^x + h)< Vi/N
(n = l, 2, •••, JV), we have

3) This theorem is one referred to in [3].
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oo f Λjc/m— a ^~x/m px/m+Λ v~sc fm Λoo

,{P(x<Sn^x + h)γ=\\ +\ +\ _
»=1 I Jo Jx/m-a^x/m Jx/m+a v's/m J

^lί + h+h + R, say,

where |J?| is negligibly small relatively to other terms. Putting y = x/m
+ tV x /m,

9J)2 C<* 1
/*= Λ y,:1-- ^-^/{(υ/rrDα-fί/

(25)

πv \2 y 2m

- M._ aj-ί/ί_ ^a -i
2^7^^ 7ΓV

with ^(<^)->0 as <3f->oo. Next

=• ̂  x~1/2 f%-mί2/

7TV J o

(26) J3=

Now, we shall put the integrand as

(27) l-e~g/v

9 where z = Λ- + m"y.
y y

Since z is a convex function of y for T/ > 0, the tangent of the curve at

x/m + aVx/m lies below the curve. The equation of the tangent is

(28) ..... ,,
(V x + or)2 a; + ΛV x

and we have

J ^ "!_. gC2mo;-27iia;2/(j; + a </^))/ t,> _______ 1 ______ 1 g-Cm2τ//υ)(2Λ vGΓ-t α2) / C v/«

271^ a?/m + Λ:V a? /mj a /m+Λ v^/m

(29) ~ " ' " ~

/

/2) as

Taking or so large that const -^~1/2 is negligibly small compared with

h2/4Vπmv , we have

(30) 73 = o(αr1/2).
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The same argument shows

(31) Iί = o(x~^)ί

hence (24), (25), (30) and (31) imply (20).

In conclusion, the author expresses his sincerest thanks to Professors T.
Kawata and K. Kunisawa who have given valuable advices.
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