SOME LIMIT THEOREMS CONCERNING WITH THE RENEWAL NUMBERS

By Hidenori Morimura

Let $\left\{X_{\imath}\right\}$ be a sequence of independent random variables and let $\left\{a_{\imath}\right\}$ be a sequence of real numbers. Denoting as $S_{n}=\sum_{1}^{n} X_{i}$, we shall interest the weighted mean of renewal numbers in the interval $(a, x+h)$, which is defined by

$$
\begin{equation*}
A(x, h)=\sum_{n=1}^{\infty} a_{n} P\left(x<S_{n} \leqq x+h\right) . \tag{1}
\end{equation*}
$$

If both $\left\{E\left(X_{2}\right)\right\}$ and $\left\{a_{2}\right\}$ are stable sequences ${ }^{1)}$ with average m and a, respectively, and if some further conditions are satisfied, then it is known that $A(x, h) \rightarrow a h / m(x \rightarrow \infty)$ by Cox and Smith [1].

But when $\left\{E\left(X_{i}\right)\right\}$ is not stable, $A(x, h)$ is not necessarily convergent to a finite limit as $x \rightarrow \infty$. In this case, instead of $A(x, h)$, the variable

$$
\bar{A}_{h}(X)=\frac{1}{X} \int_{0}^{X} A(x, h) d x
$$

will converge to $a h / m$ as $X \rightarrow \infty$, under suitable conditions. This fact was shown by the analogous argument of [2] by Prof. T. Kawata.
From a practical problem it was necessary to us to find the distribution of $A(x, h)$ or $\bar{A}_{h}(X)$ when $\left\{a_{2}\right\}$ is a sequence of independent random variables having the mean a. We shall treat in the present paper this problem when a_{\imath} are the random variables identically distributed and obeying the exponential distribution.

First of all, we shall prepare the following lemmas.
Lemma 1. Let $X_{\imath}(i=1,2, \cdots)$ be independent random variables having the distribution function $F_{i}(x)$ such that $E\left(X_{i}\right)=m_{\imath}>0$. Suppose that the following conditions are satisfied:

$$
\begin{gather*}
\int_{-\infty}^{0} e^{-s x} d F_{i}(x)<\infty \quad \text { for } \quad 0 \leqq s \leqq s_{0} \tag{2}\\
\lim _{A \rightarrow \infty} \int_{A}^{\infty} x d F_{i}(x)=0 \tag{3}
\end{gather*}
$$

Received January 30, 1958.

1) Cox and Smith [1] gave the following

Definition. A sequence $\left\{\mu_{i}\right\}$ such that $\lim _{p \rightarrow \infty} \frac{1}{p+1} \sum_{i=n}^{n+p} \mu_{i}=\mu$, uniformly in n, will be called stable with average μ.

$$
\begin{equation*}
\lim _{A \rightarrow \infty} \int_{-\infty}^{-A} e^{-s x} d F_{i}(x)=0, \tag{4}
\end{equation*}
$$

where both (3) and (4) hold uniformly with respect to i and $0<s \leqq s_{0}$. If $(1 / n) \sum_{i=1}^{n} m_{i} \rightarrow m>0(n \rightarrow \infty)$, then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{X} \int_{-\infty}^{X} \sum_{n=1}^{\infty} P\left(x<S_{n} \leqq x+h\right) d x=\frac{h}{m} . \tag{5}
\end{equation*}
$$

Lemma 2. The conditions of the Lemma 1 are assumed. Furthermore if $\left\{a_{i}\right\}$ is a sequence of real numbers satisfying that $(1 / n) \sum_{i=1}^{n} a_{i} \rightarrow a(n \rightarrow \infty)$, then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{X} \int_{0}^{x} \sum_{n=1}^{\infty} a_{n} P\left(x<S_{n} \leqq x+h\right) d x=\frac{a h}{m} . \tag{6}
\end{equation*}
$$

These two lemmas are due to Prof. T. Kawata ${ }^{23}$. From Lemma 2, the following theorem will be proved directly.

Theorem 1. Let $X_{\imath}(i=1,2, \cdots)$ be independent random variables satisfying the conditions of Lemma 1. Furthermore, if $\left\{a_{i}\right\}$ is a sequence of random variables which obey the strong law of large numbers, i.e.,

$$
P\left(\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} a_{i}=a\right)=1,
$$

then the random variable

$$
\begin{equation*}
\bar{A}_{h}(X)=\frac{1}{X} \int_{0}^{x} \sum_{n=1}^{\infty} a_{n} P\left(x<S_{n} \leqq x+h\right) d x \tag{7}
\end{equation*}
$$

will converge to ah/m as $X \rightarrow \infty$ with probability 1.
In other words, the distribution of $\overline{A_{h}}(X)$ converges to the unit distribution. Hence we shall introduce the normalized variables by

$$
\bar{A}_{h}^{\prime}(X)=\frac{\bar{A}_{h}(X)-a h / m}{B(X)}
$$

where $B(X)$ is the normalizing factor. In the following, we shall investigate the distribution of $\bar{A}_{h}^{\prime}(X)$ when $a_{i}(i=1,2, \cdots)$ are distributed identically with the probability density given by

$$
\begin{align*}
P\left(x<a_{i} \leqq x+d x\right) & =\frac{1}{a} e^{-x / a} d x & & (x>0) \tag{8}\\
& =0 & & (x \leqq 0)
\end{align*}
$$

Then we have following
2) Lemma 1 is the theorem given in the paper [2]. Lemma 2 can be proved by the analogous argument with Lemma 1.

Theorem 2. Let $X_{\imath}(i=1,2, \cdots)$ be independent random variables having the positive mean m_{\imath}, and let $a_{\imath}(i=1,2, \cdots)$ be independent random variables having the probability density (8). Assume that $(1 / n) \sum_{i=1}^{n} m_{i} \rightarrow m(n \rightarrow \infty)$, and put

$$
\begin{equation*}
B^{v}(X)=\sum_{v=1}^{\infty}\left\{\frac{1}{X} \int_{0}^{x} P\left(x<S_{n} \leqq x+h\right) d x\right\}^{2} \tag{9}
\end{equation*}
$$

Then the distribution of $\bar{A}_{h}^{\prime}(X)$ will be approximately $N\left(0, a^{2}\right)$ as $X \rightarrow \infty$.
Proof. Put

$$
\alpha_{n}(X)=\frac{1}{X} \int_{0}^{X} P\left(x<S_{n} \leqq x+h\right) d x
$$

Obviously, for every $n, 0 \leqq \alpha_{n}(X) \leqq 1$. By Lemma 1 ,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \alpha_{n}(X)=O(1) \quad \text { as } \quad X \rightarrow \infty \tag{10}
\end{equation*}
$$

First of all, we shall show that

$$
\begin{equation*}
B^{2}(X)=o(1) \tag{11}
\end{equation*}
$$

Suppose

$$
\begin{equation*}
B^{2}(X)=\sum_{n=1}^{\infty} \alpha_{n}^{2}(X) \neq o(1) \quad \text { as } \quad X \rightarrow \infty . \tag{12}
\end{equation*}
$$

Then we have, for some n,

$$
\begin{equation*}
\alpha_{n}(X) \neq o(1) \quad \text { as } \quad X \rightarrow \infty, \tag{13}
\end{equation*}
$$

For, if for every n,

$$
\alpha_{n}(X)=o(1) \quad \text { as } \quad X \rightarrow \infty,
$$

then

$$
B^{2}(X) \leqq \sup _{n} \alpha_{n}(X) \cdot \sum_{n=1}^{\infty} \alpha_{n}(X)=o(1) \quad \text { as } \quad X \rightarrow \infty
$$

which will be contrary to (12). Now, (13) will be rewritten as

$$
\begin{equation*}
\int_{0}^{x} P\left(x<S_{n} \leqq x+h\right) d x=C_{n} X+o(X) \tag{14}
\end{equation*}
$$

where C_{n} is a positive constant. Thus, for some constant $k>0$,

$$
\begin{equation*}
\int_{X}^{X+k} P\left(x<S_{n} \leqq x+h\right) d x=C_{n} \cdot k+o(X) . \tag{15}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\int_{X}^{X+k} P\left(x<S_{n} \leqq x+h\right) d x & \leqq k \cdot P\left(X<S_{n} \leqq X+k+h\right) \\
& =k \cdot \int_{X}^{X+k+h} d G_{n}(x)
\end{aligned}
$$

where $G_{n}(x)=P\left(S_{n} \leqq x\right)$, and this will tend to zero as $X \rightarrow \infty$. This is contrary to (13). Thus, we can conclude that (11) holds. Next, since

$$
\sum_{n=1}^{\infty} \alpha_{n}^{3}(X) \leqq \sup _{n} \alpha_{n}(X) \sum_{n=1}^{\infty} \alpha_{n}^{2}(X)=o(1) \cdot B^{2}(X)=o\left(B^{2}(X)\right) ;
$$

repeating this argument, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \alpha_{n}^{k}(X)=o\left(B^{2}(X)\right) \quad \text { as } \quad X \rightarrow \infty \tag{16}
\end{equation*}
$$

for every $k \geqq 3$.
Under the above preparations, we shall now enter into the main discourse in proving Theorem 2. Since the characteristic function of $\bar{A}_{h}^{\prime}(X)$ is

$$
f(t)=\prod_{n=1}^{\infty}\left(\begin{array}{c}
1 \tag{17}\\
1-i t a \alpha^{n}(X) / B(X)
\end{array} e^{-i t a h / m B(X)}\right),
$$

where the exchange between $(1 / X) \int_{0}^{X} \cdot d x$ and $\sum_{n=1}^{\infty}$ in (7) may be allowed with probability 1 . Taking the logarithm of (17), we have

$$
\log f(t)=-\sum_{n=1}^{\infty} \log \left(1-i t a \frac{\alpha_{n}(X)}{B(X)}\right)-i t \frac{a h}{m B(X)} .
$$

Expanding this and noting (16), we have for large X,

$$
\begin{aligned}
\log f(t) \sim & \sum_{n=1}^{\infty}\left\{i t a \frac{\alpha_{n}(X)}{B(X)}-\frac{a^{2} t^{2}}{2} \alpha_{n}^{2}(X)\right. \\
= & \left.i t \frac{a}{B^{2}(X)}\right\}-i t \frac{a h}{m B(X)} \\
= & \frac{i t a}{B(X)} \sum_{n=1}^{\infty} \alpha_{n}(X)-\frac{a^{2} t^{2}}{2} \frac{1}{B^{2}(X)} \sum_{n=1}^{\infty} \int_{n}^{x} P\left(x<S_{n}^{2} \leqq x+a\right) d x \\
& \quad-\frac{a^{2} t^{2}}{2} B^{2}(X) \sum_{m B(X)} \sum_{n=1}^{\infty} \alpha_{n}^{2}(X)-i t \frac{a h}{m B(X)} \\
\sim & a^{a^{2} t^{2}} \\
& 2
\end{aligned}
$$

which is the characteristic function of the normal distribution. Thus the theorem has been proved.

An analogous argument gives the following theorem in the case where $\left\{X_{\imath}\right\}$ is a sequence of identically distributed random variables. In the case where $\left\{E\left(X_{i}\right)\right\}$ is a stable sequence, a similar theorem will be proved under the conditions given by [1].

Theorem 2^{\prime}. Let $X_{\imath}(i=1,2, \cdots)$ be independent random variables identically distributed with the mean $m>0$. If we replace $A_{h}(X)$ and $B(X)$ by

$$
\begin{equation*}
A^{\prime}(x, h)=\frac{1}{B^{\prime}(x)}\left\{\sum_{n=1}^{\infty} a_{n} P\left(x<S_{n} \leqq x+h\right)-\frac{a h}{m}\right\}, \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
B^{\prime 2}(x)=\sum_{n=1}^{\infty}\left\{P\left(x<S_{n} \leqq x+h\right)\right\}^{2}, \tag{19}
\end{equation*}
$$

respectively, then the conclusion of Theorem 2 remains valid.
In the remaing part of the paper, we shall calculate $B^{\prime 2}(x)$ in the case where the central limit theorem will hold on $\left\{X_{\imath}\right\}$.

Theorem 3. ${ }^{3)}$ If $X_{\imath}(i=1,2, \cdots)$ are independent random variables identically distributed and having the mean $m>0$ and the variance v, and if a_{\imath} $(i=1,2, \cdots)$ are independent random variables having the probability density (8), then the distribution of

$$
\underset{h}{\sqrt{2}(\pi m v x)^{1 / 4}}\left\{\sum_{n=1}^{\infty} a_{n} P\left(x<S_{n} \leqq x+h\right)-\begin{array}{c}
a h \\
m
\end{array}\right\}
$$

tends to $N\left(0, a^{2}\right)$ as $x \rightarrow \infty$.
Proof. Based on Theorem 2', it is sufficient to show the relation

$$
\begin{equation*}
B^{\prime 2}(x)=\frac{h^{2}}{2 \sqrt{ } \pi m v^{x^{-1 / 2}+o\left(x^{-1 / 2}\right)}} \tag{20}
\end{equation*}
$$

By the central limit theorem, for large n, the distributions of S_{n} are approximately $N(n m, n v)$; more precisely, there is a positive constant $N(\varepsilon)$ such as

$$
\begin{equation*}
P\left(x<S_{n} \leqq x+d x\right)=\frac{1}{\sqrt{ } 2 \pi n v}{ }^{-(x-n m) 2 / 2 n v} d x+E(n, x) d x \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=N}^{\infty} E(n, x)<\frac{\varepsilon}{h^{2}}, \quad \text { uniformly respect to } x, \tag{22}
\end{equation*}
$$

for all $n>N(\varepsilon)$, where ε is a negligibly small positive constant. Now, by the mean value theorem on integral,

$$
\begin{align*}
& \sum_{n=1}^{\infty}\left\{P\left(x<S_{n} \leqq x+h\right)\right\}^{3} \\
= & \sum_{n=1}^{N}\left\{P\left(x<S_{n} \leqq x+h\right\}^{2}+\sum_{n=N+1}^{\infty} \frac{h^{v}}{2 \pi n v} e^{-\left(x+\theta_{n} h-n m\right) 2 / n v}\right. \tag{23}\\
& +2 h^{2} \sum_{n=N+1}^{\infty} \frac{1}{2 \pi n v} e^{-\left(x+\theta_{n} h-n m\right) 2 / \Omega n v} E\left(n, x+\theta_{n}^{\prime} h\right)+h^{2} \sum_{n=N+1}^{\infty} E^{2}\left(n, x+\theta_{n}^{\prime} h\right)
\end{align*}
$$

where $0<\theta_{x}, \theta_{n}^{\prime}<1$. Choosing so large $x \gg N m$ that $P\left(x<S_{n} \leqq x+h\right)<\sqrt{\varepsilon / N}$ ($n=1,2, \cdots, N$), we have
3) This theorem is one referred to in [3].

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left\{P\left(x<S_{n} \leqq x+h\right)\right\}^{2} & =\left\{\int_{0}^{x / m-\alpha \sqrt{x} / m}+\int_{x / m-\alpha \sqrt{x} / m}^{x / m+\alpha \sqrt{x} / m}+\int_{x / m+\alpha \sqrt{x} / m}^{\infty}\right\} \frac{h^{2}}{2 \pi y v} e^{-(x-m y)^{2} / y v} d y+R \\
& =I_{1}+I_{2}+I_{3}+R, \quad \text { say }
\end{aligned}
$$

where $|R|$ is negligibly small relatively to other terms. Putting $y=x / m$ $+t \sqrt{x} / m$,

$$
\begin{align*}
I_{2} & =\frac{2 h^{2}}{2 \pi v} \int_{0}^{\alpha} \frac{1}{\sqrt{x}+t} e^{-t 2 /\{(v / m)(1+t / \sqrt{x})\}} d t \\
& =\frac{h^{2}}{\pi v} \int_{0}^{\alpha} \frac{1}{x(1+t / \sqrt{x})^{-m t 2 / v} e^{(t 3 / v) \cdot o(x-1 / 2)} d t} \\
& =\frac{h^{2}}{\pi v} x^{-1 / 2} \int_{0}^{\alpha} e^{-m t^{2 / v}} d t\left(1+t^{3} O\left(x^{-1 / 2}\right)\right) \tag{25}\\
& =\frac{h^{2}}{\pi v} x^{-1 / 2}\left(\frac{1}{2} \sqrt{ } 2 \pi \sqrt{v}-\delta(\alpha)\right)+o\left(x^{-1 / 2}\right) \\
& =\frac{h^{2}}{2 \sqrt{\pi m v}} x^{-1 / 2}-\frac{h^{2}}{\pi v} x^{-1 / 2} \delta(\alpha)+o\left(x^{-1 / 2}\right)
\end{align*}
$$

with $\delta(\alpha) \rightarrow 0$ as $\alpha \rightarrow \infty$. Next

$$
\begin{equation*}
I_{3}=\frac{h^{2}}{2 \pi v} e^{2 x m / v} \int_{x / m+\alpha, \bar{x} / m}^{\infty} \frac{1}{y} e^{-(1 / v)\left(x^{2 / y+m} 2 y\right)} d y \tag{26}
\end{equation*}
$$

Now, we shall put the integrand as

$$
\begin{equation*}
\frac{1}{y} e^{-z / v}, \quad \text { where } \quad z=\frac{x^{2}}{y}+m^{2} y \tag{27}
\end{equation*}
$$

Since z is a convex function of y for $y>0$, the tangent of the curve at $x / m+\alpha \sqrt{ } x / m$ lies below the curve. The equation of the tangent is

$$
\begin{equation*}
z=m^{2} \frac{2 \alpha \sqrt{x+\alpha^{2}}}{\left(\sqrt{x+\alpha)^{2}} y+n\right.} \frac{2 x^{2}}{x+\alpha \sqrt{x}} \tag{28}
\end{equation*}
$$

and we have

$$
\begin{aligned}
& I_{3}<\frac{h^{2}}{2 \pi v} \begin{array}{l}
e^{\left(2 m x-2 m x^{2} /(x+\alpha \sqrt{x})\right) / v} \\
x / m+\alpha \sqrt{x / m} \int_{x / m+\alpha \sqrt{x} / m}^{\infty} e^{-(m 2 y / v)\left(2 \alpha \sqrt{x}+\alpha^{2}\right) /(\sqrt{x}+\alpha) 2} d y
\end{array} \\
& (29)=\frac{m h^{2}}{2 \pi v} e^{2 \alpha m x \sqrt{x} /(x+\alpha \sqrt{x}) \cdot(1 / v)} \cdot \begin{array}{c}
v(\sqrt{x}+\alpha) \\
m^{2} \cdot 2 \alpha x(1+\alpha / 2 \sqrt{x})
\end{array} e^{-(m / v)\left(2 \alpha \sqrt{x}+\alpha^{2}\right) /(\sqrt{x}+\alpha) \cdot \sqrt{x}} \\
& =\begin{array}{l}
m h^{2} \quad v \quad 1+\alpha / \sqrt{x} \alpha^{-1 / 2} x^{-1 / 2} e^{(m / v) \cdot\left(-\alpha^{2} \sqrt{x}\right) /(\sqrt{x}+\alpha)} \\
2 \pi v \quad 2 m^{2} 1+\alpha / 2 \sqrt{x}
\end{array} \\
& \sim \text { const } \cdot \alpha^{-1 / 2} x^{-1 / 2}+o\left(x^{-1 / 2}\right) \quad \text { as } \quad x \rightarrow \infty .
\end{aligned}
$$

Taking α so large that const. $\alpha^{-1 / 2}$ is negligibly small compared with $h^{2} / 4 \sqrt{ } \pi m v$, we have

$$
\begin{equation*}
I_{3}=o\left(x^{-1 / 2}\right) \tag{30}
\end{equation*}
$$

The same argument shows

$$
\begin{equation*}
I_{1}=o\left(x^{-1 / 2}\right) \tag{31}
\end{equation*}
$$

hence (24), (25), (30) and (31) imply (20).
In conclusion, the author expresses his sincerest thanks to Professors T. Kawata and K. Kunisawa who have given valuable advices.

References

[1] D. R. Cox and W. L. Smith, A direct proof of a fundamental theorem of renewal theory. Skandinavisk Aktuartidskrift 36 (1953), 139-150.
[2] T. Kawata, A renewal theorem. Journ. Math. Soc. Japan 8 (1956), 118-126.
[3] T. Kawata, Renewal theorems in the problems of queues. Journ. Op. Res. Japan 1 (1957), 3-8.

Department of mathematics,
Tokyo Institute of Technology.

