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1. Introduction. Let f(t) be an integrable function with period 2π and let

(1.1) f(t)~~-ao+ Σ (ancoant-jrbnamnt)=-\-AQ+ Σ An(t).

Then the conjugate series of (1.1) is given by
CO OO

(1. 2) Σ Q>n cos nt—an sin nt)= Σ Bn{t).

Throughout this paper we use the following notations:

φ(t)=φx(t)=f(x+t)+f(x-t)-28,

where s is an assigned finite number;

Ψ(t)=Ψs(t)=f(x+t)-f(x-t)-l,

where I is an assigned finite number;

θ(t)=βx(t)=f(x+t)~f(x+t);

ΦJJ), Θa(t) have similar meanings. We always suppose Δ>\ and 0<f<7r,
and write a(n, ft)=δ(l), for any function a of n and k, when and only
when

lim lim sup a(n, A;) = 0.

Recently, B. Singh [4] proved the following

THEOREM A. // ?PΊ(ί)=o(ί) as t-+0, and

then

dt=:0(χ) a s

1 n I
— Σ vBv(x) ->- - - as
n v=i π

that isy the sequence {nBn(x)} is evaluable (C, 1) to the value l/π.

The conditions of Theorem A are of Lebesgue type for the convergence
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of the conjugate series (1.2). Therefore, we shall consider, under the
conditions of Gergen type [1], the summability (C, 1) of the sequence {nBn(x)}.
Under the conditions of this type, G. Sunouchi [5] and S. Izumi [2] proved
the following theorems.

THEOREM B. Let r^β>0 and Λ=r/β. If

(1.3) Φp(t)=o(tr) as t-*0,

and

(1. 4) lim Km sup Γ ' rf+VΪ-.Wkt=O,

then the Fourier series (1.1) converges to the value s at t = x.

THEOREM C. Let Δ^\. If

\ \ψ(u)\du=o(t/logt~1) as t-^Ό,

Jo
and (1.4) holds, then the Fourier series (1.1) converges to the value s at
t=x.

Concerning Theorem A, we shall prove the following theorems.

THEOREM 1. Let r>β>0 and 4=r/β. If

(1.5) Φt(t)=o(F) as ί->0,

and

(1.6) limlimsupf I « * + » ) - W J Λ = O f
A->oo ^ 0 j ( λ ; 2 / )

1 / Δ t

then the sequence {nBn{x)} is evaluable (C, 1) to the value l/π.

THEOREM 2. Let 4^1. If

(1. 7) ί' I ψ(u) I du=o(t/ log r1) as t -> 0,
Jo

(1. 6) holds, then the sequence {nBn(x)} is evaluable {C, 1) to the valuel/π.

Following the method of R. Mohanty and M. Nanda [3], we get the
following convergence criteria for the conjugate series (1. 2) as corollaries of
Theorems 1 and 2.

THEOREM 3. Let r^β>0 and A=γ/β. If

Θv(t)=oψ) as ί->0,

and

(1.8) limlimsupf
&->oo 2,̂ 0 Ja
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then the conjugate series (1. 2), at t=x, converges to the value

(1.9) ~ Γ 0(t) not-I dt

provided that the integral exists as a Cauchy integral at the origin.

THEOREM 4. Let Δ>\. If

Γ \θ(u)\ du=o(t/ log t'1) as t-+0,

Jo
and (1. 8) holds, £/£e% the conjugate series (1. 2), at t = x, converges to the
value (1. 9) provided that the integral exists as a Cauchy integral at the
origin.

2. Preliminary Lemmas.

LEMMA 1. Under the conditions of Theorem 1, we have, for integer v,

\Ct. JL) Ψy\C)=:0\o ) .

This is due to S. Izumi [2; Lemma 1].

LEMMA 2. Let 0 < τ g l and let 0^u<v<°o. Then we have

(2.2) (t—u)τ~1eιntdt = o(n~τ).

J«
This is due to G. Sunouchi [6; Lemma 1],

LEMMA 3. Let a(nft)=-^--e~~nt. Then we have
nt~ t

(2. 3) ~-<r(^ 0 = 0 ( ^ 2 ^ V i m - J + 1 J (m=0,1, 2, •),

and, for 0 < r ^ l , 0<w<v<oo,

(t—u)τ~1-j~nισ(n,t)dt = Ol Σ n^^u3'™'11 (m=0,1, 2,

Proof. By Leibniz formula, we have

-—σ(n, t)= Σ (~ϊ)m~j( . )(m~j-\-l)!—--.- - sin (nt+jπ/2)
dtm n j=o \3 / t

— Σ (~l)m~j[ m. )(m—j) 1-^J+Ϊ cos (nt+jπ/2).

Thus we get

which is (2. 3). Now, using the second mean value theorem, we have
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J u v

by (2. 2). Hence, from (2. 5),

Γ. w 1 ^ ί } Λ = L l ( - i r " (7) ( m ~ i + 1 ) ! njί (ί-M)τ"lSίn P
J u

/ m \ / m \ / m \

=O[ Σ ̂ " τ " 1 ^" m ~ 2 +O[ Σ ^ " τ ^ - m " 1 )=O[ Σ ^ - ^ - m - 1 )

which is the result required.

The following three Lemmas can be proved analogously to the proofs of
Singh's lemmas [4; Lemmas 1, 2 and 3].

LEMMA 4. If ?Γ

1(ί)=o(ί) as ί-^0, then, for every positive integer k,

LEMMA 5. Ψι(t)=o(t), then, for every positive integer k,

^peίntdt=o(l) as
nτ/n)1/Δ *

where (kπ/ri)1/A<r]^(kπ/n)1/A+π/n.

LEMMA 6. If Ψx{t)=o(t) and (1.6) holds, then

Ψ(t)
exntdt=δ(n1/A) as n-*oo.

LEMMA 7. If Σ ^ π is Abel evaluable, then a necessary and sufficient
condition that it should be convergent is that the sequence {nun} is evaluable
(C, 1) to the value zero.

This Lemma is well-known as Tauber's second theorem.

3. Proof of Theorem 1. From the method of Mohanty and Nanda [3],
we have

1 J

say, where

π πjo

Ψ(t)g(nft)dt+o(l)=~P+o(l)f

π Jo π

g(n, t) = {cosί+cos2H hcos w£}
n at

!_ _sin»ί__ 1 cos»ί| 1 .
» sin2ί/2 2 tanί/2j 2
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Now, we have, when n -> oo,

P=
Jo i4tιsm2t/2 2 tant/2] 2JO

+ + )ψ(t)σ(n,t)dt + o(l)

say, where
, .. _ sin nt __ cos nt

Since, when 0<nt<C, C being a positive constant,

and
/γ /"*/~lQ Wi i GIT"! Wit *Yl G"Ϊ"Π Wii

we have, by (2.1),

[ ^ , t) dt
JO ίvί

o

Applying Lemmas 4, 5 and 6, we have

ψcosntdt

+ \ - ΓT4ϊθs»t(Zt+ό(l)
CΛτc/w)l/Δ Jc*Λ/n)l/Δ+-π/» J ξ / ί

in
2 J(J(^/W)l/Δ [

Then we have, again using Lemma 6,
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t + π/n
ntdt

t(t+π/n)

^ 1 p

Thus, when z/=l, we have P=ό(l), since P 2 does not appear in P. When
z7>l, we shall prove P2=ό(l). Let β be not an integer and let [/2]=μ. Then,
by integration by parts, we have

P2=
(ίk'κ/n

J kπ/n
Ψ(t)σ(n, t) dt

Γμ+1

= Σ (~
Lv=l

η(^τc/w

f t)
Akπ/n k<κ/n

^i<nf t) dt
t^+1

say, where, by (2.1) and (2. 3),

/μ+l v-1 \ /μ+1
^21 = θ( Σ ^-{I+CV-1)Δ}/Δ yi ^+CV-Λ/Δ U o ( y] ^ - 1

\v=i j=~i J \v=i

/μ + l V-l \ /μ + l

= o( Σ Σ ^°'+1-vχi-1/A) ] + o( Σ ^V-IXI-Δ)

Now, omitting the constant factor, we have

ίCA<π/w)l/Δ ^Jμ + i ft

y An, t) dt Ψt(u)(t-uy-* du
kπ/n α ί μ + 1 Jo

ί kπ/n (tCk'π/n')l/A r/μ + 1

Ψt(u)du (t-u)^~-σ(n91) dt ,
0 Jkπ/n α ί μ + I

f β(w)ί

α c μ + 1

say. Then we have, by (1. 5) and (2. 4),

and

μ+l

Σ ^-μ+

i

μ+l

yj

Thus we get P2=o(l) and the proof of theorem is complete when β is not
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an integer. When β is an integer, the proof is similar to the above argument.
For the proof, it is sufficient to prove that P2=o(l). By integration by
parts, we have

^ < τ ( Λ , t) + ( - l ) β + 1 Mt)^-Mn, t)dt

where, by (1. 5) and (2. 3),

ζ=o

β

which is the result required and the proof of theorem is complete.

4. Proof of Theorem 2. The method of proof is similar to that of Theorem
1. Since (1.7) implies that Ψ1(t) = o(t), for the proof, it is sufficient to prove
that P2=o(l), where P2 is found in (3.1). Integration by parts gives

P2r= fCWw) ψ(t)σ(n, t) dt
J kπ/n

= θ([Qk*/nΫ/* \ψ{t)\t~Ht\

= θ[Γr1fί \ψ(u)\duV*/n:)/\[^/n:) V a(T \ψ{u)\dvλdt

=o(l)+o|

which is the result required and theorem is proved.

5. Proof of Theorems 3 and 4. The existence of the integral (1. 9) as a
Cauchy integral at the origin implies the Abel summability of the conjugate
series (1.2) at t=x. (See [7; p. 55].) By Theorems 1 and 2, we find that
the conditions of Theorems 3 and 4 imply the summability (C, 1) of the
sequence {nBn(x)} to the value zero. Now, the convergence of the conjugate
series (1. 2) at t = x is a consequence of Lemma 7.
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