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1. Introduction.

A necessary and sufficient condition for an analytic function f(z) to be
regular in the unit circle E:|z| <1 and to map E univalently onto a convex
domain is that it satisfies

T
m(1+zf%(%))>o for |z|< 1.

This is a well-known classical theorem originally due to Study [11]. Its
sufficiency proof particularly with respect to the regularity and univalency
of f(z) has been later supplemented by Kobori [4]. Once these properties
of f(z) having been established, it is ready to show that the convexity of
the image-domain f(E) follows from the condition of the theorem. In fact,
in view of the relation

" 1
Yz’% arg df (re®) = R (1 + 7et v ,((::t:))f) >0
for any fixed » with 0 < 7 <1, the image-domain of any concentric circular
disc jz| < r(< 1) by f(z2) is convex so that f(E) is itself convex.

On the other hand, Carathéodory [3] has given a proof in which the neces-
sity of the condition is shown by making use of a convergence theorem on
variable domains established by himself [2]. Later Radé [10] has given
a very elementary proof of the fact that if f(z) maps the whole circle |[z]| <1
univalently onto a convex domain then it maps every concentric circle also
onto a convex domain. The necessity part of Study’s theorem may be
regarded as its immediate consequence. In fact, there then holds

9\? (1 +z j;:((zz))) = 714917 argdf(ret*) =0 (z = ret?)
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along every concentric circumference |z| = (< 1) and, since the left-hand
member is a harmonic function of z not identically vanishing, this implies
the condition of Study’s theorem.

A function which maps a circle univalently onto a star-like domain is
closely connected with a function which maps the same circle onto a convex
domain. The explicit connection is really given by a classical theorem
originally due to Alexander [1]. Its background consists in the identity

S2) _ & (*fa) 4,/ ad (" fla)
2 —1TE 42250 z dz/szo z @

valid for any function f(z) analytic in a circle about the origin where it
vanishes, together with the relation

a (pi?) — ( i M
a9 arg f(re!) = R(7re Flre )
valid for any fixed » with 0 < » < 1. By means of this theorem, any theorem
concerning convex mapping will be transferred to a corresponding theorem
concerning star-like mapping, and vice versa.

In the present paper we shall first again deal with the condition for
convex mapping of a circle by establishing an integral representation for
mapping function. Its leading idea originates essentially from Study [11].
It will be shown that Study’s theorem stated at the beginning of the present
paper may be regarded as an immediate consequence of this representation.
It serves further to establish several properties of convex mapping system-
atically some of which will be illustrated below. We then re-prove Alex-
ander’s theorem by establishing independently an integral representation
for function which maps a circle univalently onto a star-like domain.

We shall next consider corresponding problems in case of an annulus as
a doubly-connected basic domain. In the simply-connected case, though
Radé’s argument on convex mapping is very ingenious, it depends explicitly
on the particularity of the unit circle as a basic domain since Schwarz
lemma plays there its leading role. It seems therefore difficult to modify
this argument simply so as to fit in the doubly-connected case. Thus we
shall here also establish an integral representation for a function mapping
an annulus onto a ring domain bounded by two convex curves. Some
results corresponding to those in the simply-connected case will be obtained
by means of this representation. A theorem analogous to Alexander’s
will be also established. It will play the correponding role of transference
between mappings of an annulus onto domains bounded by convex and
star-like boundary components.

Finally it would be noted, by the way, that for any analytic function w
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= f(2) and its inverse function (a branch) z = g (w), there exist the relations

zf z) wy’ w) wy'(w) 2f(2)
/ or gw) 1/ fle)
and
L 2R _ w9"(®) wg'(w) wg'w) _ . zf” (2) /2f(2)
%0 T T v | gw) =y = A

2. Mapping of a circle onto a convex domain.

As a preparatory consideration we first remark that the necessity part
of Study’s theorem referred to at the beginning of the present paper is
readily derivable provided the boundary of the image-domain is not of so
complicated nature such that the mapping function f(z) satisfies certain
smoothness condition on the closed unit circle. For instance, it is enough to
suppose that f(z) is piecewise regular on [z|<1, i.e. f(2) is regular on |z|
=1 except at a finite number of boundary points where f'(z) has discontinui-
ties of the first kind along |z| = 1. In fact, the boundary value of the func-
tion R(1 + zf"(z)/f(2)) harmonic in [z] < 1 is then equal to (d/d®) arg df (¢**)
at z = ¢' except at the discontinuities of f(z). The assumption that the
boundary curve defined by f(e¥) for — 7 < ® < 7 is convex implies that
arg df (e’*) is, qua function of @, increasing and hence R (1 + z/"(z)/f"(z)) has
non-negative boundary value everywhere except at a finite number of the
boundary points where it is bounded from below. Consequently, it must
be positive throughout [z| < 1, as desired.

Moreover, we then have an integrgl representation of Herglotz type

S £y

where
12
p(#) = 5= |_ dargdfie?)

is an increasing function with total variation equal to unity. The repre-
sentation of this type remains valid also in general by taking p(®) as a suit-
able function with the assigned property. This fact will be proved in the
following theorem by means of a method of approximation.

THEOREM 2.1. Let f(2) be an analytic function mapping the unit civcle E :
(2| <1 univalently onto a convex domain. Then there exists an increasing
Function p(P) defined for — nw < @ < w with total variation equal to unity such
that an integral representation of Herglotz type

1+zj;,'((zz)) =Si e¢+zdp(¢)
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holds for z € E.

Proof. We approximate the image-domain f(E) by a sequence of convex
domains {D,} in the sense of Carathéodory’s domain-kernel. Let the map-
ping function f,(z) of E onto D, be normalized by

A0 =f0) and  argf(0) = arg £(0).

We may further suppose that for every » the function f,(z) admits of
a representation of the form under consideration. For this purpose it suffices
to observe, for instance, a sequence of domains bounded by convex recti-
linear polygons which exhausts f(E). We then have

1+z £ (2) _S” e’ + z

f-;(z) =), e =2z dp(®)

where p,(®) is defined by
1 (4
PUP) = 5 - S_nd arg df.(e");

cf. [6]. Since p,(®) satisfies

a9 20 and |7 apie) =1,

we can choose by Helly’s selection theorem a subsequence {p.,(®)} which
converges for all values of @. Let its limit function be denoted by p(®),
i.e.

lim po(#) = P(P).
Evidently p(®) is an increasing function defined for — 7 < @ < 7z with total

variation equal to unity. Since (3/o®)((e* + 2)/(e? — 2)) is for any z € E
continuous with respect to @, Lebesgue’s convergence theorem implies

e o : e +z " i 9 €Y +z
}g{: S_ﬂ’ét_w___g ap (@) = 11_’1'2 { [ % — 2 ka(q’)]_ﬂ - S_nP ”(‘p)—a? 2% — 2 d¢}
_[e¥+z2 N o etz (" e’ +z
- [-e“” —z p(¢)]-n S_np(tp) op e —2z dp = S..,, e —z ap(®).

On the other hand, the sequence {f,(z)} converges as v — oo uniformly to
f(z) in the wider sense in |z| <1 by Carathéodory’s theorem (cf. [2]) and
hence {1 + zf,(2)/f.(2)} converges to 1+ zf"(z)/f'(z) by Weierstrass’ double
series theorem. Consequently, the desired representation is obtained.

If it is required to prove merely the necessity part of Study’s theorem,
the above proof is correspondingly shortened. In fact, the inequality R(1
+ 2f,(2)/f,(2)) > 0 leads readily to the limit inequality R(1 + 2f"(2)/f"(z)) =0
where the equality sign may be rejected since f(z) does not degenerate to
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a constant. This is indeed the procedure used by Carathéodory [3] in his
proof for this own fact.

COROLLARY. For f(2) satisfying the condition in theorem 2.1, there holds
£@ =70 exp (2] 182 dp(@) dz + 10

with the same p(P) as in theorem 2.1, where the logarithm involved in the inte-
grand denotes the branch reducing to zero for z = 0.

Proof. Integration of the representation in theorem 2.1 with respect to
lg z, followed by a further integration with respect to z.

We now show that the converse of theorem 2.1 (or rather its corollary)
is also valid.

THEOREM 2.2. Let p(®) defined for —m < @ <m be an incveasing function
with total variation equal to unity. Then the function defined by

@) = aflexp (2] 1 o dp(@) )@z + B

maps the unit cirvcle univalently onto a convex domain, where A(= f(0) + 0) and
B(= f(0)) are any preassignable constants.

Proof. 1t is evident that f(z) is regular in |z| < 1. We now observe the
image-curve of |z[ =7 for a fixed » with 0 <7 < 1. In view of the relation

A arg df (re") = L3 1g (ire" [ ret)

E 1__ .
= | 2 N gy 409) = || i = a9 > 0

the tangent vector of this image-curve turns steadily in the positive direc-
tion as z moves along | z| =  in the positive sense. Further, since we have

1—7
Wd()—%

| aargaren = |~ ap)|”

the image-curve must be a simple closed curve. Consequently, by virtue
of Darboux’s theorem f(z) maps |[z| < 7 univalently onto a convex domain
for any 7 with 0 < » <1 whence follows the result.

Based on theorem 2.1 (or its corollary) and theorem 2.2, we can conclude
that the representation for f(z) given in theorem 2.2 is characteristic to
a function mapping | z| < 1 univalently onto a convex domain. This integral
representation having been once established, we can derive systematically
several well-known classical theorems on convex mapping some among
which will be now illustrated in the following lines. Similar argument has
been once announced in a previous paper [6].
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THEOREM 2.3. Let f(2) map |z| <1 wunivalently onto a convex domain. Then,
for 1z <1,

1| 'z _ 1+]z]

e =l R =TT

1-— ( f”(Z) 14z

T+ 2] |1+ ‘—1—;;’
1 f’z) 1

a+ 2 =l tg SE

For any assigned z, with 0 <|z,| <1, the equality sign in the left and right
inequalities in every estimation can appear only for functions of the form
af«(z; 2,) + b and af*(z; z,) + b with any constants a(=+0) and b, respectively,
where

. _ z % (- - ) = L )
fx(z; 20) = ZF 2/] 20| and I*z; 20) = falz;— 20) z—z/ 2"
The extremal functions fi(z; z,) and f*(z; z,) = fu(— 2; 2,) map |z| <1 onto
the same half-plane bounded by the vertical line which cuts the real axis
at 1/2] z,|.

THEOREM 2.4. Let f(2) map |z| <1 univalently onto a convex domain. Then,
Jor |z| <1,

arg ;,Ez; ’§ 2arcsin|z|.

For any assigned z, with 0 <|z,| <1, the quantity arg (f(z)/f(0)) (the branch
vanishing at the ovigin and continued harmonically) can attain the values
— 2arcsin|z,| and + 2arcsin|z,| if and only if f(2) is of the form afy(z; z,)
+ b and af*(z; z,) + b with any constants a(=0) and b, respectively, where

Sz 20) =

4
201 —iN1/[z,[F —1) — z
and f*(z; z,) = f«(z; 2), i.e.

[z 2) =

2
21 +iv1)[z, =1 —z°

The extremal functions fi(z; z,) and f*(z; z,) map |z] <1 onto the same
half-plane bounded by the vertical line through 1/2.

By the way, it is noted that the extremal functions in theorem 2.3 depend
essentially only on argz, while those in theorem 2.4 depend on argz, as
well as |z, |.

3. Mapping of a circle onto a star-like domain.

A function mapping a circle univalently onto a star-like domain is, as
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previously noticed in the introduction, in closed connection with a function
mapping the same circle univalently onto a convex domain. In order to
arrive at Alexander’s theorem which gives the explicit connection between
these mappings, we first establish an integral representation analogous to
that given in theorem 2.1 and characteristic to a function with a star-like
image.

THEOREM 3.1. Let f(2) be an analytic function mapping the unit circle
E: |z| <1 univalently onto a domain star-like with respect to the point f(0) = 0.
Then there exists an increasing function p(p) defined for —n <@ <7m with
total variation equal to unity such that an integral rvepresentation of Herglotz
type

f/(z) _ £ ei¢+z
G =) e

holds for z € E.

Proof. Let the image-domain f(E) be approximated by a sequence of
domains {D,} in the sense of Carathéodory’s domain-kernel, where every
D, is star-like with respect to the origin. It is readily seen that we can
suppose every D, be, for instance, bounded by a rectilinear polygon. Then
the mapping function f,(z) of E onto D, satisfying the normalization f,(0)
= f(0) as well as arg f,(0) = arg f/(0) admits of a representation

£e) (" etz g

‘D Tz
where p,(®) is defined by
1 (4
Pue) = 5| darg file®).
In view of the star-likeness of f,(z), we have
dpi@) 20 and [ dp,@) =1.

The remaining part of the proof proceeds then quite similarly as in the
proof of theorem 2.1.

CorOLLARY. For f(z) satisfying the condition in theovem 3.1, there holds
4 7T e(?
7@ = rO)zexp(2 18t dp(@))

with the same p(®) as in theorem 3.1, where the logarithm in the integrand
denotes the branch which reduces to zevo for z = 0.

THEOREM 3.3. Let p(®) defined for —n <@ <m be an increasing function
with total variation equal to unity. Then the function defined by
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f(2) = Azexp (2 Y g w5 dp(éa))

maps the unit circle univalently onto a domain star-like with respect to the
origin, where A(= f(0)) is any non-vanishing constant.

Proof. Similar as the proof of theorem 2.2. It will be only necessary to
note the relations

1-—

‘?9 arg f(re'®) —S 'ew—_mg_jz dp(p) >

and

S;d arg f(re'®) = S:dp (®) r 1-

- €& —re'“d'g"Z”

both valid for any » with 0 < 7 < 1.

Theorem 3.1 (or its corollary) together with theorem 3.2 shows that the
representation for f(z) given in theorem 3.2 is characteristic to a function
mapping |z; <1 univalently onto a domain star-like with respect to f(0) = 0.
Comparing this representation with that for convex mapping, we see that
the former is obtained from the latter by merely substituting z/(z)/f(z) instead
of 14+ zf"(z)/f(z). This fact is just the content of Alexander’s theorem
which may be fully stated as follows.

THEOREM 3.3. Let & = {f,(2)} be the class consisting of functions with the
property mentioned in theovem 2.1 and &t = {f(2)} the class consisting of func-
tions with the property mentioned in theorem 3.1. Then they are connected by
the relation

1 s = .
TP TP
Movre precisely, for any function f,(z) € & the function defined by

f(&) = Czf(z)

with any constant C(=0) belongs to &t and, conversely, for any f,(z) € €t the
Sunction defined by

file) = Aj )% 1+ B
with any constants A (= 0) and B belongs to K.

Proof. Evident by virtue of theorems 2.1, 2.2, 3.1 and 3.2,

After Alexander’s theorem 3.3 has been established, it is ready to transfer
the theorems 2.3 and 2.4 concerning convex mapping to the corresponding
theorems concerning star-like mapping. The latter theorems can be de-
rived, of course, also directly from theorem 3.1.
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THEOREM 3.4. Let f(z) map |z| <1 univalently onto a domain star-like with
respect to f(0) = 0. Then, for |z] <1,

1— |z f@) _ 1+]zl
TH e =% =112

14z
= 11—z’

L:—Iz—;s\z

@)
T+[z] =1 fla)

ozl < M‘g_ﬁmf

T +[z)* =10 [= QL—]z)*"
For any assigned z, with 0 <|z,| <1, the equality sign in the left and right
inequalties in every estimation can appear only for the functions of the form
cf«(z; 2,) and cf*(z;z,) with any non-vanishing constant c, respectively, where

Sz 2) = (z—_*_éfﬂ?’)z‘ and  f*(z; 2) = fulz; — 2) = Wz/lzo*)z

The extremal functions fi(z; 2z,) and f*(z; z,) map [z| <1 onto the whole
plane which is cut along infinite half-rays centered at the origin and with
the inclinations — argz, and = — arg z,, respectively.

THEOREM 3.5. Let f(z) map |z| <1 univalently onto a domain star-like with
respect to f(0) = 0. Then, for |z' <1,
_flz)
S(0)z
For any assigned z, with 0 <|z,| <1, the quantity arg(f(2)/(f(0)2)) (the branch
vanishing at the origin and continued harmonically) becomes — 2 arcsin|z,| and
+ 2arcsin |z, | if and only if f(2) is of the form cf«(z; 2,) and cf*(z; z,) with
any non—vanishing constant c, respectively, where

< 2arcsin|z!.

arg

z
(2 — 2o(1 — i1/ 2 [* — 1))

Sx(z; 20) =

and f*(z; Zo) = f«(2; éo), i.e.

¥4
(z — 2,1+ l’\/l/ 2 EZ'“‘D)2 )

f*(z; 2) =

The extremal functions fi(z; z,) and f*(z; z,) map |z| <1 onto the whole
plane which is cut along infinite half-rays centered at the origin and with
the inclinations 7/2 — arcsin|z, — argz, and 7/2 + arcsin !z, | + arg z,, res-
pectively.

4. Preliminary lemmas on elliptic functions.

In two subsequent sections we shall deal with analytic functions defined
in an annulus

R, : 0<)g<z] <1,
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While the Poisson kernel (complex form) involved in Herglotz representation
for functions analytic in a circle is an elementary and really a linear func-
tion of its both arguments, it will be replaced in case of the annulus R, as
the basic domain by certain elliptic zeta~functions involved in the corres-
ponding Villat-Stieltjes representation. Accordingly, some results concern-
ing these functions will become necessary for establishing the distortion
theorems which correspond to those stated above in the case of the unit
circle. In order to avoid the interruption of our main discourse and for
the sake of completeness, we summarize in the present section some lemmas
necessary for later use. Throughout the present paper, we suppose that
the notations on elliptic functions concern always the Weierstrassian theory
constructed with primitive periods

%, =27 and 2w, =2lg %—,

unless a contrary is explicitly stated. In particular, the quantities ¢, = §(w,)
(r =1, 2, 3) are then real and 7, = {(w,) is real positive while the quantity
7, = {(w,) is purely imaginary, and the e’s satisfy the inequality

e, > ey, > e;.
LEmMA 4.1. For any real @, the function defined by

P(z; p) = S(é’(i lgz+ @) + 17;% lg z)

vemains positive throughout the annulus R, while the function defined by

QG 9) = 3(¢ulilgz+9) + 4 le2)

rvemains negative throughout R,.»

Proof. 1t is evident that P(z; ) is regular and harmonic in R,. It is
expressed in two alternative ways:

1—7? = gty — 1/7") lgr
i0 . — e S LA . S ~ N
P(Te ,¢)—‘ 1-—27’COS(9—¢1)+7’2 +27§1 1___q2n COS%(H q)) 1gq
- 5" — g/t ) g7
=1+ 2n§=1} 1—g™ cosn(gd —p) eq

The first expression shows that P(z; ¢) has the boundary value vanishing
everywhere along |z|= 1 except at a single point z = ¢! where it behaves
like as the Poisson kernel (1 —|z[*)/|e? — z|* which is positive for (z|<1.
The second expression shows that P(z; ¢) has the boundary value vanishing
everywhere along |z| = ¢ without any exception. Consequently, P(z; @) is

1) Since the periodicity moduli of ((ilgz + @) as well as ilgz are real, the func-
tions P(z;9) and Q(z;9) are both single-valued with respect to their both arguments,
a fact which will be seen also in the proof of this lemma.
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positive throughout R,. The negativeness of Q(z; ) is an immediate con-
sequence of the Tact just verified. In fact, we have an identity

Q(z; ¢)=3(§(~—ilg%+¢)—m+ 1g3 Ig2>

35t =) ity 6 8)= P[5 9)

and the point g/z lies in R,.

LemMa 4.2. For any r with q <v <1, the quantities IC(ilgr + ¢) and
SCailg v + &), qua functions of ¢, ave even periodic functions with the period
27 which are strictly decreasing and increasing, respectively, for 0 < ¢ <.

Proof. (Cf.[5].) It is evident that J&(;lg# + ¢) is an even periodic func-
tion of ¢ with period 27z. In order to show its decreasing character in
0= ¢ <=, we observe its series forms expressed in two alternative ways:

. —_ 2 oo zn .
JEElgr + ¢) = 77‘ lgr + % = Zicos;’c/)—}—rz +Z_}l (i’ ql/r)cosngb
oo — n2n
Igr+~+2‘, ” QEZLcosm/J

By differentiating with respect to ¢, we get

D ors 7(1— 7% sin ¢ Sy 0" = 17"
WS;(ZIgV"‘ ¢) - (1_27(:054}-*-7272——”;1 ﬁ

Il

= i L_—q;”/ " sinng.

Now (0/oP)JCGlgr + ¢) = — I p(Zlgr + ¢) is regular and harmonic in the
annulus ¢ < |z| <1 with respect to z = re~®¥ (or also to re'). The first
expression shows that it vanishes everywhere along [z| =1 except at a single
point z =1 and it remains negative in a neighborhood of z=1 contained
in the lower half of the annulus. The second expression shows that it
vanishes everywhere along {z| = ¢q. Further, it vanishes along two segments
lying on the real axis and contained in the annulus. Consequently, the
quantity (0/0¢)3¢( 1g » + ¢) is negative throughout the lower half of the
annulus in the re~%- plane so that, for any fixed » with ¢ <7 <1, JL(Z1lg7r
+ ¢) is strictly decreasing for 0 < ¢ < ». The aimed result on J¢,(¢1g 7 + ¢)
follows from the relation

3C,(ilgr+ ¢) = 3¢ (lgr —ilga+ ¢) —n) = — 3¢ (ilg L — ¢) - Im,.

LemMA 4.3. For any r with q <r <1, the quantities |oc(Glgr + ¢)| and
|oy(ilgr + ¢)|, qua functions of ¢, ave even functions which, in the interval
0 ¢ <7, attain their minima both at ¢ =0 and their maxima both at ¢
= 7T.



116 YUSAKU KOMATU

Proof. The quantities under consideration are expressed by

[o(ilgr + )| = eMPEOU ey~ (] — ppmiv|

) ﬁ |1 __qznre-—i\le . qznr—1ei¢’
nel (1 — qzn)z
and

2167y ﬁ I 1 __qzn—tre—w [ l 1— qzn—xr—xe..q, |

Joy(ilg 7 4+ ¢) = eMmiFOW 1T — & s
n=1 -

whence readily follows the result.

LemMma 4.4. The quantity defined by

T(v, 6o = g_ne-m/vzxzoa—v—uw “gaég)f (0_‘/0’ ; Zg_z_ dp

satisfies the following relations:
T (7, 0o + 27) = e™*"%T (v, 6,),
T(y + 27, Q) = — & +OT (v, 0,),
T(—, 27— 6) = T(7, 6)
and, for any real @,
T(0, §,) > 0.

Proof. In view of well-known formulas
Ty(@ — 0y — ) = e P10 ay(p — @, + 7)
and
o —v—2m) = — eI a(p — ),

we readily get the first two equations. The third equation follows from
the definition by applying the change of integration variable @|— @ and
remembering that o(¢) is an odd function while o4(¢) is an even function.
The last inequality follows directly; namely we have

I R P P -1 2)

This lemma can be proved also by expressing 7'(v, §,) in terms of Jacobian

theta—functions. In fact, we have
* P P—
2 AN (r
4702 NP =2(x=0 > 1(2#) ! 2 )

2% . 00((”—207;*“ n)2

(v, 00) = ag,

the parameter associated to theta-functions being ¢, or expressed in the
product form
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47292

2 2
T(v, 8) = 7 0 p(n;2m)(v2=2(—0)%)
1

(T o P o P— 5 (1—2¢"cosp + ¢*")(1 — 2¢*" cos (P — ¥) + ¢**
44 S_,Sm 2 ST ,,,131 (1 + 2¢°™ " cos (@ — @,) + ¢**)*

The functional equations as well as an inequality in the lemma are directly
evident from the last expression.

- dp.

LemMa 4.5, Let T(v, 0,) be defined as in lemma 4.4. The equation
T(eo — 7T, 00) =0

has in the interval 0 < 6, < 2z a single root @, = 0.

Proof. The validity of T(— 7, 0) = 0 follows readily from the equations in
lemma 4.4. In fact, we get

T(—7m 0 =T(—n27)=T(x,0) = — T(~mx, 0).

Now the equation 7'(@, — =, §,) = 0 is equivalent to the equation
[" K@ 6ap =0

where the integrand defined by

— ain? ane P— 00 7y (1 —2¢*"cos + ¢**)(1 + 2¢*" cos (¥ — 6,) + ¢*")
K(®, 0,) = sin-5-cos =20 IT T+ 20" cos (@ — G0 + ¢

is periodic in @ with period 27. Suppose first 0 < §,<z. Then, in the
equation

0=(" K@ 00dp =" K@@+ 6, 6)ap

= SiZOK(¢ + 00’ 0°)d¢ + S:O(K((p + 00; 00) + K(_‘g) -+ Go» 00))d¢7,

the integrand of the first integral of the last member is evidently positive
throughout — 9, < @ < @, while that of the second integral is equal to
oo 1+ 2q2n cos @ + qdn

P t g
cos 5 L T3 24 * cos @ + g

(sin E’,:gjﬂ,nl‘;il(l — 2¢*" cos (@ + 6,) + ¢**)

P—0

— sin 0 fiIl(l — 2¢*™ cos (P — G,) + qm))

which is also positive throughout its interval of integration by virtue of the
inequalities sin (@ + 6,)/2) > sin ((@ — 6,)/2) and cos (@ + @,) > cos (@ — 6,)
valid there. Hence 6, with 0 < §, < = cannot be a root of T(8, — 7, 6,) = 0.
Suppose next 7 < §, < 2z. By means of the relation in lemma 4.4, we get

Ty —m, 8) = T2 — 0y — m, 2 — §,).

The right member of the last equation does not vanish for 0 < 2z — g, < =,
as shown just above. Hence again g, with z < 8, < 2z cannot be a root of
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T(@, — =, 6,) = 0. Thus it is concluded that a unique root of the equation
TO, —m 0,) =0in 06, <27 is 9, = 0.

LeMmMa 4. 6. 7, + me; < 0.

Proof. From the series expansion of fp-function

oo 27
Plu) = — 37’;- + ‘11 cosec2 = — 22 lnqqm CoSs nu,

we get, by putting # = w; = —i1ggq,

Mo a _ang"0+q") 5 ngt
e + P (1_q)2 n§=]1 1— g™ = 27§1 —g™ <0.

Or alternatively, from a general formula

(2n — 1) 7w,

7 + w, f(w;) = - 5_", cosec?

W) n=1 2w, ’

we get, by merely specifying as w, = 7 and w; = —17lggq,

271—1

M+ mes = — 27 ET'*“ 2n-—1)2 <0.

The transference between two series forms for 7, + ze, is also immediate.

5. Mapping of an annulus onto a domain bounded by convex curves.

We first derive an integral representation for a function mapping the
aunulus

R, : 0<)g<]z| <1

onto a ring domain bounded by two convex curves. It corresponds to the
representation derived in theorem 2.1 in case of the unit circle. Here also
we shall use a method of approximation since the representation holds for
a function with simpler boundary nature.

THEOREM 5.1. Let f(z) be a single-valued analytic function mapping the
annulus Ry univalently onto a ving domain in such a manner that the image of
fz| =1 bounds a convex domain containing in its interior the image of |z|=q
which itself bounds a convex domain or may possibly degenerate to a rectilinear
segment.  Then theve exist increasing functions P(P) and T(®) defined for
— <@ <x and both with total variation equal to unity such that an integral
representation of Villat-Stieltjes type

"
142 L8 = 217 (¢lilgz + 9)dple) — EuliTe 2 + @)dr(@) + it
holds for z € R, wheve c* is a real constant defined by

et =217 plapig) - ar(@).
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Proof. The proof of the present theorem can be performed through its
whole process quite similarly as that of theorem 2.1. Namely, we first
approximate the image-domain f(R,) by a sequence of ring domains {D,}
of the same convexity nature as f(R,) in the sense of domain-kernel. Let
the modulus of D, be denoted by — lg ¢» and the mapping function f.(z) of
R.,: g <|z| <1 onto D, be normalized, for instance, by f,(v ¢) = f(V q).
We may suppose that every annulus R,, contains the point ~ ¢ and that
every f,(z) admits of the representation of the form to be aimed. In fact,
it suffices for this purpose to consider, for instance, a sequence of domains
bounded by two convex rectilinear polygons (convexity concerning the cur-
ves themselves) and converging to f(R,) as the domain-kernel. We then
have, for any z € R,,

I AC

Lt Sz @ S_,,(é’(i gz + @; ¢,)dpy ()

— §i(flgz + @; ) dTo(P) + icy
with
1 (¢ ; 1
py(p) = Wﬁ_”d arg df.(e'?) and T(P) = %—S—nd arg df,(qe*),

where c¢j is a real constant defined by

T

ot = 2N(@) S_ﬂsb(dpv(@ — dn(p))

T

and the parameter ¢, associated to the zeta—functions as well as to 7, means
that the primitive quasi-periods are 2» and — 2/1gq,; cf.[7], [8] or [9].
Since we have

dpp) =0, dr(@)=0 and |  dpie) = S;dn(qf) =1,

we can conclude similarly as in the proof of theorem 2.1 that the limit
process over a suitable subsequence {«,} of {v} leads to the desired result.

CorOLLARY 1. For f(2) satisfying the condition in theovem 5.1, there holds
o) = Af'zerexp (2 (—1glilgz + 9)dple)
+1go(Clgz + @) d'r(q)))) dz + B,

A(+ 0) and B being certain constants and c* a real constant defined in theovem
5.1; p(®) and T(P) are the same functions as in theorem 5.1.

COROLLARY 2. If f(z) satisfies the condition in theorem 5.1, the image of
every concentric civcumference |z| =1r(q <r <1) by f(2) is a convex curve.

Proof. From the representation of theorem 5.1 there follows

7de_ arg df(re') = 8{(1 + 7 ?L((:f:))—)
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2(7 3(€i1g(re) + @) dp() — £,(i g (re) + @) dri(@)

il

ZS:,(P (re'?; )dp(p) — Qre'?; P)d7(p))

where P and @ are the functions defined in lemma 4.1. Since by this lemma
P(ret?; ) >0 and Q(7e'®; ) <0, we have (d/df)argdf(re'®) = 0 which
proves the convexity of the image-curve of |z = 7. Further the equality
sign in the last inequality may be, of course, excluded.

In theorem 5.1 as well as its corollary 1, it has been supposed that f(z)
is single-valued in R,. The condition that f(z) considered there remains
invariant under the substitution lgzlgz + 277 implies that for any 7 with
g < r <1 the relation

[, ztexn (2] (~lgolilgz + 9)apip)
(M) ;
+1goylilgz + ) d'T(cp))) dz =0

must be valid, in which the value of the left member is really independent
of the choice of ». Taking this monodromy condition into account, it will
be shown that the converse of theorem 5.1 (or rather its corollary 1) is also
valid.

THEOREM 5.2. Let p(®) and T(®) defined for —n <@ < be increasing
Sfunctions with total variation equal to unity. Then the function defined by

£la) = Al 2 exp (2" (—1golilgz+ 9)dple)

bt 4

+1goyilgz + @)dr(e) )dz + B
with a real constant

et = 20" piap(p) — drig)

T

and with any complex constants A(=+ 0) and B maps the dnnulus R, univalently
onto a domain bounded by two convex curves, of which'the inside one originating
Sfrom |z| = q may possibly degenerate to a rectilinear segment, provided the
monodromy condition (M) holds for an r (and then necessarily for any r) with
g<r<1.

Proof. 1t is evident that f(2) is regular in R, and its single-valuedness is
assured by the condition (M). Further, for any 7 with ¢ < » <1, we have
4 i0

diearg af(re®) = ER(I + ret® ——~‘§.,((:eew)))

=2{" (P(re; 9)dple) — Qure; 9)dr(p) > 0;
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cf. the proof of corollary 2 of theorem 5.1. This shows that every image-
curve of [z| = » and hence both boundary components of the image are
convex. Finally, again for any » with ¢ < » <1, we have

S;d arg df (re')
=2(" a03(" Clitgr— 0+ 9)dri)~t,6ilgr — 0 + 9)d(9)

=23 (1g —ollgr—n+9) g Oslilgr — 7+ P)

= 23" (i — 2ni(ilg 7 + P))dple) + 20i(i lg 7 + P)dr (9) = 27,
whenece follows the univalency of f(z) in R,.

Based on corollary 1 of theorem 5.1 and theorem 5.2, it is concluded that
the representation given in the corollary accompanied by the monodromy
condition (M) is characteristic to a function possessing the mapping property
stated in theorem 5.1.

By making use of this representation, we shall first derive a distortion
inequality for the quantity 1+ R(zf"(2)/f'(z)). Though the result which
will be obtained is not sharp, it has an analogue in case of star-like map-
ping for which the corresponding result is sharp.

THEOREM 5.3. Let f(2) possess the mapping property stated in theovem 5.1.
Then, for any z € R,,

23(C@lglzl + ) — Ls(i g 2] + 7))
f"(2) . _ o ! o |
<1+§RZW<23(§(113|ZD Ealilglz),
the equality sign in every inequality being excluded.

Proof. The inequalities with < instead of < follow from the integral
representation established in theorem 5.1, by taking into account the mono-
toneity of the zeta-functions involved which has been shown In lemma 4. 2.
That the equality sign is excluded will be shown as follows. Now, if the
equality sign would appear in the left inequality at a point 2z, = 7’0 € R,
with 0 < 9, < 27, then dp(p) and d7v(p) were both zero except at a single
point 9, — = where p(®) and 7(®) both show a jump with the height equal
to unity. Hence we would have the relation

1 —l—z-};((:)) = 2(Clilgz+ 00— m) — Lulilgz + G, — ) + ic*

with
c* = %{’7—’5_1¢(dp(¢) —dr(p)) =0,
which leads to
f2) = ASz o,(ilgz+ 0, — 7)* dz +B

clilgz+ 0, —n) z
= Al (Glitgz+ 6.~ =) —e)dlgz+ B
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=Ai(§@lgz+ 0, — ) + esilgz) + B,
A(#+0), B and B’ being constants. The substitution lgz |lgz + 277 causes
an additive constant to f(z2) which is equal to — 24{(», + me;). But this
periodicity modulus of f(z) is not equal to zero, as shown in lemma 4.6.
Hence f(z) cannot be single-valued in R,, contrary to the assumption.
Similarly, if the equality sign would appear in the right inequality at a point
2, = 7,e% € R, with 0 < 9, < 27, then we would have

f2)=Ai(L(Glgz+ 6,) + esilgz) + B

with constants A(= 0) and B’. However, this function is not single-valued,
again contrary to the assumption.

In case of the unit circle as the basic simply-connected domain, a function
of the kind now considered is usually normalized by f(0) =0. However,
in case of an annulus, the image of each boundary component is a con-
tinuum so that several types of normalization will be possible. It would
be desirable at any rate to consider the whole class of functions charac-
terized by the condition stated in theorem 5.3. But, as already an-
nounced, the result obtained there is not sharp. In what follows, we shall
deal with a subclass which is restricted by an additional condition that
the image of the inside circumference is a rectilinear segment. In general,
the functional 1 + zf"(z)/f(2) remains invariant under the substitution f(z)
| Af(z) + B with any constants A(+ 0) and B. Further, its form remains
invariant also under the substitution z | ¢t*z with any real constant A, while
it changes its sign alone under the substitution z | ¢/z. In particular, it is
a matter of indifference for this functional whether the position of the
image segment under consideration as well as the antecedent of its one
end point are preassigned, so far as the extremal problem is concerned.

We now give a distortion theorem of a general nature and show that the
bounds are sharp. Moreover, by imposing, without loss of generality,
a merely formal additional condition of normalization, we determine the
whole family of extremal functions.

THEOREM 5.4. Let f(z) map the annulus R, univalently onto a convex domain
cut along a rectilinear segment oviginating from |z|= q. Suppose that the end
points of this segment lie at f(q) and f(qe"), i.e. the zevo points of f(2) on
|zl = q be q and qe?Y where v = Y[ f] is a real parameter depending on respec-
tive f(z). Then, for any z € R,,

"
23¢(ilglz| + ) <1 -!-ERZ_J;T(:))
+ J(Lalga)+ Eailgz + 7)) =238 (@ lglz)).

Let f(z) satisfy besides the condition imposed above a further condition of
normalization that the image of z|=q is a horizontal slit lying on the real
axis and f(q) is its right end point. Let z, = 7' with 0< 6, < 27 be any
preassigned point in the annulus R,.

(1) The equality sign in the left estimation then holds at z, if and only if
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f(2) is of the form af«(z; 0,) + b with any real constants a > 0 and b where
f*<z; 60) = iet(au—y*(eg)/z)

(i ma —vacog—2my—1. %8t 18 2) 7a(i 1g 2 + 7*(00))4
qu e o(ilgz+ 6, — )’ dz

and V«(0,) denotes the value of v associated to f«(z; 0,) which is determined as
a root of the transcendental equation

= (7 pronm@sy-tme _T(P) (P — ) = —r<
T, 6) = S—ne e ay(@ — 6, + 7)° ap =0, =Y

(i) The equality sign in the right estimation holds at z, if and only if f(2)
is of the form af*(z; @,) + b with any real constants a > 0 and b where f*(z; 0,)
= fx(z; 00 + 7),? i.e.

FHe; 00) = — igeomrcepr
7 ieny1myczo =vxca gyt o,(ilgz)o,(ilgz + 'Zi(@o))
qu LR 0 0 oG lgz+ 0, dz

and v*¥(0y) = V(0o + 7) denotes the value® of v associated to f*(z; ,) which is
determined as a root of the equation

T, 0, + 7) = K o= (111m)(20—7>¢ TP —7 dp =0, —m=v <.

as(@ — 6,)°
Proof. Based on theorem 5.1, we have
S'().
1+2 )

= 27 tllgz+ 9)dplp) — 4 (Culilg ) + Lulilgz + ) + ic*,

where c¢* is a real constant defined by

ok =2l (S ¢)dp(¢>—v)

T

and p(®) is an increasing function with total variation equal to unity. In
fact, the differential d7(®) involved in the representation given in theorem

5.1 remains zero except at @ = 0 and @ = v where 7(®) jumps by 1/2. We
thus get

L+ 92 18 4+ 3(5iga) + Lilgz + ) = 2 SLGlga+ p)dpio),

whence readily follows the distortion inequality by remembering lemma 4. 2.

(i) If the equality sign in the left estimation holds at z, = 7,e?%0, then the
process given above shows that dp(®) must vanish except at a single value
@ = @, — 7 whence follows

1+z]},((z)) C(zlgz—l—@o—;z)——V(C(zlgz)+§(zlgz+fy) + ic*

2) Though 6, has been once restricted by 0 =<6, <2w, the function f«(z;6,) may
be regarded as depending on 6, periodically with period 2.

3) +v*(6,) may be regarded as a periodic function of 6, with period 2z; cf. foot-
note 2).
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with v = v[ f] where the real constant c* is given by

et =21 (" pdpp) — ar(p) = 22 (9, — = — ).

Integration with respect to 1g z then implies
Ig(2f(2) = —2lgo(ilgz+ 6, — 7)
+1go,(Glga) +1lgo,Glgz+ ) +icklgz + Ige,

lIg ¢ being an integration constant.” Further integration of the exponential
of the last expression with respect to z leads to

] _ S a,4(i 1g 2) agy(ilgz +v)

fla) = cqu oilgz+ 0, —7)*

b(= f(g)) being an integration constant which is real by assumption. It is
evident that the function of the last-mentioned form possesses the extremal
property under consideration provided it is single-valued in R,. It remains
only to determine the value® of argc and to obtain the relation connecting
v with §,, by observing the monodromy condition. Now, in view of its
integral representation, f(z) must be a function mapping R, onto a poly-
gonal ring domain which is bounded by a straight line corresponding to |z|
=1 and a rectilinear slit corresponding to |z| = ¢, the latter lying on the
real axis. The inclination of the former boundary component is equal to

dz+ b,

arg df(e?) = % + arg (¢* f(¢*))

=z T(—=P)oy(— P+ 7).
=5 + argc + arg o 0o — 2V
_

=5 + arge,

since, for any real u, o (u) is real and o4(x) is real positive. On the other

hand, we have
arg df(ge*) = 5 + arg (ge” f'(¢e*))

oy(ilgg —P)oyilgg— P+ 7) %
o(tlgqg— P+ 6, — n)* +etlgq

.
2

=5 +arge+arg
T .
5 targe—im(20, — v — 27)

+ arg(sin% sin # ; ’y) +c*lgg;

here the use is made of the well-known formulas

o(ilgq—u) = e "s"4(u)o(i1g q)

4) The ambiguity of an additive integral multiple of 277 in Ig ¢ is a matter of
indifference, since it causes a unique value of c.
5) Cf. footnote 4).



CONFORMAL MAPPING OF CONVEX OR STAR-LIKE DOMAIN 125

and
oy(ilg g — 1) = e 800 () /o (i Ig g)

in which o(i1g q) and 7, are both purely imaginary and o,(x) is real positive
for any real » while o (%) is of the same sign as sin (#/2) for any real .
We further know the Legendre relation

el oy T iy 1 T
mzlgq MW = i.e. zna—z—l-ﬂlgq

so that, by substituting the value of ¢* determined above, we get

arg df(ge'’) = 12’_ +argec— (90 —% — )

P P
+ arg (sm ) sin ) )

But, in view of the assumption, we have

arg df(ge'?) = arg (sin %ﬁ sin &z_l) + sz— (1 —sgnvy)

and hence
T Y
argc = o9 sgny + 0, — o

The last relation implies further the inclination of the boundary straight line
corresponding to |z =1, i.e.

arg df(e’’) = 6, — % + —72r— (1+sgnvy).®

Finally, in order to derive the connection between g, and v, we apply the
monodromy condition to f(z) which is equivalent to the invariance of f(ge'?)
under the substitution @ | @ + 27. The condition is then written in the form

T sy Tl g — P)oy(lgg—P+ ) L
L,e cGlgg— 9+ 0 —m7 =0

or
T(v,0,)=0.7

By the way, it is readily shown that, for any assigned §,, the last equation
has surely a root v =(0,). In fact, from the second relation in lemma
4.4 we get, in particular,

T(”r 00) = - T(’_ 7, Bo).

Since T'(v, 6,) is evidently continuous with respect to v in — 7z <y <7, it

6) An alternative and rather direct method for determining this value of inclina-
tion will be mentioned in a remark supplemented below.

7) ‘This condition is nothing but the monodromy condition (M) applied to f(z)
now in consideration.



126 YUSAKU KOMATU

vanishes at least once in — 7z <y < 7.9 On the other hand, it is to be noted
that v can never be equal to zero for any 4,, as seen from the last relation
of lemma 4.4, a fact which is a matter of course by virtue of its own mean-
ing. Thus the proof of the sharpness of the lower estimation has been
completely performed out.

(ii) It is only necessary to note that any extremal function of the upper
estimation is given by

af¥(z; 6o) +b=afz; 6+ 7) +b
associated to v*(f,) = v«(@, + 7).

It is to be noted that extremal functions in theorem 5.4 depend on §,
= arg z, but not on |z,/. The extremal function fy(z; §,) maps R, uni-
valently onto a half-plane bounded by a straight line with the inclination 4,
— v%(60)/2 + (7/2)(1 + sgn v«(d,)) which is cut along a slit lying on the real axis.
The point at infinity as a boundary point of the image-domain corresponds
to — 2z,/|z,| = — e*0 and the end-points of the slit originate from ¢ and
ge'x%0, The extremal function f*(z; §,) maps R, univalently onto a half-
plane bounded by a straight line with the inclination @8, — v*(6,)/2 — (=/2)(1
— sgn y*(d,)) which is cut along a slit lying on the real axis. The point at
infinity as a boundary point of the image-domain corresponds to z,/| z,| = et¢0
and the end points of the slit originate from ¢ and ge!”*(é®,

It will here be supplemented that the inclination of the boundary straight
line originating from |z| =1 by f«(z; §,) can be obtained rather directly by
means of an alternative method. For this purpose, we note that fi(z; §,)
is regular throughout the closed annulus ¢ <z| <1 except at a single point
— ¢*%0 where it has a pole of the first order. Hence its boundary behavior
implies readily its univalency in the annulus provided it is single-valued,
a fact which has been implicitly availed in the above proof. Consequently,
for any 7 with ¢ < » <1, we must have
V,,d arg dfy(ret?; 0,) = 27 = rndcp,

v

so that the harmonic function
. = T
argf*(z; 60) = arg df*(z; 00) —_ argz — _2__

and hence the analytic function Ig f;(z; d,) are also single-valued in R,.
Applying the monodromy criterion to the last function, we thus get

1 (= , 1 (= . )
g.g_,,lg f*(ew; 0,)dp = ox j_llg f*(qe“”; 6,)dp,

both members of the last equation being interpreted as the limits for » =1
— 0 and — ¢q -+ 0 of the integral along |z! = 7. This equation leads, after

8) It seems very probable that the equation T'(y,6;) = 0 has a unique root in
— n <9 <=m for any assigned 6,.
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separation of the imaginary part, to the relation

1 (" 1 (=
ﬁg_ﬂarg af«(e?; 6,)dp = o S_Iarg df«(ge’*; 6,)de.
Consequently, denoting by v the inclination under consideration,” we get if
Y5 > 0,
o (v = 2m)(8 — 7+ ) + v — G + )

= o (000 + ) + 7 (75— 0) + 2 — ),
and if v, <0,
o (v = 2@y — 7 + 7) + v (w — B+ 7))

= -2.1;(— 7 (Ve + 7) + 0(0 — vy) + 7),

i.e., written together,
v = eo—%+%(l+sgnv*)-

The distortion inequality of theorem 5.4 involves a quantity v = [ f]
depending on respective function f(z). By eliminating this quantity, we
obtain the following result.

THEOREM 5.5. Under the same condition as in theovem 5.4, the inequality
238 (Gg|z| + m) — JLs(Elg |z + =)

"
=1+ % L8 4 30,612 = 232181 2) — 30T 2)
holds for any z € R,. The estimation is sharb. More precisely, under a further
normalization condition as in theorem 5.4, the left equality can appear only at
2, with argz, = 0 and the extremal function is then given by afy(z; 0) + b where

. _ ? —i7 =1 03(i1g2)0'3(i1g2—7f)
Fulg; 0 = [ SAEHTMEZ D) o,

while the vight equality can appear only at z, with arg z, = = and the extremal
Sunction is then given by af*(z; =) + b where

(e (%1 oslilga)oy(ilgz + 7) .
f¥z; 7)) = qu'fl clilgz T 7 dz;

a>0 and b are in every case any real constants.

Proof. In order to show the distortion inequality, it is only necessary to
note that the quantity I, 1g |z + ¢) is, qua function of ¢, periodic with
period 27, even in |¢|< 7z and strictly increasing for 0< ¢ <=, a fact
which has been proved in lemma 4.2. In fact, we then get

9) It suffices to consider v with respect to mod 2=.
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SEs(ilglz)) = ICs(lglz| + 7) = JLul1gl 2l + =)

whence immediately follows the result by virtue of theorem 5.4. Now the
left equality can appear at z, = 7,e*% if and only if

ICa(E g zy + v4(00) = JLs(G1g |2, + 7),
whence follows
'7*(90) —0p=—=

since — 7 < 4(0,) <7 and 0< g, < 27. But, as shown in lemma 4.5, the
equation 7(, — 7, 0,) = 0 has in 0= g, < 27 a unique root g, =0. Con-
sequently, for the extremal function for the estimation from below we must
have

6,=0 and Y0, = — 7,

On the other hand, the right equality can appear at z, = 7,¢*% if and only if

(g 2, + Y*(60) = ICs(ilg | 2, ),
whence follows
v¥(6o) — 6 = — 7 (1 — sgn v*(,))

since — 7 < v*(@,) <7 and 0< @, < 27#. But, by virtue of lemma 4. 4, either
of the equations 7°(4,, §, + ) = 0 and T(6, — 27, 6, + 7) = 0 is equivalent
to T(0, — 27, 8, — ) = 0. Hence §, must satisfy the last equation, whence,
by means of lemma 4.5, we have

O, =7 and v*(@,) = 7
Thus the proof is completed.

The image of |[z|= g for every extremal function fi(z; 0) or f*(z; =) is
a vertical straight line which lies right—- or left-side of the image-point of
z = q for fy(z; 0) or f*(z; =), respectively.

By taking lemma 4.2 into account, we can derive as a corollary of theorem
5.5 estimations from below and from above for 1+ R(zf"(z)/f(z)) of which
the bounds depend only on |z|. However, the result so obtained has been
already derived in theorem 5.3 for a wider class of functions. It has been
proved, moreover, that the bounds so obtained are in any case never sharp
within single-valued functions.

Finally another remark will be supplemented. Considering exclusively
the functional 1+ R(zf"(2)/f'(z)), we have derived some analogues of the
first distortion inequality in theorem 2.3. Similar discussion may be per-
formed on the remaining distortion inequalities in theorem 2.3 as well as the
rotation inequality in theorem 2.4. Here we shall illustrate the circumstance
by turning our attention to an analogue of the third inequality of theorem
2.3. For the functional | f/(z)| the normalization has been made in case of
the unit circle by assigning the value of ' //(0)]. Correspondingly, in case of
the annulus, a suitable normalization condition must be imposed in order to
determine the multiplicative constant factor A in the representation for f(z)
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stated in corollary 1 of theorem 5.1. For instance, it will be plausible to

impose such a condition that either —21751 f(ge*®)dl or f(v/ q)has a pre-

assigned value. However, we suppose here for the sake of convenience
another conditition that this constant A (or merely its absolute value) is itself
preassigned. The result which will be derived is not best possible but it
can be still regarded as a generalization of the corresponding result in the
simply-connected case, as shown below.

THEOREM 5.6. Let f(z) satisfy the condition in theorem 5.1 and be expressed
by the representation mentioned in its corollary 1. Then, for any q <lz <1,

f<|_zl),< ou(ilglz|+ ) F

oy(ilg 'z ‘
Tzl | o(lglz)

WJ o(ilg z + 7)

’

f<

the equality sign in every inequality being excluded.
Pyroof. We put |z! = 7. From the representation for f(z), we get

-

remexp(2]] (~lgoliler + @)dble) + g oilile 7 + 9 dr(e)

~ - exp (2] (—1g|olilgr + 9l dpl) + 1g|o\(ilg r + 9) | dr(@)

since ¢* is real. The inequalities with < instead of < follow readily by
virtue of lemma 4.3. If the equality sign would appear in the left inequa-
lity, then dp(®) and d7(¢) were both zero except at — = and 0, respectively,
where p(@) and 7(®) both show a jump with the height equal to unity.
Hence we would have
. ag1 T3(i1g2)’
f(z) = Az~21t lilgz — )
For this function, we have

darg df(e’) = dp(p) and darg df(qe'’) = dv(p)

except at — 7z and 0, respectively. But the behaviors of these functions
explained above imply that the function f(z) cannot be univalent and,
moreover, it cannot be single-valued. Similarly, the equality sign cannot
appear also in the right inequality within the class of functions here con-
sidered, since we would have
/ . N i as(ilgz—ﬂ)z

f(z) = Az¥it1 —TOW

if it had appeared.

As mentioned above, though the estimation of theorem 5.7 is not precise,
it yields a precise estimation in the simply-connected case by the passage
to limit: g— 0. In fact, the lower and upper bounds in the estimation just
proved then tend to 1/(1 + [z ))> and 1/(1 — |z )? respectively. Consequently,
if we suppose that the image-domain of R, degenerates to a simply-connected
convex domain pricked at a single point, we shall have as a limit an estima-
tion of the form
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1 1
(1 +z)? 1—z|)?
and hence, in particular, | A,| = | £(0) l. Since A, does not depend on the
rotation about the origin in the z-plane, the last estimation further implies
1 (2 1
TS| P ST
which coincides just with the third distortion inequality of theorem 2.3.
Further, 2as ¢— 0, we have

g} ’02‘ [g (2] <1)

(zl<1)

—2n, -1 9 0-3(1 Ig Z)z —z2/12 1
ot o lg Z — 7[)2 —> € ( -*I:L—Z)z
and
29 19—1 o,(ilgz — ) _ 212 1 _
FNT i T T2

in which the limit functions, necessarily single-valued, are constant multiples
of the derivatives of respective extremal functions for the point z, = |z, in
the third distortion inequality of theorem 2.3.

6. Mapping of an annulus onto a star-like ring domain.

We first introduce the notion of star-likeness in case of doubly—connected
domains. A doubly-connected domain is said to be star-like with respect
to a point if the part, contained in the domain, of any half-line starting at
this point consists of a singie segment which may be possibly infinite. Ac-
cording to the definition, the reference point of a doubly-connected star-
like domain does not belong to the domain, while it lies at an interior point
in simply-connected case. However, any simply-connected star-like domain
may be regarded as a degenerate form of a doubly-conneted star-like
domain whose one boundary component consists of the reference point
alone which behaves as a removable singularity.

In order to derive an analogue of Alexander’s theorem, we follow a similar
way as in the simply-connected case. Namely, we first establish an integral
representation characteristic to a function which maps an annulus onto a star-
like ring domain.

THEOREM 6.1. Let f(z) be a single—valued analytic function mapping the
annulus R,: (0 <)q < |z| <1 univalently onto a ring domain star-like with res-
pect to the origin in such @ manner that the boundary component oviginating
from |z|= q separates the origin and the image-domain. Then there exist
increasing functions p(@) and T(P) defined for —n < @ < 7w and both with total
variation equal to unity such that an integral representation of Villat-Stieltjes

type

z ﬁ((g = %§ (EGlgz + @) dp(@) — Culilg z + @)dT(®)) + ic*

holds for z € Ry where c* is a real constant defined by

ot =2 (" glap p)— ar (o).

T
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Proof. The present theorem relates to theorem 3.1 in quite a similar
manner that theorem 5.1 relates to theorem 2.1. The procedure of the
proof can be performed also so and hence its full statement may be omitted.

CoroLLARY 1. For f(z) satisfying the condition in theorem 6.1, there holds
f(z) = Cz***exp (2&”(— lgo(ilgz + @)dp(p) + g oy(ilg z + @) dT(‘i’))),

C(=* 0) being a certain constant and c* a real constant defined in theovem 6.1,
P(®) and T(®) are the same functions as in theorem 6. 1.

COROLLARY 2. If f(2) satisfies the condition in theorem 6.1, the image of
every concentric circumference |z|=r(q<r <1) by f(z) is a curve star-like
with respect to the origin.

Proof. Similar as the proof of corollary 2 of theorem 5.1. We have only
to consider arg f(ret?) instead of arg df(re'?).

THEOREM 6.2. Let p(®) and T(p) defined for —n<p <m be increasing
Sunctions with total variation equal to unity. Then the function defined by

(@) = Czerexp (2] (—1golilgz + @) dp@) + lg oufilg 2 + @) dr(e) )
with a real constant

ot = 21" g (dplp) — drlp)

and with any constant C (== 0) maps the annulus R, univalently onto a ring domain
star-like with respect to the origin, of which the inside boundary component
originating from |z| = q separates the origin and the image-domain.

Proof. 1t is evident that f(z) is regular in R,. Moreover, it is single-valued.
In fact, the substitution lg z|lg z + 277 causes a multiplicative factor to f(z)
which is equal to

ok " ao(ilgz+ @)
exp( 2me* + ZS-W(lg o(tlgz + ¢ — 2m) ap(p)

ouilgz+ ¢ — 27)
Tl (g + 9 dT(‘p)))

= exp (= 2zc* + 2{" (= 7i + 2nilg 2 + 9 — m) dp(9)

—2n(Glgz+ @ — n)dT((]))))
= exp (— 27c* — 2i + 4o, Siﬂrp(dp(cp) —dn(@) = 1.
For any 7 with ¢ <7 <1, we get

;_0 arg f(re'?) = Rretd 'J':/((:g::))

= ZS:(P(rew; ) dp(@) — Q(re'®; @) dr(p)),

where P and @ are the functions defined in lemma 4.1. By virtue of the
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same lemma the last expression is positive so that the star-likeness is veri-
fied. Finally, again for any # with ¢ <7 <1, we have in a similar manner
as in the proof of theorem 5.2 the relation

S:Ld arg f(re')
=2{" a03|" ¢liler— 6+ P dpl) — Lililgr — 0 + P)dr(p) = 2m,
whence follows the univalency of f(z) in R,.

Based on corollary 1 of theorem 6.1 and theorem 6.2, it is concluded that
the representation given in the corollary is characteristic to a function posses-
sing the mapping property stated in theorem 6.1. By comparing this set
of theorems with the set of corollary 1 of theorem 5.1 and theorem 5.2,
we can mention an analogue of Alexander’s theorem 3.3 which shows an
explicit connection between two classes of mapping functions under con-
sideration.

THEOREM 6.3. Let & = {f(2)} be the class consisting of functions with the
property mentioned in theovem 5.1, and &t = {f2)} the class consisting of
JSunctions with the property mentioned in theorem 6.1 which is normalized by a
Surther condition that the constant tevm of the Laurent expansion vanishes, i.e.
the condition

dz
Slﬂ:rf‘:(Z) 7 =0

to be valid for an r with q < v <1. Then, they are connected by the relation

fJ(2) f2)
112770 = 7@
More precisely, for any f.2) € &, the function defined by
f(2) = Czf(2)
with any constant C(=+ 0) belongs to ©t and, conversely, for any f,(z) € &t, the
Sunction defined by

fia = Al f@% + B
with any constants A(=* 0) and B belongs to K.

Proof. Evident by virtue of theorems 5.1, 5.2, 6.1 and 6.2. The condition
that the constant term of the Laurent expansion of f(z) vanishes assures,
of course, the single-valuedness of the corresponding f,(2).

We have considered in the preceding section a subclass of & by imposing
an additional condition that the image of {z|= g is a rectilinear segment.
It will be shown, by the way, that the functional equation of theorem 6.3
which establishes the connection between two classes & and &t remains valid
between this subclass of & and the corresponding subclass of &t.

THEOREM 6.4. Let f,(2) € & satisfy the condition that the image of |2/ =gq
is a rectilinear segment l.. Then the function defined by
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f:(2) = 2f(2)

belongs to ©t and the image of | z| = q by f,(2) is also a rectilinear segment ls which
passes through the origin and is perpendicular to l.. If the end points of I. lie
at f(q) and f(qe™), then fq) and f(qe"™) are the boundary elements lying at
the orvigin on the opposite banks of ls. Conversely, let f(z) = St satisfy the
conditions that the image of |z|=q is a rectilinear segment ls and that the
constant term of the Laurent expansion vanishes. Then the function defined by

7o) = | £ =

belongs to & and the image of |z| = q by f(2) is also a rectilinear segment I.
perpendicular to l.. If the bonudary elements lying at the origin on the opposite

banks of s are f(q) and f(qe), then the end points of I. lie at f,(q) and f,(ge').

Proof. By virtue of the general theorem 6.3, it is only necessary to con-
sider the boundary behaviors of respective functions along |z|/=4¢. In any
case, we get, for any » with ¢ < 7 < 1, the relation

arg f,(re®) = arg df (re®) — —725
Letting 7 tend to g + 0, this implies
arg f,(ge'?) = arg df.(qe®) — 75

along |z| = g except at z = ¢ and z = ge!? where arg f,(z) as well as arg df,(2)
have jumps with the height equal to #. On the other hand, the single-
valuedness of f,(z) is equivalent to the condition that the constant term of
the Laurent expansion of f(z) vanishes. The last condition implies further
that the segment /s passes through the origin, a fact which follows, of course,
merely from the star-likeness of the image by f,(z) with respect to the origin.
The whole proposition of the theorem is now a simple consequence of these
facts.

The boundary correspondence between images of [z|=¢q by the corres-
ponding functions may be described in a slightly precise manner. In the
following, the inclination of every segment will be taken with respect to mod
2z. First, let the inclination of the part of /. originating from the arc 0
=< 0 <7 be X, and consequently that of the part from the complementary arc
7= 0 <27 be X;+ 7. Then the images of these arcs by the corresponding
fi(2) lie on the ray starting from the origin with the inclinations X, — z/2
and X. + z/2, respectively. Conversely, let the ray starting from the origin
and bearing the image-segment of the arc 0 < # < v have the inclination X,
and consequently let the ray bearing its remaining part have the inclination
Xs — 7. Then the images of these arcs by the corresponding f,(z) have the
inclinations X + 7z/2 and Xs — z/2, respectively.

Let the end points of the image-segment of |z|= g by f,(z) originate, as
above, from g and ge*. Then, for the corresponding f,(z), we have
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HE 2" itz pdple) — T (Culitga) + Eulilg et ) + et

where ¢* is a real constant given by

o= 20 (S Pdp(p) — )

/4

It is evident that the quantity
,Jda _ dlgf ()
fie digz

is purely imaginary everywhere along |z| = ¢. Hence the equation
fi(get®) =0

for determining the arguments of two points ¢e?d; (j = 1,2) which correspond
to the end points of /s is equivalent to
ge°f4(ge*?)
Ss(ge®)

which may be written as

4;@w@@q—e+¢—)%ﬁﬁ@@)

—(Reu(ilga— 0) + RLilg — 6 + ) — 27" v)=0,

2(” (%040 — 9) + 2 ) dplg) = RE@O) + £ (0 + 7)) + -

The last equation expresses the connection between  and each of 4 = J;
(.7 =1, 2)-

Now, based on theorem 6.3, we can state an analogue of theorem 5.3 for
the class ©t. Namely, for this class, we have only to replace the functional
14+ R(zf"(2)/f'(2)) by R(zf(z)/f(2)) in the estimation of theorem 5.3. In
particular, the equality sign in every inequality is again excluded. But, in
order to assure the correspondence between the classes & and &t, the latter is
restricted by an additional codition that the constant term of the Laurent
expansion vanishes. Consequently, there remains the possibility that the esti-
mation thus obtained is sharp within a wider class consisting of functions
which need not satisfy this additional restriction. This is really the case,
as shown in the following theorem.

THEOREM 6.5. Let f(z) possess the mapping character stated in theorem 6. 1.
Then, for any z € R,,

23 (¢ (ilg| 2 + ) — Lalilg 2| + 7)) <5szi(<z§ < 93(¢(ilg|2)) — Lulilg|z)).

Every estimation is sharp. More precisely, let z, = r,et% with 0< 8, < 2z be
any preassigned point in R,.

(1) The left equality holds at z, if and only if f(2) is of the form cf«(z; 8,)
with a constant ¢ ==0 where
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. oy(ilgz+ 6, — 7)° )
Sx(z; 00) = o(ilgz + 0, — 7)° =fp(lgz+ 0o — 7) — e,
(ii) The right equality holds at z, if and only if f(2) is of the form cf*(z; 8,)
with a constant ¢ == 0 where f*z; 0,) = f«(z; 8, — ), i.e.

Y 0'3(1 lgz + 69) . _
I*(z; 00) = G(zlgz—i-e)z =p(lgz+ 0o) — es.
Proof. From the representation of theorem 6.1, the estimation follows
readily by means of the same procedure as used in the proof of theorem 5. 3.
(i) If the equality sign in the left inequality appears at z, then, by
remembering again the procedure used in the proof of theorem 5.3, we have
the relation
S(2) _ .
z Flo) T 7 (é’(l Igz+ 0, —7) — §u(ilgz + 0y — 7))
which leads to

_ . oslilgz+ 0y — ) _ : — ) —
e = iigz+ 8, =ny = 12+ 6 —7) —ey),
c(+ 0) being a constant. It is evident that the function of the last-men-
tioned form possesses the extremal property.
_(ii) It is only necessary to note that any extremal function for estima-
tion from above is evidently given by

cf*(z; 0,) = cf«lz; 00 + 7).

The extremal function fi(z; §,) maps R, univalently onto the whole plane
cut along a finite slit and an infinite slit, both lying on the positive real
axis, The end points of the finite slit lie at 0 = fyx(— ge*®o; §,) and e, — ¢;
= fx(ge'®o; §,) > 0 while those of the infinite slit lie at e, — e; = fx(e*?0; 6,)
> 0 and co = fyu(— e%; §,). On the other hand, R, is mapped by f*(z; 6,)
univalently onto the same domain as by fy(z; 6,) but the antecedent of the
point fu(p; 6,) by the mapping function f*(z; 4, is — p, i.e. the relation
S*(z; 80) = f«(— z; 8,) holds identically.

The Laurent expansions of the extremal functions are

o —i7 0
Filai O = = T — et 3V (=) P2
and
—i78
f*(z; 0,) = “ﬂ“-‘ea‘f'n:z]_; ne ng "

where every summation extends over all the integers except #»=0. As
already remarked, the constant term in every expansion does not vanish,
what is explicitly seen from these expansions. In fact,

——71—~e3—2 2 nq_ = > 0;
cf. lemma 4.6.

We are now in position to derive the analogues of theorems 5.4 and 5.5,
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by replacing the convexity by the star-likeness. Since theorem 6.4 has
been established, these analogues can be readily obtained for the subclass
of ©t considered in ¢{heorem 6.4. However, the distortion inequalities thus
obtained will remain valid without an additional condition that the constant
term of the Laurent expansion vanishes. Accordingly, we shall derive them
directly by means of theorem 6.1. The proofs will be performed, however,
in quite a similar way.

THEOREM 6.6. Let f(z) map the annulus R, univalently onto a ring domain
star-like with respect to the origin in such a manner that f(q) and f(ge’) are
the boundary elements with the same affix zevo, wheve v = v[f] is a real para-
meter depending on respective f(2). Then, for q <|z|<1,

23t (ilg | z| + 7) < Rz {,(—(z?)l + 3(Cilg2) + Lailgz + 7)) = 23CGlglz).

Let f(z) satisfy besides the condition imposed above a further novmnalization
condition that the image of |z|= q is a vertical slit lying on the imaginary
axis and f(q) =0 lies on its right bank or may possibly be the lower end point
of the slit. Let z, = r,e*® with 0< 0, < 2w be any preassigned point in the
annulus R,.

(1) The equality sign in the left estimation holds then at z, if and only if
f(2) is of the form af«(z; 0o, 7Y) with any real positive constant a where

oz — (8= [2+(7 [2)sgnY) (N[ 7)(20 g=Y ~27) ay(ilgz)o,(ilgz + v)
fulz; 6o, 7) = €00 T o ilg 2 + 6, — 7
for v £ 0 and f«(z; 0,,0) is understood to be fi(z; 6y, —0). Here v with — =
< v < 7 denotes the value of the parameter associated to respective function.
(ii) The equality sign in the vight estimation holds at z, if and only if f(2)
is of the form af*(z; 0,,7) with any real positive constant a where *(z; 0,.%)

= fulz; 80 + 7, ), i.e.
%( e iy [24Ce 25y iy 1320 g—y) O3t 18 2) Ty(i1g z2 + ¥)
(25 00,7) e*%o G o(ilgz + ,)*
for v £ 0 and f¥(z; 0,,0) = f*(z; 8,, — 0). Heve v with —n < < 7 denotes
the value of the pavameter associated to respective function.

Proof. We can proceed in quite similar way as in the proof of theorem
5.4. In fact, based on theorem 6.1, we have only to modify it formally,
i.e. to replace the functional 14 zf"(z)/f'(z) by zf'(z)/f(z) and accordingly
zf'(z) by f(2). The circumstance is much simpler, since the monodromy
condition for the present case is always satisfied; cf. the proof of theorem
6.2. In the following lines, we shall describe only a sketch concerning the
part on extremal functions.

(i) We first have

2 B8 = 2 tlilga+ 00— m) — F (Culilg ) + Llilgz + ) + ic*
with
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(00 -7 —%),

whence follows, by integration with respect to lg z,
. 1ok E“gg{g z__)__O’_aﬂg_z —t (Yl
f(2) = cz c(ilgz + 0, — 7)* °
c(= 0) being an integration constant. In order to determine the value of
argc, we take into account the supposition that the point f(g) = 0 lies on the
right bank or at the lower end point of the image-slit. We thus get

c* =

2m,
T

% = arg f(ge®)

il

o(ilgq)os(ilg g+ )
o(tlgq+ 0, — =)*

argc — (90 - %- - 7r> + argsin —:21,

argc + c*lg q + arg

il

A _7
arge = 5 sgny + 6, R

By the way, the inclination of the half-line originating from |z| = 1 is given by
oy(—P)os(— P+ )
o(—p+ 0, — 7)*

(ii) It is only necessary to note that any extremal function for the upper
estimation is given by af*(z; 0, 7) = af«(z; 6o + 7, 7).

arg f(e¥) = argc + arg = argc.

The extremal function fi(z; §,,7v) maps R, univalently onto the whole
plane cut along a finite slit lying on the imaginary axis and an infinite slit
lying on the half-line with the inclination equal to @, — v/2 + (z/2) sgny.
The point at infinity as a boundary point corresponds to — z,/,2z,| = — ¢'*%0 and
the origin as two boundary elements originates from ¢ and ¢e”. The ex-
tremal function f*(z; §,,vv) maps R, univalently onto the whole plane cut
along a finite slit lying on the imaginary axis and an infinite slit lying on
the half-line with the inclination equal to 6§, — v/2 + = + (#/2)sgny. The
point at infinity as a boundary point corresponds to z,/|z,, = ¢*®o and the
origin as two boundary elements originates from g and ge®.

In case of the class considered in theorem 5.5, the value of the parameter
v has been so determined for extremal function that its single-valuedness
should be assured. However, in the present case the determination of the
parameter is unnecessary so that, for any assigned value §,, there exists
a family of extremal functions depending on this parameter as an indeter-
minate constant which may be arbitrarily chosen. Among these extremal
functions, there exist particular ones with the vanishing constant term of
the Laurent expansion which are characterized by the equations 7'(v, 8,)
=0 and T(v, 6, + #) = 0, respectively.

THEOREM 6.7. Under the same condition as in theovem 6.6, the inequality
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238 (lglz| + ) — ICuilg| 2| + =)

= Re L8 + 32,0182 < 238 (1g 1 2) — 3.i1g 2 )

holds for any z € R,. The estimation is sharp. More precisely, under the same
additional normalization as in theovem 6.6, the left equality can appear at z, if
f(2) is of the form afy(z; 8,) where

L 0.) = oK gFTsEnCo =2 iy o=y Ta(E18 2) Ty(i1g z + 6y — 7)
(25 6o) = ie*o 0 i a(ilgz + 6, — =)*

Jor 0y =F 7 and fi(z; @) = fulz; # — 0), while the right equality can appear at z,
if f(2) is of the form af*(z; 0,) where

(e — . qi0t00]25i(N /7O g+ T+TsgnCO g—7)) oy(ilgz)oy(ilgz + 6,)
f*(z; 00) @iei00/228Cn ™o gt +msgn(oy cilgz + 60

for 8, =F 7 and f*(z; @) = f*(z; # — 0), a being in each case a positive real constant.

Proof. From theorem 6.6 together with lemma 4. 2, the estimation follows
readily. The determination of extremal functions can be performed in
a similar way as in theorem 5.6. Since the single-valuedness of every func-
tion f(z) under consideration is assured indifferent of the value of parameter
v, it is only necessary to remark that, for extremal functions from below
and from above, we must have

Y—60 =—n and v —0@,=—7n(1+sgn (g, — 7)),

respectively

The image of [z] =1 by fu(z; 8,) or f*(z; 6,) lies on the half-line whose
inclination is (@, + # + 7 sgn (8, -- 7))/2 or (8, — =)/2, respectively.

Similarly as in the remark for the preceding theorem, the extremal func-
tion fy(z; 6,) or f*(z; §,) has the vanishing constant term of the Laurent
expansion if and only if §,=0 or g, = =, respectively; cf. the proof of
theorem 5.5.

Finally, we shall give a result corresponding to theorem 5.6; cf. the
remark antecedent to this theorem. It is to be noted that, contrary to the
convex case, the distortion inequality of the star-like case is accompanied
actually by extremal functions.

THEOREM 6.8. Let f(2) satisfy the condition in theovem 6.1 and be expressed
by the representation mentioned in its covollary 1. Then, for g <|z| <1,

oy(tlglz)) 1f(121)1 L oy(ilglz|+ ) °
il = | M) = T EEE A

The left and right equality signs hold if and only if f(2) is given by

Lo e
fil@) = Cz=mt wflfgs(_;_g%‘
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and f4(2) = fy(— 2), i.e.

1 e
f*(Z) = Cz*"! _—'0.3(;_ (flzg z);t) ’

respectively.

Proof. By modifying the proof process of theorem 5.6, we can readily
verify the present proposition. In fact, it is only necessary to replace
zf(2)/A in theorem 5.6 by f(z)/C. Since no more integration is required,
there exist really the extremal functions within the class under consideration.

For the sake of brevity, we may suppose C = 1. Then the extremal func-
tions fy«(z) and f*(z) map R, univalently onto the whole plane cut along
a finite slit and an infinite slit, both lying on the real axis. The end points
of these slits lie at fiu(— q) = f*(q) <0, filg) = f¥(—q) =0, fill) = f¥(—1)
>0 and fy(— 1) = f¥(1) = co.
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