
ON A COEFFICIENT PROBLEM FOR ANALYTIC
FUNCTIONS TYPICALLY-REAL IN AN ANNULUS

BY HAN NISHIMIYA

Considering a class of analytic functions regular and univalent in an
annulus whose Laurent coefficients are all real, Nehari and Schwarz [3] have
given an estimation of Laurent coefficients for any function of the class. As
they have also remarked there, the result remains valid for a slightly wider
class, i. e. the class consisting of functions regular and typically-real in an
annuls. Komatu [2] has then ameliorated the bound of this estimation by
modifying Szasz' method previously used for a similar problem on Taylor
series. The result obtained is precise for all coefficients, as shown by ex-
tremal function.

In the present paper, we first introduce an integral representation valid for
any function of the class under consideration.

Though it is a simple consequence of a well-known Villat's formula, we
state its proof fully for the sake of completeness. By making use of this
representation, we give an alternative proof for the estimation of the coeffi-
cients due to Komatu. Finally, it is shown that our present method enables
us to determine all possible functions which are extremal for our coefficient
problem.

THEOREM 1. Let

( I ) f(z) = f j anz
n

be a single-valued analytic function which is regular and typically-real in an
annulus q < \ z \ < 1 and satisfies 3/(z) $2 > 0 for 3z Φ 0. Then there holds
an integral representation

-ΓJo 2s'mφ

where p(φ) and τ(φ] are real-valued functions satisfying the conditions

dp (φ) > 0, Γ dp (φ) = al - a^
(3) J°

dτ(φ) ^ 0, Γ dτ(φ) = βr^ - a-tf1

Jo

Received March 28, 1957.

59



60 HAN NISHIMIYA

and c is a real constant. The zeta-functions are those from Weierstrassian
theory of elliptic functions depending on the primitive periods 2ω± = 2τr and
2ω3 = — 2i\gq.

Proof.ί:> Applying the Villat's formula to the function — if(z) which is
regular and single- valued in t ̂  j z ^r with q < t < r < 1, we get

g -f + ̂ ; '-) - f •(•' lg T- - ̂ ;-r
where c is a real constant. Here the parameter t/r associated to zeta-func-
tions means that they depend on the quasi-periods 2τr and — 2 i l g ( t / r ) . We
put, for q < r < 1 and 0 ̂  φ ̂  TT,

p(r, 9?) - -J- J^ sin 0 3f(ret9) dθ.

Then the assumption 3/(z) -Sz ̂  0 implies

and it is readily shown that there holds, for any r with q < r < 1,

p(r, 7t] - p(r, 0) = p(r, π] = a^r - Λ-ir-1 (< ̂ i - α-i) .

Namely p(r,φ) is, for any fixed r, an increasing function with respect to φ.
It is uniformly bounded in q < r < 1 and its total variation with respect to
φ is also uniformly bounded. Accordingly, based on a theorem due to Helly,
we can choose an increasing sequence {?%} with r* — >• 1 and a decreasing
sequence {4} with tns-*q such that there exist limit functions

p (φ) = lim p (fi., 9?) and T (φ) = lim p (fo, )̂
fc-»oo

for all values of ψ with 0 ̂  <£> ̂  TT. Evidently, p (φ) and T (9?) satisfy the
condition (3) . Now, on account of a Lebesgue's theorem, since the deriva-
tive of ζ(u -\- φ\ fa) with respect to φ is continuous in φ as well as in <?fc,
we obtain

2 sin φ

1) The proof given in the following lines is a modification of the proof which has
been given by Komatu [ 1 ] for deriving a similar integral representation.
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Similarly we get

rf-d^ίΦ*^
- Γ r. (*' tea + y) -g.(f tea -y) « , v
~ Jo 2ώΓ^ *TW

Thus the representation (2) has been proved.

From theorem 1 there follows readily an integral representation for the
coefficients of any function of the class, as mentioned in the following
theorem.

THEOREM 2. Let $ be the class of functions

f(z) = Σ a,*"
n = -oo

which are regular and typically-real in an annulus q < \ z \ < 1 and satisfy
3f(z) 32 > 0 for 3-ε Φ 0. Then, for any function f(z) efj, the Laurent coeffi-
cients are represented by

(wφO)

where p (φ) and τ (φ) are functions satisfying the condition (3) .

Proof. Two integrands involved in the representation (2) are developed in
the Laurent series

sin nφ

and

/ « \ Γs (/ ig z _
2 sin ̂  " 7Γ sin ̂  "" n 1 - ^2w " sin φ '

respectively, every summation extending over all integers n except n = 0.
By substituting (5) and (6) into (2) and then taking into account that the
term wise integration is legitimate, we obtain

'« -..t '" T^T- ff -ΐϊ? * w - f I'. TUrl- * w } + *
whence follows the desired representation (4).

The explicit representation for the Laurent coefficients having been es-
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tablished, the estimation from above and below can be easily performed. It
gives an alternative proof of Komatu's result [2] which may be re-stated as
in the following theorem.

THEOREM 3. For any function f ( z ) = Σw=-°o anz
n of the class $, there holds

a set of inequalities

2, •

τ-±-*τ { Min ̂ ^ Γ dp (φ) -f Max ̂ ^ Γ rfrftp) } ̂  anl—qn (Q£φ£x sin^? Jo rv^' ^ μ^^β sin ̂  Jo v ^ y j —

where κn is defined by

( 8 ) κ±l = ± 1, κn = — Min

(* = 2,3, ).

Proof. By means of the representation (4) , any coefficient with a positive
suffix is readily estimated by

( 9 )

since /> (9?) and τ(?>) satisfy the condition (3) and I/ (1 — qzn\ > 0 for any
w > 0. To obtain a corresponding inequality for coefficient with a negative
suffix, we remark an identity

1 sin^g? _ 2n 1 sin(— nφ)
1 — q2n s'mφ ~~ ** 1 — ̂ "2w sin φ

The representation (4) then leads to

1 ί Λ y r sin nφ f* » / \ n Λ Λ sin^^> Γ- j ]y[ax — . — ZL \ Jo (9?) — ^w Mm — : — ̂ - \
1 — <r lo^^x* sιn^> Jo r v 7 * o<^<rt sin^ J

C^ Min Jin^i^ Γ rf ( } _ „ Maχ 8in(-*g») f« r f τ ( } I
l-^2ιε

 lava« sm9» Jo ^v^7 y oaί>a« sinζo Jo v^' J —

< ̂ L^ {Max sinHny) f- _ Min sin(-^) (-
~~ 1 — q- (o^φ^Tt smφ Jo r v ; ^ o^^Tt sin 9? Jo v 'smφ Jo r v ; ^ o^^Tt sin 9?

(n < 0) .

Thus, (9) and (10) show, in view of the definition (8), that the set of in-
equalities (7) holds good.

We are now in position to state the main result of the present paper, show-
ing that the whole of extremal functions for our coefficient problem can be
completely determined.

THEOREM 4. The estimation established in theorem 3 is precise. For every
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fixed n with \ n \ > 1, possible extremal functions for upper bound are exhausted
by

f* (z;φn, X, μ) = fy 1 ., (m (X + (1 - X) (- 1) "-') (β, - «-,)
m=-oo 1 </ \

ί/zose /er fet er bound by

ni i /ι \ /

- (μ + (1 " μ) (~
- w (λ + (1 - λ) (-

X ^^ /^ «^ parameters which are both equal to 1 /or £f en n, while they
may be any non-negative numbers not exceeding 1 for odd n. On the other
hand, for even n, ψn is equal to π while, for odd n, it is determined by

_ sin nφn π , 2τr
Kn~ smψn ' \n\ <ψn< \nΓ

Remark. The dependence of /* as well as /# on the parameters λ and μ
is apparent when n is even, while these parameters generate really a family
of extremal functions when n is odd. On the other hand, for even n, φn is
equal to π so that sinm^/sin ψn must be understood to be equal to (— l)m~lm.
Consequently, the extremal functions for even n are unique except additive
constants and really given by

/*(*;*,!,!)= fy Ί

 m '2m (a, - ̂  + (- l)"(glg - a.^) q™) zm + a,
τn,= -oo 1 — q

and

respectively. In particular, these are also independent of n.

Proof. In order to determine the extremal function for upper bound, we
distinguish two cases according to the parity of n. When n is even, the
equality sign in the inequality

1 — q2n sin φ = 1 — q2n

holds only for φ = 0. Thus, since

J Λ
dρ(φ) = aί — a-l90
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the equality

holds if and only if dp (φ) = 0 except at φ = 0 where p (φ) possesses a jump
with the height a± — a-^ Similarly, the equality

s'mnφ , , x nqn , 1N- -
holds if and only if dτ(φ) = 0 except at φ = TT where τ(^) possesses a jump
with the height #!# — ̂ -i^"1. Hence the extremal function is given by

/* w

= - ίp(ί Ig 2) (Λ! - flr-i) - fr (t lg z + TT) (Λ^ - a-tf-1)

which, expanded in Laurent series, coincides with/* (2; TT, 1, 1). On the other
hand, when n is odd, the equality sign in

1 sin w M" "

holds only for φ = 0 and φ = π. Hence the equality

T^2lΓJo ~S^

holds if and only if Jp(^) = 0 except at φ — 0 and φ = π where p (<£>) pos-
sesses jumps with the heights \(a^ — a-^ and (1 — λ)(#ι — «-0, respectively,
X being any constant with 0 < λ < 1. In the same way, it is shown that
the equality

holds if and only if dτ(φ) = 0 except at φ — ψn and φ = π — φn where τ(φ)
possesses jumps with the heights μ(a^q — a-^qr1} and (1 — μ}(a& — a^q'1) ,
respectively, μ being any constant with 0 ̂  μ ̂  1. Consequently, the extre-
mal function is given by

1 ^=

J

_ Λ r r.(*
V^L
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= - (λ Hi lg 2) + (1 - λ) 8>(* lg z + ίr)) (a, - «_,)

/ C.(f lgz+l.)-ri(«lgg-f l .)
V 2 sin φn

Next, so as to determine the extremal function for lower bound, we see
that, if f ( z ) = "Σ1n--°>anz

n belongs to the class $, then the function defined

by

= is (-β-»)<r«"
n = -oo

also does, and conversely. Hence, for any fixed n, the coefficient an of zn

for /(z) is minimized simultaneously when the coefficient — anq
n of z~n for

— f ( q / z ) is maximized. Consequently, the minimizing functions for an are
given by

/*(*; ^»,x,/*) - -/* - - ; ^-,,X^ = - /* --;

The proof is thus completed.

The last theorem determines the complete form of extremal functions, so
that those given in the former papers must be, of couse, regarded as its
particular form. For instance, the extremal functions given in the paper
[2] may be expressed, in terms of the zeta-f unction with quasi-periods 2ωl

= 2π and 2ω3 = — 2i lg q, in the form

/ (y. σ>\ - Γ(Πg £/o (z,<P)-

with φ = 0 and φ = φn for upper and lower bounds, respectively. It is evident
that they are contained as particular cases of our general family. In fact,
the general form given in our theorem can be constructed, conversely, by
mean of this particular form. We have namely, except an unessential additive
constant,

/*(*; ψn, λ, μ) = {Vote; 0) + (1 - λ)/ote; *)}(«ι - *-ι)

- Wo f-f-; ̂ ») + (1 - A*) /o f-f-; * - Ψ
V \ Λ / V ' ώ

and

/*te; ̂  λ, /A) = {μf0 (z; ψn) + (I- μ)fQ(z\τr- φn}}(al - a-,}

o --; o + (1 - X)/0 - - ;
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