ON THE PROLONGATION OF AN OPEN RIEMANN
SURFACE OF FINITE GENUS

By Ko6TARO OIKAWA

In his paper [3], M. Heins has proved the following theorem: “If F isan
open Riemann surface of genus one, the set of principal moduli of all tori
W that are prolongations of F is bounded’. Making use of the concept of
Teichmiiller space introcuced in [7] (see also [1]), we are able to express this
fact, with a minor modification, as follows: ¢ The W’s form a bounded set
in Teichmiiller space for torus’. A theorem which will be proved in the
present report may be regarded as containing an extension of this theorem
for any genus greater than one.

1. We begin with a topological preparation.

Let F be an open Riemann surface of a finite genus, W be a closed Riemann
surface of the same genus as F, and ¢ = f(p) be a topological mapping of F
onto a subdomain contained in W. Then, f induces a homomorphism 7, of
®r (the fundamental group of F) into Gy (the fundamental group of W) in
the well-known manner.

Lemma 1. (i) 9y maps Gz onto Gy.
(ii) The kernel of my depends only upon F; i.e., if theve exists another W',
f!, then the kernels of My and 7y coincide.

In fact, the kernel of 7, is the smallest normal subgroup of &, containing
every such contour that divides F into two parts, one of which is of schlicht-
artig.

We omit the proof in details, since it is obtained rather easily.

2. Next, we introduce Teichmiiller space according to [1]. For an integer
g>1, we consider all closed Riemann surfaces W of genus ¢g. Fix one of
them, say W,. With respect to any W, let o be a homotopy—class of orien-
tation-preserving topolpgical mappings of W, onto W, and consider the pair
(W,a). (W, a) and (W', o) are said to be equivalent, if there exists a
conformal mapping of W onto W’ belonging to the homotopy-class «a’'a™.
The equivalene class will be denoted by W, a) and the whole set of these
classes is called Teichmiiller space, which will be denoted by T,,.

In this space, we define the distance of any two points (W, a), (W', a'
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by a quantity log(inf K;), where K, denotes the maximal dilatation of f, a
quasiconformal mapping of W onto W’, and the infimum is taken over all f
belonging to the homotopy-class a’a~'. It is not so difficult to see that T,
is a metric space by means of this distance.

As was proved in [1](cf. [7]), T, is homeorphic to (6g — 6)-dimensional
Euclidean space.

3. Let F be an open Riemann surface of genus g(1 < g < o). A Riemann
surface W is said to be a prolongation of F if there exists a conformal map-
ping g = f(p) of F onto a proper subdomain of W (we say, for simplicity’s
sake, that f maps F conformally into W). We consider W together with f,
in other words, we consider them as a pair {W, f}. Among them, we collect
all {W, f} such that W are closed Riemann surfaces of genus g, and denote
this set by P(F). It is well-known that snch a {W, f} actually exists.

We fix one {W,, fo} € B(F). For any {W, f} € B(F), the composed map-
ping fof,™' maps f,(F)C W, conformally into W. Then, by LEmMMA 1 it
induces an isomorphism of &y, onto Gy, therefore it determines a homotopy-
class of orientation-preserving topological mappings of W, onto W, which
will be denoted by «ay. We can easily see that, for {W, f}, {W, f'} € B(F),
the mappings f, /' are homotopic to each other (as continuous mappings of
F into W) if and only if a; = a;y..

Putting this W, on center, we construct Teichumiiller space 7, as in the
last section. Then the above consideration gives us a correspondence

BE) 4{W, [} —> WaneT,.
The image of P(F) in T, will be denoted by P (F).
Now, what we should like to prove is the following
THEOREM. P(F) is compact and connected in T,.

We shall show the compactness in §§4, 5 and connectedness in §§6, 7.

4. We know that the family PB(F) is compact in a certain sense (see [2]).
As we shall show, this compactness implies the compactness of P(F) in T,
under a condition that P(F) is bounded in T,

In order to show the boundedness of P(F), it suffices to prove the following
proposition:

“ There exists a constant K, < oo with the following property: For any {W,
frE B(F), there is a quasiconformal mapping of W, onto W, belonging to the
homotopy—class «y, and whose maximal dilatation is majorated by K,”.

To prove this, the following lemma will be required.

LEMMA 2. Let B be a ring-domain in z-plane, one complementary continuum
of which is 1<|z|=< o and the other contains z=0. Let § be the family of



36 KOTARO OIKWA

Sunctions w(z), which are regular, univalent, 0 <|w(z){ <1 in B and |w(z)| =

1on |z =1. Then, there exist constants c, ¢’ such that 0 < c < ¢’ < oo and
1d————}<c’ onlz =1

Sor all w(z) € F.

Proof of LEMMA 2. We know that § is a normal family and any conver-
ging subsequence of § converges uniformly on a sufficiently narrow annulus
containing |z =1, and furthermore, limit function is not a constant (see [6],
p. 636). So that, if there exists no number ¢ satisfyihg the above condition,

we obtain w,(z) € and z, € (z: =1)(n =1, 2, ---) such that lim,- d;;” (2n)
= 0. For a suitably chosen subsequence, we get lim wy,(z) = w,(2) & F and

limz,, = 2z, € (' =1), which implies ‘f;g“ (2,) =0, a contradiction. Simi-

larly, we can see the existence of number ¢’, q.e.d.

Now, let us prove the above proposition. First of all, we can easily find
a compact subdomain D of F (it means that D is a subdomain of F and the
closure of D is compact in F), which is of genus g and the relative boundary
oD of which consists of only one closed Jordan curve. Moreover, we can
take a ring-domain A in F — D, one of the boundary components of which
coincides with 8D. On W,, the subdomain W, — f, (D) is simply connected.
So that, it can be mapped conformally onto the unit disc ,z <1 in z-plane
by a function z = @,(p), where it may be assumed that z = 0 corresponds to
— fo(F). On the ring-domain @, o f, (4), numbers ¢ and ¢’ are determined

by LEMMA 2. We show in the sequel that a number

K, = max (c’, %)

is the desired.

Take an arbitrary {W, f} € B(F). A simply connected domain W — f(D)
can be mapped conformally onto a unit disc |w| <1 by a function w = @ (p),
where w = 0 corresponds to a point in w — f(F). A composed function

w=@ofofilopit=0(2)

belongs to the family % of LEMMa 2 with respect to the ring-domain B = @,
o fo(A), so that we get ¢<(d0/dz <c on 'z|=1.
A mapping w = H(z) of |z/|<1 onto jw, <1 defined by
H(7e'%) = 7@ (e'9) 0=r<1, 00 <27

is evidently a topological mapping of |z/<1 onto |w <1 and it coincides
with @ on z|=1. Furthermore, it is differentiable in 0 <!z| <1 and its
dilatation at a point z = re!® is equal to

max(‘ dOii(e“’) 1/( d@(e”")




PROLONGATION OF A RIEMANN SURFACE 37

which is majorated by max (¢/, 1/¢) = K,.
By the aid of this mapping, we define a mapping ¢ = 2(p) of W, onto W
by

fofit(p) pe fuD),
@ o Ho () re w, —fD).

It is evidently a topological mapping of W, onto W, and has a maximal dila-
tation not greater than K,. It is not difficult to see that it belongs to our
homotopy-class ay, which completes the proof of the boundness of P (F).

wie) = |

5. Now, we show the compactness of P(F). Since P (F) is bounded, any
sequence (W, a;,> € P(F)(n =1, 2, ---) contains a subsequence (we denote
it again by {n}) such that (W, a,,> = (W* a*) € T,. It suffices to show
that (W*, a*) € P(F), i.e. there exists a {W*, f*} in B(F) such that {(W*,
as*y = W*, ay*y. We shall construct a mapping function f* by the aid of
uniformization. In what follows, we write «, instead of a;,, for the sake
of simplicity.

Let us denote by ¢ = k,(p) the extremal quasiconformal mapping of W,
onto W, of the homotopy—class «,(n =1, 2, ---)», and by ¢ = 4*(p) that of
W, onto W* of a*. Let |z| <1 be a universal covering surface of W,, and
lw| <1 be that of W,, W* such that w = 0 lies above A, (p,), #*(p,) respec-
tively, where p, is the projection of z =0 on W,. Mappings h,, i* are inter-
preted as mappings w = h,(z), w = ¥ (z) of 1z| <1 onto |w| <1, satisfying
a condition that 4,(0) = #*(0) = 0. Let &, &., &* be the groups of covering
transformations of W,, W,, W¥*, respectively ( =1, 2, ---). Then, h,(z) and
% (z) induce isomorphisms

G >3S > SwEG, n=12-),
G 3S - S e G,
such that
7 (Sz) = Sl (2) (n=12,-),
h*(Sz) = S**h*(z),

respectively. We can see that the assumption limp-el Wy, an) = (W*, a*)
implies that

(2) lim &, (2) = h*(2)

Nn—>oco0

(1)

holds uniformly in [z| <1 (see [1], p. 56). So that, from (1) and (2), we get
(3) lim S (w) = S** (w)

n—>o0

in lw| <1, for any S € @,.

1) It is a quasiconformal mapping belonging to @, whose maximal dilatation is
smaller than that of any other mapping of a,; see [1, 7].
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Next, let ;& <1 be a universal covering surface of Fand I' = {0} be the
covering transformations. To {W,, fo} and {W,, fu}(n =1, 2, --), functions
z=fy(¢) and w = f,($) correspond, which map '¢ <1 into |z <1 and 'w,
<1, respectively. Representing the homomorphism 7, (introduced in §1) as

F 5 g — S E @0)

we obtain
fo(al) = Sf (L),
Ffa(08) = SuS™S3u (£) (n=1,2,-),

where S,, € &, is chosen independent of o so that

(4)

may hold. (It is possible because of (2).) We know that {f,({)}:_, is a normal

family and, by (5), the limit function of any converging subsequence is not
a constant (see [2]). Furthermore, by (4), a suitably chosen subsequence of
{S, (w)};_, canverges to a linear transformation (% const.). So that, denoting
a subsequence by {n} again, we obtain

Hmf,(¢) = F(£),  limS,(w) = Sw).

Consequently,

lim S,/ (§) = $£(2) = /*(¥) = const.,
and by (3) and (4),

fH(el) = S (§) for any o €T,

which determines a conformal mapping f* of F into W* such that a,* = a*.

6. To prove the connectedness of P(F), a preparation is required.

Let F,C F.C -t F be an exhaustion of F, each member of which is a
compact subdomain of genus g and has a relative boundary consists of a
finite number of closed analytic curves. With respect to any {W, f} € B(F),
if we restrict f on F%, then {W, f} can be seen as a prolongation of F}. In
this sense P(F) C P(Fr), so that we obtain P (F)CN;, P (Fr).

LEMMA 3. P(F) = fﬁlP(F,C).

Proof. Let (W, a) be an element of Ny, P(Fx). There exist conformal
mappings fi of Fj into W (k =1, 2, ---), which are homotopic to f;. The con-
sideration in the last section shows that a subsequence {f,} converges uni-
formly in the wider sense on F to a conformal mapping f* (% const.) of F
into W, which is homotopic to f;. So that {W, f*} belongs to B (F), to which
(W, ety corresponds, and it implies NP (Fy) C P(F), qg.e.d.

Consequently, to prove the connectedness of P (F'), it suffices to show that
of P(Fy).
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7. Now, we show the connectedness of P (F%); in other words, we show
the connectedness of P (F) under a supposition that F is a compact sub-
domain of a Riemann surface, relative boundary 9F of which consists of a
finite number of closed analytic curves. As will be seen in the proof below,
we may assume that 9F consists of only one curve.

We try to connect any (W, a), KW', «’>) € P(F) by a curve {W;, a;> (0
<¢t<1)in P(F).

Let {W, f} and {W', f'} be elements of P(F), to which (W, ) and (W,
a’) correspond respectively. Take a ring-domain A in F which is bounded
by two closed analytic curves, one of which coincides with 9F. Since a domain
W — f(F — A) is simply connected, we can map it conformally by z = @(p)
onto a disc z <1 in such a way that z = 0 corresponds to a point contained

in W— f(F). Similarly we map W' — f/(F — A) onto w| <1 by w = ¢'(p).
A composed function

w=@,of oflog™(z) = D(2)

maps the ring-domain @ o f(A) conformally onto ¢’ o f'(A), where z|=1
and w =1 correspond mutually.

Now, we need the following lemma concerning the function family in LEMMA
2.

LemMMA 4. Let B be a ring-domain in z—plane, one complementary continuum
of which is 1< |z| =< co and the other contains z = 0. Let § be the family of
Sfunctions w(2), which ave regular, univalent, 0 < w(z)| <1 in B, lw(2)|=1
onlz =1. Then, for any @ (z) &, there exists a one-parameter family of
Sunctions @ (z) 0=t =<1), satisfying the following conditions:

i) 0,(z) EF for any fixed t;
i)  @,(2) is continuous with resgpect to t for any fixed z;?

iii) @y(2) =2, 0.(2) = 0(2).

Proof of LEmma 4. Though we may prove this lemma from a general
theory (see [5]), Prof. Y. Komatu has kindly taught the author a method of
explicit construction of @,(z) as follows.

First of all, we may assume without loss of generality that B is a concen-
tric annulus p <{z <1 and 0(1) =1. Let U(w) be a function which is
harmonic in B’ = 0(B), U(w) =0 on |w| =1 and U(w) = 0 on the other boun-
dary component of B. For every (0 < ¢ <1), denoting by B; a ring-domain
in B’, bounded by |w! = 1 and the niveau curve U (w) = ¢, we can find a number
7: > 1 such that

mod [B,U (1= |w! < 7)] = log %_
So that, there exists a function w = ¥,(z) which maps B conformally onto
B/U(QZ!w,<7), where ¥,(1) = 7,. Then, the function-family defined by

2) We do not require here the continuity with respect to px £
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2 for ¢t=0,
0,(2) = _i,,_ for 0<t<1,
0 (z) for t=1

is the required, q.e.d.

We note that the normality of & shown in the proof of LEMmA 2 implies
the fact that

, i 400 _ dO;
(1) ltl—thl dz =~ dz
holds uniformly on |z, = 1.

To continue, we apply LEMMA 4 to B = @ o f(A) and obtain 0,(z) (0=t <1).
By the aid of it, a family of Riemann surfaces W;(0<¢#<1) can be cons-
tructed as follows: W, is the union of sets f(FF — A) C W and |w| <1, where
points pe a (f(F— A)) and w = ¥; o9 (p) € (w = 1) are identified; as local
parameters, the original are chosen in f(F — A) and win w, <1, which are
connected across 9(f(F — A)) = (w, = 1) in the usual manner. Then, a map-
ping defined by

f(p) for pEF—A,
O.opof(p) for pEA
maps F conformally into W;. Consequently, we obtain

{W:, fi} € B(F) 0=t<1),

ﬂ@={

to which corresponds
(2) (W, ary € P(F) 0=t<1).

Evidently (W,, a)® = (W, o), {W;, a,) =<W', a’).
Finally, we show that (2) is a continuous curve in T, i.e.

%}n;l Wy, ayy =W, a)
holds for any {#(0<¢=<1). For this purpose, we define a topological map-
ping w = H;(z) of z/<1onto |w <1 by
H; (re*®) = 70, (e*) 0=7<1,0=Z0<27;, 0¢t<])

and, by making use of it, construct a topological mapping g = 2(p) of W;
onto W;:

R (o) b for pef(W-—A4),
? {HuoH;‘ for p+—oweE(w|<L1).

We can immediately see that % belongs to the homotopy-class aya;’. So
that

3) W, means Wi-o; it is not W, of §3 put on the center of T,.
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dist. KW, azy, (Wi, as))
< log (maximal dilatation of %)

( d@c { 1 d@z" dd)t/
dz ||| dz |’ dz

= log max max
1z]=1

/&

)

which converges to 0 for ¢ —¢, by (1).
Consequently, we see that P (F) is a connected set in 7.
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