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1. Suppose that

f ( z ) = f}cnz
n, (z = retφ),

» = 0

is regular for 1 z 1 = r < 1 and its boundary function is f(eiβ) . Let'us'put

M,(r,f) = - f'(reίφ] "

for

tn(θ) =ncne
ni<>

and
τ£(0)=4ίrΣM^v(έO, for δ>0,Άn v = 0

where

Then we have

(1.1) τ»(0) =δ{o -'(0)

Concerning the convergence of the series

we have proved some results in [5]. In this paper we shall prove the fol-
lowing theorems. The method of the proof is due to H. C. Chow [2] and the
author [5].

THEOREM 1. // the integral

is finite, then the series
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Σ *5(0) -/(«")«n=ι

converges for almost all θ, where 1 < p < 2, q ~ p / ( p — 1), and

( 1

logT^according as

δ > !//> -1, or δ - !//>-!.

THEOREM 2. // fλe integral

\lΔ,(r}Mτ,(r,f}dr
Jo

is finite, then the series

converges for almost all θ, where 1 < p ^2f and

Λ (r) = (1 - r) -1/', or - (1 - r) -^/*

according as

δ >l/p- 1, or S - 1/ί- 1.

2. Proof of Theorem 1.

LEMMA 1. Wig /z#z;£ ίAβ following inequality^ for p

(J* :/(r^+<«) -fW.'dθ)*1*

(2.1)

Proof is easy from the similar calculation used in [5].

LEMMA 2. Under the assumption of Theorem 1, we have

almost all θ, where a = δ + 1.

For, we have

W _

2 = F(*;θ).
72=1 - - Z

For ^ > 0 and | z ( = r < 1, we have

F β ( z ; θ ) =
= 0

1) We denote by K an absolute constant. In what follows, the value of K may
be different from one occurrence to another.
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where zβ and (z — u) 0"1 assume their principal values. Taking β = α: > 0
and using the Hausdorff- Young theorem, we get

Since

we get
\ l / ί

Thus we have

J l

β

ί
l \ l / n

,F(rpetφ ,θ)'*dφ) .

!
* / oβ

(Σ "ϋw --τr\ w = ι

'F(pelφ;θ)

If we replace by (2.1) the last integral in the right side of the above, then
the above integral becomes

ί> - ->

ί
l
o (i - P) -

7ι + Λ, say. We have
for ap>l,

1-P /'



SUMMABILITY OF A FOURIER SERIES 15

Thus we get

J2<K\1A1(p)M1,(p,f')dp.
JO

For the remaining part Jl9 we have

since a > 0. Thus we get

= K\lMp (r,f')dr\r (1 - p)
Jo Jo

(r, /') dr,
Jo

which is dominated by /2. Thus we get Lemma 2.

LEMMA 3. Under the assumption of Theorem 1, we have

2 τl(0) |« <oo,
n = i

for almost all θ, where a = 1 + δ.

For, since

we have

Jo

Using the same method used in Lemma 2, we get

Γ ίS r n ( θ ) ] Q ] Qdθ^K\ dθ\ (I- ρ}a~ίdρ(Γ G(ρeίφ',θ)\*>dφ]
J- Jl\n = Q / J-7T Jo \J-7t /

^K f a - p) wr ,. dvΨΛ*T(\* iJo \j-τr i — peγ 2 / \J-7t

J O

Thus we get the required result.

Combining Lemmas 2, 3 and (1. 1) , we get Theorem 1.

3. Proof of Theorem 2.

LEMMA 4. Under the assumption of Theorem 2, we have
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for almost all θ, where a = δ 4- 1.

As in the proof of Lemma 2, we have

Jo

= Fβ(z;θ).

By the Hardy-Littlewood theorem, we get, for 1 < p ̂  2,

2; [
w-1 -tf

where

U* \l/3> r f ^ ' f l 1

_Λ I Fβ (z θ) \>dφ) ^ K\\_π : Jβ (1 - P) fi-'FW; θ) dp !

(1 - p) β-ldp I F(rpetφ; θ} ί

Since p - 2 + p (a - β) = 0, that is, β = a - 2/p + 1 > 0,

1/jιΓpe ( ~

{ΣI^SW -/(«")LJ-τεV n = : i
/

l/^^ 2'1 1/2'

} J

^ jr j; a -
Thus, by the similar way used in the proof of Lemma 2, the above integral
is majorized by

J
1 /Γ* Λfn \ l / J > Γ l ΓTE \ ι

o(l - w-UpQ^.-^^r) \dr lf\f(r* ) \ dθ)

J i
o (1 - P) »-«

= /ι +Λ, say. Since

for
l / 2 >

0 1 -/>
we get

- , for <*/> = 1,

Jo

and, since β — 1 + l/p — a = —1//><0, we get
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<κ(\l-r) -^Mp (r, /') dr,
Jo

which completes the proof of Lemma 4.

LEMMA 5. Under the assumption of Theorem 2, we have

Σ <(#)!*< oo,
71 = 1

for almost all θ, where a = 8 + 1.

For, we have

^(Aί+ι)-lAlτl(θ)zn = βz-*\* (z-u)*-lG(u\θ)du = Gβ(z\θ),
w = o Jo

where β = a + 1 — 2/p > 0. Hence we get

By the same argument as in Lemma 4, we get

Jo

which completes the proof of Lemma 5.

Using Lemmas 4 and 5, we get Theorem 2.

4. If we use Chow's theorem [2, Theorem 2], we may get easily by the
method used above the following

THEOREM 3. If the integral

(4.1) ΫM»(r,f)dr
Jo

is finite, then the series

Σl β 5(0)-/(e»)IV*
ίt = l

converges for almost all θ, where 1 < p < 2, #m/ δ = 2(l//> — 1) .

THEOREM 4. // the integral (4. 1) zs finite, then the series

Ί ϊ { < r * » ( θ ) - f ( e * )\*/n
w = l

converges for almost all θ, where 1 < p<2, q = p/ (p — I) and S ̂  l/p — 1.
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5. Finally we shall prove the following theorem, which is analogous to
T. Tsuchikura's theorem ([6], [7]).

THEOREM 5. If, for a point #,

Σ3 <rn(

Jo

then the series

converges at the point θ, where 2 > £ > 1, I/p + l/pf = 1, p'^k>0, β > p/k

and δ > l/p - 1.

The method of proof is due to Hardy-Littlewood [4] and Chow [1]. For
the purpose, we need the following lemma.

LEMMA 6. If u(θ) is integrable L,

and

(" \u(t).dt = 0{\ x ] (log i/i x ) py, (β > o) ,
Jo

then

[* \ u (r, t ) \ d t = O{1 x I (log I/I x ) *}, uniformly for l-r<\x\,
Jo

or - O{! ΛΓ ;/ (log I/I * ') P + I (1 - r) Λ:1-^},

1 > J > 0.

Proof of Lemma 6 is quite similar to the Hardy-Littlewood lemma [4].
Hence it will be sufficient to sketch the proof.

We may suppose 1 > x > 0. We have

\u(φ)\X(φ,x,h)dφ,

Using the assumption

U(φ) = \Ψ\u (t) dt = 0{\ φ [/(log 1/ί
Jo

and integrating by parts, we have

J* \u(φ)\X (φ, X, h) dφ = U(π) X (π, x, h) - \*U(φ) ^~

where

(5.1) U(τr)X(τr,x,h) =-O(hx).
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Since oXfdφ = h/(h2 + φ2) - h/ (h2 + (φ - x)2), we have

hxφ

19

-dφ

Let us put 0 < Δ < 1, and let us split up the first integral into following two
parts,

then we have

(5.2)
2 + (φ _ χ) ,

ίo
and

(5.3) /„ =

By (5.2) and (5.3), we have

(5.4) Λ = 0{*/ (log I/ΛΓ) P + (1 - r) *'

Next we consider the integral /2. We have

ί
ί»/2

o

where

= OΪΛ/ (log

and

(5.8) /24 =

Summing up (5. 5), (5.6), (5.7) and (5.8), we get

(5.9) /2 = O{x/ (log l/x) β + hx*-*'}.

Collecting (5.4) and (5.9), we get Lemma 6.
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LEMMA 7. //

Γ
Jo
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- f ( e « ) *dφ = 0{| t \! (log

{(1 - r)2

> 1, /^ > 1, /3 > 0.

Proof. Let

- r

Then F(z) is regular for |0 < 1, and belongs to H» and

Γ I F(eiφ) *dφ = Γ \f(eiφ+iθ) -f(eiθ) \»dφ
Jo Jo(5.10)

by the assumption. Since

(5. 11)

it follows from (5. 10) , (5. 11) and Lemma 6 that

G (r, ί) - \»dφ = O{ ί / (log I/ f |) β},

uniformly for 1 — r ̂

and - 0{! * !/ (log I/] 1 1) + (1 - r) t1

Using the above and integrating by parts, we have

= 0(1)

where

o A y

ii 4" /1 2 ~^~ * 1 3 >

(7 = A*, 0<£<1),

say. We get

/ _ αίίΛ-^~ ΓJ'11 ~" ^ϋo Aμ+2 L
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' (log'ΪM 7Γ (»« + £•)»/.*» «**} = OίA'-V (log I/*) '}

and

/is -

For 72, we have also the same estimation. Thus we get Lemma 7.

We are now in position to prove Theorem 5. By the Hausdorff-Young
theorem, we have

ί _ r ί(z-re

Since μ = (1 4- δ)^> > 1, by Lemma 6, the above integral is

Let us put 1 — r = τr/2λ+1, then we have

r 2λ

Σ I ASM (0) -/(*'*)>» I*'
J

Hence

Let ft^' = pr, l/q -f l/^r = 1 and ^ > 1, then by the Holder inequality,

λ

Thus

Σ! I < (θ) - f(e«) \*/n = OJ f] X-^/4 = O (1) ,
w=2 I Λ ^ I -J

which completes the proof of Theorem 5.

Finally, the author is thankful to Prof. S. Izumi and Miss M. Sato for

their kind suggestions.
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