ON THE JUMP FUNCTIONS

By Kenji Yano

1. Let $f(x)$ be an L-integrable function with period 2π, and its allied Fourier series be

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(b_{n} \cos n x-a_{n} \sin n x\right)=\sum_{n=1}^{\infty} B_{n}(x) \tag{1.1}
\end{equation*}
$$

We write

$$
\begin{equation*}
\psi(t)=\psi_{x}(t)=f(x+t)-f(x-t)-l(x), \tag{1.2}
\end{equation*}
$$

and denote the n-th (C, α) mean of the series (1.1) by $\bar{\sigma}_{n}^{\alpha}(x)$ with

$$
\bar{s}_{n}(x)=\bar{\sigma}_{n}^{0}(x) \quad \text { and } \quad \bar{\sigma}_{n}(x)=\bar{\sigma}_{n}^{1}(x),
$$

that is

$$
\bar{\sigma}_{n}^{\alpha}(x)=\frac{1}{A_{n}^{\alpha}} \sum_{\nu=1}^{n} A_{n-\nu}^{\alpha} B_{\nu}(x),
$$

where A_{n}^{α} is Andersen's notation, $A_{n}^{\alpha}=(\alpha+1)(\alpha+2) \cdots(\alpha+n) / n!$.
In this paper we shall consider a particular value of x such that $0 \leqq x<2 \pi$.
O. Szász [1] has showed:

Theorem S_{1}. If $\psi(t)$ satisfies the two conditions
(a)

$$
\int_{0}^{t} \psi(u) d u=o(t),
$$

(b)

$$
\int_{0}^{t} \psi(u) d u=O(t)
$$

as $t \rightarrow+0$, then

$$
\begin{equation*}
\bar{\sigma}_{2 n}(x)-\bar{\sigma}_{n}(x)=\frac{l(x)}{\pi} \log 2+o(1) \tag{1.3}
\end{equation*}
$$

as $n \rightarrow \infty$.
S. Izumi [3] improved this theorem as following:

Theorem I. Theorem S_{1} is valid even if the condition (b) would be replaced by

Received December 14, 1956.

$$
\begin{equation*}
\int_{\pi / n}^{\pi}|\psi(t)-\psi(t+\pi / n)| \quad d t=O(1) \tag{1.4}
\end{equation*}
$$

as $n \rightarrow \infty$.
H. C. Chow [4] has showed:

Theorem C. If $\alpha>0$ and $\psi(t)$ satisfies the conditions (a) and (b), then

$$
\bar{\sigma}_{2 n}^{\alpha}(x)-\bar{\sigma}_{n}^{\alpha}(x)=\stackrel{l(x)}{\pi} \log 2+o(1)
$$

as $n \rightarrow \infty$.
G. Maruyama [5] has showed:

Theorem M_{1}. Under the conditions (a) and (b), if $\mu_{n}>\lambda_{n}$ and $\lim \left(\mu_{n} / \lambda_{n}\right)$ $=A$, then

$$
\bar{\sigma}_{\mu_{n}}(x)-\bar{\sigma}_{\lambda_{n}}(x)=\frac{l(x)}{\pi} \log A+o(1)
$$

as $n \rightarrow \infty$.
Further if $\mu_{n} / \lambda_{n} \rightarrow \infty$ then

$$
\begin{equation*}
\left[\bar{\sigma}_{\mu_{n}}(x)-\sigma_{\lambda_{n}}(x)\right] /\left(\log \mu_{n}-\log \lambda_{n}\right)=\frac{l(x)}{\pi}+o(1) . \tag{1.5}
\end{equation*}
$$

Theorem M_{2}. If $f(x)$ is of bounded variation and $\mu_{n} / \lambda_{n} \rightarrow 1$ then (1.5) holds as $n \rightarrow \infty$.
O. Szász [2] showed:

Theorem S_{2}. If $\psi(t)$ satisfies the conditions (a) and (b), then the sequence $\left\{n B_{n}(x)\right\}$ is summable $(C, 2)$ to the value $l(x) / \pi$.

Recently, R. Mohanty and M. Nanda [6] proved:
Theorem M.N. If $\psi(t)=o(\log (1 / t))^{-1}$ and $a_{n}=O\left(n^{-\delta}\right), b_{n}=O\left(n^{-\delta}\right), 0<\delta$ <1, then the sequence $\left\{n B_{n}(x)\right\}$ is summable $(C, 1)$ to the value $l(x) / \pi$.

In this paper, we shall prove a number of theorems which contain the above theorems as particular cases.
2. We denote the n-th (C, α) conjugate Fejér kernel by $\bar{K}_{n}^{\alpha}(t)$ with $\bar{D}_{n}(t)$ $=\bar{K}_{n}^{0}(t)$, i. e.

$$
\begin{equation*}
\bar{K}_{n}^{\alpha}(t)=\frac{1}{A_{n}^{\alpha}} \sum_{\nu=1}^{n} A_{n-\nu}^{\alpha} \sin \nu t, \tag{2.1}
\end{equation*}
$$

then we have, from the definition of $\psi(t)$ in (1.2),

$$
\begin{equation*}
\bar{\sigma}_{n}^{\alpha}(x)=\frac{l(x)}{\pi} \int_{0}^{\pi} K_{n}^{\alpha}(t) d t+\frac{1}{\pi} \int_{0}^{\pi} \psi(t) \bar{K}_{n}^{\alpha}(t) d t . \tag{2.2}
\end{equation*}
$$

We shall first prove the following
Lemma 1. If $\alpha>-1$ then

$$
\begin{equation*}
\int_{0}^{\pi} \bar{K}_{n}^{\alpha}(t) d t=\lambda(\alpha, n)+\log 2+o(1) \tag{2.3}
\end{equation*}
$$

as $n \rightarrow \infty$, where

$$
\begin{equation*}
\lambda(\alpha, n)=\frac{1}{\alpha+1}+\frac{1}{\alpha+2}+\cdots+\frac{1}{\alpha+n} \tag{2.4}
\end{equation*}
$$

In fact, from (2.1) we have

$$
\begin{aligned}
\int_{0}^{\pi} K_{n}^{\alpha}(t) d t & =1 \\
A_{n}^{\alpha} & \sum_{\nu=1}^{n} A_{n-\nu}^{\alpha} \frac{1}{\nu}+\frac{1}{A_{n}^{\alpha}} \sum_{\nu=1}^{n} A_{n-\nu}^{\alpha} \frac{(-1)^{\nu-1}}{\nu} \\
& =P_{n}+Q_{n}
\end{aligned}
$$

say. Then

$$
\begin{aligned}
P_{n}-P_{n-1} & =\frac{1}{A_{n}^{\alpha}} \sum_{\nu=1}^{n} A_{n-\nu}^{\alpha} \frac{1}{\nu}-\frac{1}{A_{n-1}^{\alpha}} \sum_{\nu=1}^{n-1} A_{n-1-\nu}^{\alpha} 1 \\
& =\frac{1}{A_{n}^{\alpha}} \frac{1}{n}+\sum_{\nu=1}^{n-1} \frac{1}{\nu}\left(\frac{A_{n-\nu}^{\alpha}}{A_{n}^{\alpha}}-\frac{A_{n-1-\nu}^{\alpha}}{A_{n-1}^{\alpha}}\right) \\
& =(\alpha+n) A_{n-1}^{\alpha}+\frac{1}{(\alpha+n) A_{n-1}^{\alpha} \sum_{\nu=1}^{n-1} A_{n-\nu}^{\alpha-1}} \\
& =\frac{1}{(\alpha+n) A_{n-1}^{\alpha}} \sum_{\nu=1}^{n} A_{n \rightarrow \nu}^{\alpha-1}=\frac{1}{\alpha+n}
\end{aligned}
$$

and, since $P_{1}=1 /(\alpha+1)$ we have

$$
P_{n}=\frac{1}{\alpha+1}+\frac{1}{\alpha+2}+\cdots+\frac{1}{\alpha+n}
$$

which equals to $\lambda(\alpha, n) . Q_{n}$ is the n-th (C, α) mean of the convergent series $0+1-1 / 2+1 / 3-\cdots$, which is summable $(C,-1+\delta)$ for every $\delta>0$ since the n-th term $(-1)^{n-1} / n$ is $O(1 / n)$, and so

$$
Q_{n}=\log 2+o(1)
$$

as $n \rightarrow \infty$ for every $\alpha>-1$. Thus we get (2.3) and our lemma is established.
Remarks. More precisely we can show that

$$
\begin{equation*}
\lambda(\alpha, n)=\log \frac{\alpha+n}{\alpha+1}+c_{\alpha}+O(1 / n) \tag{2.4}
\end{equation*}
$$

if $\alpha>-1$, where c_{α} is a constant depending on α, and $0<c_{\alpha}<1 /(\alpha+1)$. And

$$
Q_{n}= \begin{cases}\log 2+O(1 / n) & (\alpha \geqq 0) \\ \log 2+O\left(1 / n^{\alpha+1}\right) & (-1<\alpha<0)\end{cases}
$$

Thus we get
$(2.3)^{\prime} \quad \int_{0}^{\pi} K_{n}^{a}(t) d t=\log \frac{\alpha+n}{\alpha+1}+c_{a}+\log 2+\left\{\begin{array}{lr}O(1 / n) & (\alpha \geqq 0), \\ O\left(1 / n^{\alpha+1}\right) & (-1<\alpha<0) .\end{array}\right.$
3. We write

$$
\begin{equation*}
\bar{\Lambda}(\alpha, n)=\frac{1}{\pi A_{n}^{\alpha}} \int_{\pi / n}^{\pi} \psi(t) \frac{\sin (n t+(\alpha+1)(t-\pi) / 2)}{(2 \sin t / 2)^{\alpha+1}} d t \tag{3.1}
\end{equation*}
$$

then, by Lemma 1 , we have the following
Lemma 2. If $\alpha>-1$ and $\psi(t)$ satisfies the condition

$$
\begin{equation*}
\int_{0}^{t} \psi(u) d u=o(t) \tag{a}
\end{equation*}
$$

s $t \rightarrow+0$, then

$$
\bar{\sigma}_{n}^{a}(x)=\frac{l(x)}{\pi}[\lambda(\alpha, n)+\log 2]+\frac{1}{\pi} \int_{\pi / n}^{\pi} \frac{\psi(t)}{2 \tan t / 2} d t+\bar{\Lambda}(\alpha, n)+o(1)
$$

as $n \rightarrow \infty$.
Indeed, in the expression (2.2)

$$
\int_{0}^{\pi} \psi(t) K_{n}^{a}(t) d t=\int_{0}^{\pi / n}+\int_{\pi / n}^{\pi}=I_{1}+I_{2}
$$

say. Then from

$$
\bar{K}_{n}^{\alpha}(t)=O(n) \quad \text { and } \quad \frac{d}{d t} \bar{K}_{n}^{\alpha}(t)=O\left(n^{2}\right)
$$

we have, integrating by parts, $I_{1}=o(1) . \quad \vec{K}_{n}^{\alpha}(t)$ is the imaginary part of the expression

$$
-\frac{1}{2}+\frac{1}{A_{n}^{\alpha}} \sum_{\nu=0}^{n} A_{n-\nu}^{\alpha} e^{i \nu t},
$$

which is written in the form

$$
\begin{aligned}
\frac{i}{2 \tan (t / 2)} & -\frac{e^{-i t}}{A_{n}^{\alpha}} \sum_{\nu=1}^{r} \frac{A_{n}^{\alpha-p}}{\left(1-e^{-i t}\right)^{2+1}} \\
& +\frac{e^{i n t}}{A_{n}^{\alpha}\left(1-e^{-i t}\right)^{\alpha+1}}-\frac{e^{i n t}}{A_{n}^{\alpha}\left(1-e^{-i t}\right)^{k+1}} \sum_{\nu=n+1}^{\infty} A_{\nu}^{\alpha-k-1} e^{-i \nu t},
\end{aligned}
$$

where k is the positive integer such that $-2<\alpha-k \leqq-1$. We can easily see that from the last expression, integrating by parts, I_{2} equals to the imaginary part of

$$
i \int_{\pi / n}^{\pi} \frac{\psi(t)}{2 \tan (t / 2)} d t+\frac{1}{A_{n}^{\alpha}} \int_{\pi / n}^{\pi} \frac{\psi(t)}{\left(1-e^{-i t}\right)^{a+1}} e^{i n t} d t+o(1)
$$

under the condition (a), analogously as A. Zygmund [8]. Thus we get the desired result.

Evidently, if $\beta>\alpha$ and $\bar{\Lambda}(\alpha, n) \rightarrow 0$ then $\bar{\Lambda}(\beta, n) \rightarrow 0$.
If $\psi(t)$ satisfies the condition (a) then

$$
\int_{\pi / n}^{\pi / m} \frac{\psi(t)}{2 \tan (t / 2)} d t=o(\log m-\log n)+o(1)
$$

as $m \rightarrow \infty$ and $n \rightarrow \infty$. Particularly if $0<H<m / n<K$ then $o(\log m-\log n)$ $=o(1)$.
From the above facts and Lemma 2 we have immediately the following
Lemma 3. If $-1<\alpha \leqq \beta$ and $\psi(t)$ satisfies the conditions (a) and $\bar{\Lambda}(\alpha, n)$ $\rightarrow 0$, then

$$
\begin{equation*}
\bar{\sigma}_{n}^{\beta}(x)-\bar{\sigma}_{n}^{\alpha}(x)=\frac{l(x)}{\pi}[\lambda(\beta, m)-\lambda(\alpha, n)]+o(1) \tag{3.2}
\end{equation*}
$$

as $n \rightarrow \infty$ for $0<H<m / n<K$.
4. Theorem 1. If $\alpha>0, p>0$ and $\psi(t)$ satisfies the conditions
(a) $\int_{0}^{t} \psi(u) d u=o(t) \quad$ and
(b) $\int_{0}^{t} \psi(u) \mid d u=O(t)$
as $t \rightarrow+0$, then

$$
\sigma_{[1 n]}^{a}(x)-\bar{\sigma}_{n}^{a}(x)={ }_{\pi}^{l(x)} \log p+o(1),
$$

and for each positive integer k

$$
\bar{\sigma}_{(p n)}^{a}(x)-\bar{\sigma}_{n}^{a+k}(x)=\frac{l(x)}{\pi}\left(\log p+\frac{1}{\alpha+1}+\cdots+\frac{1}{\alpha+k}\right)+o(1)
$$

as $n \rightarrow \infty$.
Indeed, since the condition $\Lambda(\alpha, n) \rightarrow 0$ follows from (a) and (b) if $\alpha>0$ we have the desired result by Lemma 3 and the definition of $\lambda(\alpha, n)$ in (2.4).

This theorem contains Theorem C and the first part of Theorem M_{1}.
Theorem 2. If $0<\alpha \leqq \beta$ and $\psi(t)$ satisfies the conditions (a) and (b) then

$$
\left[\bar{\sigma}_{n}^{\beta}(x)-\sigma_{n}^{\alpha}(x)\right] /(\log m-\log n)=\frac{l(x)}{\pi}+o(1)
$$

as $n \rightarrow \infty$ for $m / n \rightarrow \infty$.
In fact we have

$$
\bar{\sigma}_{i n}^{\beta}(x)-\bar{\sigma}_{n}^{\alpha}(x)=\frac{l(x)}{\pi}[\lambda(\beta, m)-\lambda(\alpha, n)]+o(\log m-\log n)+o(1),
$$

analogously as Lemma 3. And, since $\lambda(\alpha, n)=\log n+O(1)$ the first term of the right hand side equals to $l(x)(\log m-\log n) / \pi+O(1)$. Thus we have the desired result.

This theorem contains the second part of Theorem M_{1}.
Theorem M_{2} is valid even if $\bar{\sigma}_{n}$ would be replaced by $\overline{s_{n}}$, i. e.:
Theorem 3. If $f(x)$ is of bounded variation in $(0,2 \pi)$ and $m / n \rightarrow 1, m-n$
∞, then

$$
\left[\bar{s}_{m}(x)-\bar{s}_{n}(x)\right] /(\log m-\log n)=\frac{l(x)}{\pi}+o(1)
$$

Indeed we have, by (2.3)'

$$
\int_{0}^{\pi} \bar{D}_{n n}(t) d t=\log n+c_{0}+\log 2+O(1 / n),
$$

and by (2.2)

$$
\pi \bar{s}_{n}(x)=\int_{0}^{\pi} \psi(t) \bar{D}_{n}(t) d t+l(x) \int_{0}^{\pi} \bar{D}_{n n}(t) d t
$$

Therefore

$$
\pi\left[\bar{s}_{m}(x)-\bar{s}_{n}(x)\right]=\int_{0}^{\pi} \psi(t)\left[D_{m}(t)-\bar{D}_{n}(t)\right] d t+\log m-\log n+O(1 / n) .
$$

We write

$$
\int_{0}^{\pi} \psi(t)\left[\bar{D}_{m p}(t)-\bar{D}_{i 2}(t)\right] d t=\int_{0}^{\delta}+\int_{\delta}^{\pi}=I_{1}+I_{2}
$$

say, where $\delta>0$ is small. It is evident that $\psi(t)=o(1)$ and

$$
V(t)=\int_{0}^{t}|d \psi(u)|=o(1)
$$

as $t \rightarrow+0$, since we may suppose that $\psi(0)=\psi(+0)=0$. Considering the positive and negative variations of $\psi(t)$, by the second mean value theorem we have

$$
\begin{aligned}
I_{1} & \leqq V(\delta) \cdot \sup _{0<t \leqq \delta} \mid \int_{t}^{\delta}[\sin (n+1) u+\cdots+\sin m u] d u \\
& <V(\delta) \cdot 4(m-n) / n
\end{aligned}
$$

and

$$
\left|I_{2}\right\rangle=\left|\int_{\delta}^{\pi} \psi(t) \frac{\cos (m+1 / 2) t-\cos (n+1 / 2) t}{2 \sin (t / 2)} d t\right|<\frac{V(\pi)}{2 \sin (\delta / 2)} \cdot \frac{4}{n} .
$$

Thus we get the desired result since it is evident that

$$
\frac{m-n}{n} \sim \log m-\log n \quad \text { and } \quad \frac{1}{n}=o(\log m-\log n)
$$

under the restriction concerning m and n.
5. It is easily seen that Theorem 3 is valid even if \bar{s}_{n} would be replaced by $\bar{\sigma}_{n}^{\alpha}$ for $\alpha>0$. On the contrary, for the negative value of α we have the following

Theorem 4. Let $-1<\alpha<0$ and $\delta>0$ be small. If $f(x)$ be of bounded variation over $(0,2 \pi)$, and

$$
\begin{equation*}
\int_{0}^{\delta_{1}} d(\psi(t)-\psi(t+h)) \mid=O\left(h^{|\alpha|(\alpha+1)}\right) \tag{5.1}
\end{equation*}
$$

as $h \rightarrow+0$, then

$$
\begin{equation*}
\left[\bar{\sigma}_{m}^{\alpha}(x)-\bar{\sigma}_{n}^{\alpha}(x)\right] /(\log m-\log n)=l(x) / \pi+o(1) \tag{5.2}
\end{equation*}
$$

as $n \rightarrow \infty$ for $(m-n) / n \rightarrow 0$ and $(m-n) / n^{|\alpha|} \rightarrow \infty$.
In the case $\alpha=0$ this theorem coincides with Theorem 3.
We require a lemma.
Lemma 4. If $-1<\alpha<0, f(x)$ is of bounded variation over $(0,2 \pi)$ and 1 $<m / n<H$, then

$$
\begin{align*}
& \int_{\pi / n}^{\delta} \psi(t)\left[\bar{K}_{m}^{a}(t)-\bar{K}_{n}^{a}(t)\right] d t=o\left(\frac{m-n}{n}\right)+O\left(\frac{1}{n^{\alpha+1}}\right) \\
& \quad+\frac{1}{2 A_{n}^{\alpha}} \int_{\pi / n}^{\delta} \frac{\psi(t)-\psi(t+\pi / n)}{(2 \sin t / 2)^{\alpha+1}}\left[\sin \left(m t+\alpha_{t}\right)-\sin \left(n t+\alpha_{t}\right)\right] d t \tag{5.3}
\end{align*}
$$

as $n \rightarrow \infty$, where $\alpha_{t}=(\alpha+1)(t-\pi) / 2, \delta>0$ is small, and o depends on n and δ.
This lemma can be proved by an elaboration under the conditions

$$
\begin{equation*}
\phi(t)=o(1) \quad \text { and } \quad \int_{0}^{t}|d \psi(u)|=o(1) \tag{5.4}
\end{equation*}
$$

as $t \rightarrow+0$, which are the consequence of $f \in \mathrm{~B} . \mathrm{V} .$. The proof is omitted.
The proof of our theorem is as following: under the restriction concerning m and n it is evident that

$$
\frac{m-n}{n} \sim \log m-\log n, \quad \frac{1}{n^{\alpha+1}}=o(\log m-\log n)
$$

and moreover, we have by an elaboration

$$
\int_{0}^{t}\left[\bar{K}_{m}^{\alpha}(u)-\bar{K}_{n}^{\alpha}(u)\right] d u=O\left(\frac{m-n}{n}\right), \quad 0<t \leqq \pi / n
$$

and

$$
\int_{\delta}^{t}\left[\bar{K}_{m}^{\alpha}(u)-\bar{K}_{n}^{\alpha}(u)\right] d u=O\left(\frac{1}{n^{\alpha+1}}\right), \quad \delta<t \leqq \pi
$$

We write

$$
\begin{aligned}
& \pi\left[\bar{\sigma}_{m}^{\alpha}(x)-\bar{\sigma}_{n}^{\alpha}(x)\right] \\
& =l(x) \int_{0}^{\pi}\left[K_{m}^{\alpha}(t)-\bar{K}_{n}^{\alpha}(t)\right] d t \\
& \quad+\left(\int_{0}^{\pi / n}+\int_{\pi / n}^{\delta}+\int_{\delta}^{\pi}\right) \psi(t)\left[\bar{K}_{m}^{\alpha}(t)-\bar{K}_{n}^{\alpha}(t)\right] d t \\
& \quad=I+I_{1}+I_{2}+I_{3}
\end{aligned}
$$

say. Then by $(2.3)^{\prime}$ we have

$$
\begin{aligned}
I & =l(x)[\log (\alpha+m)-\log (\alpha+n)]+O\left(1 / n^{\alpha+1}\right) \\
& =l(x)(\log m-\log n)+o(\log m-\log n)
\end{aligned}
$$

Integrating by parts we have $I_{1}=o((m-n) / n)$ and $I_{3}=O\left(1 / n^{\alpha+1}\right)$ under the
conditions (5.4). Therefore it is sufficient to show that $I_{2}=o(\log m-\log n)$ under our assumption. From (5.1) it follows

$$
\begin{equation*}
\Delta \psi(t)-\Delta \psi(0)=O\left(h^{i \alpha(\alpha+1)}\right) \tag{5.5}
\end{equation*}
$$

as $h \rightarrow+0$ in $(0, \delta)$, where $\Delta \psi(t)=\psi(t)-\psi(t+h)$. On the other hand from the fact

$$
\begin{aligned}
& \frac{1}{A_{n}^{\alpha}} \int_{\pi / n}^{\delta} \frac{\sin \left(m t+\alpha_{t}\right)-\sin \left(n t+\alpha_{t}\right)}{(2 \sin t / 2)^{\alpha+1}} d t \\
& \quad=\int_{\pi / n}^{\delta}\left[\bar{K}_{m}^{\alpha}(t)-\bar{K}_{n}^{\alpha}(t)\right] d t+O(\log m-\log n) \\
& \quad=O(\log m-\log n)
\end{aligned}
$$

we have under the condition (5.4), by Lemma 4

$$
\begin{aligned}
I_{2}= & \frac{1}{2 A_{n}^{\alpha}}\left(\int_{n}^{n^{|\alpha|} \mid K}+\int_{n^{\prime \alpha} / K}^{\delta}\right) \frac{\Delta \psi(t)-\Delta \psi(0)}{(2 \sin t / 2)^{\alpha+1}}\left[\sin \left(m t+\alpha_{t}\right)-\sin \left(n t+\alpha_{t}\right)\right] d t \\
& \quad+o(\log m-\log n) \\
= & J_{1}+J_{2}+o(\log m-\log n),
\end{aligned}
$$

say, where $h=\pi / n$ and $K>0$ is arbitrary. Letting

$$
\begin{aligned}
\chi(t) & =\frac{1}{2 \sin (t / 2)}\left[\sin \left(m t+\alpha_{t}\right)-\sin \left(n t+\alpha_{t}\right)\right] \\
& =\cos \left((n+1 / 2) t+\alpha_{t}\right)+\cdots+\cos \left((m-1 / 2) t+\alpha_{t}\right),
\end{aligned}
$$

we have $\int_{0}^{t} \chi(u) d u=O((m-n) / n)$. Therefore, integrating by parts under the conditions (5.1) and (5.5) we have

$$
\begin{aligned}
J_{1} & =\frac{1}{2 A_{n}^{\alpha}} \int_{n}^{h^{\alpha \alpha \mid} \mid K}\left(\sin \frac{t}{2}\right)^{\alpha}[\Delta \psi(t)-\Delta \psi(0)] \chi(t) d t \\
& =O\left(\frac{m-n}{n} / K^{\alpha}\right) .
\end{aligned}
$$

On the other hand, from

$$
\int_{0}^{t}\left[\sin \left(m u+\alpha_{u}\right)-\sin \left(n u+\alpha_{u}\right)\right] d u=O(1 / n)
$$

again integrating by parts we have $J_{2}=O(K / n)^{\alpha+1}$. Thus $I_{2}=o(\log m-\log n)$ since $K>0$ is arbitrary, and our theorem is established.

Further we have the following theorem under another Lipschitz condition cf. [7]).

Theorem 5. Theorem 4 is valid even if the condition (5.1) is replaced by $\psi \in \operatorname{Lip}(1, p)$ in $(0, \delta)$, where $\mid \boldsymbol{\alpha}>1$.

It is sufficient to show that $I_{2}=o(\log m-\log n)$. But by Lemma 4

$$
I_{2} \left\lvert\, \leqq \frac{1}{A_{n}^{\alpha}} \int_{0}^{\delta} \frac{\Delta \psi(t) \mid}{(2 \sin t / 2)^{a+1}} d t+o(\log m-\log n)\right.
$$

where $\Delta \psi(t)=\psi(t)-\psi(t+\pi / n)$. And since it is evident that from $|\boldsymbol{\alpha}| \boldsymbol{p}$ >1 it follows $(\alpha+1) q<1$ where $1 / p+1 / q=1$, the fisrt term of the right hand side does not exceed

$$
\begin{aligned}
& A_{n}^{a}\left(\left.\int_{0}^{\delta} \Delta \psi(t)\right|^{v} d t\right)^{1 / 2}\left(\int_{0}^{\delta} \frac{d t}{(2 \sin t / 2)^{(\alpha+1) q}}\right)^{1 / q} \\
& \quad=\frac{1}{A_{n}^{a}} \cdot O\binom{\pi}{n}=O\left(\frac{1}{n^{\alpha+1}}\right)
\end{aligned}
$$

which proves our theorem.
6. Theorem I in the section 1 is trivial under the condition (1.4). The purpose of S . Izumi [3] is, I suppose, to show that the theorem is valid even if $O(1)$, in the right hand side of (1.4), would be replaced by $O(\log n)$. This will be negative. But we can show that (1.4) may be replaced by a weaker condition.

Evidently, from the condition

$$
\begin{equation*}
\int_{0}^{t} \phi(u) d u=O(t) \quad \text { as } \quad t \rightarrow 0 \tag{b}
\end{equation*}
$$

it follows

$$
\begin{equation*}
\int_{t^{\prime}}^{t} \frac{\mid \psi(u)}{u} d u=O\left(\log \frac{2 t}{t^{\prime}}\right) \tag{c}
\end{equation*}
$$

as $0<t^{\prime} \leqq t \rightarrow 0$. Inversely, if (c) holds then

$$
\begin{aligned}
\int_{0}^{t} \phi(u) \mid d u & =\int_{0}^{t} \frac{\psi(u)}{u} d u \int_{0}^{u} d v=\int_{0}^{t} d v \int_{v}^{t} \frac{\mid \psi(u)}{u} d u \\
& =O\left(\int_{0}^{t} \log 2 t \quad d v\right)=O(t)
\end{aligned}
$$

which is the condition (b). Thus the conditions (b) and (c) are equivalent. Therefore the condition

$$
\begin{equation*}
\int_{t^{\prime}}^{t}: \psi(u)-\psi\left(u+t^{\prime}\right) \left\lvert\, d u=O\left(\log \frac{2 t}{t^{\prime}}\right)\right. \tag{d}
\end{equation*}
$$

as $0<t^{\prime} \leqq t \rightarrow 0$, is weaker than (b), and also evidently than (1.4). Now we have the following

Theorem 6. If $\psi(t)$ satisfies the conditions $\int_{0}^{t} \psi(u) d u=o(t)$ and (d) then

$$
\bar{\sigma}_{2 n}(x)-\bar{\sigma}_{n}(x)=\frac{l(x)}{\pi} \log 2+o(1)
$$

as $n \rightarrow \infty$.
It is sufficient to show, analogously as in the proof of Theorem I, that

$$
P_{n}=\frac{1}{n}-\int_{x_{n} \eta}^{\pi}|\psi(t)-\psi(t+\eta)| \frac{t^{2}}{} d t=o(1)
$$

as $n \rightarrow \infty$, where $\eta=\pi / n$ and $\left\{k_{n}\right\}$ is a positive sequence such that $k_{n} \rightarrow \infty$ as $n \rightarrow \infty$ sufficiently slowly. We write

$$
\Psi(t)=\int_{\eta}^{t} \frac{\psi(u)-\psi(u+\eta)}{u} d u
$$

then integrating by parts we have

$$
\begin{aligned}
P_{n} & =\frac{1}{n}\left[\frac{1}{t} \Psi(t)\right]_{k_{n} \eta}^{\pi}+\frac{1}{n} \int_{k_{n} \eta}^{\pi} \frac{1}{t^{2}} \Psi(t) d t \\
& =O\left(\frac{1}{k_{n}}-\log \left(2 k_{n}\right)\right)+O\left(-\frac{1}{n} \int_{k_{n} \eta}^{\pi} \frac{1}{t^{2}} \log \frac{2 t}{\eta} d t\right) \\
& =O\left(\left(\log k_{n}\right) / k_{n}\right)=o(1)
\end{aligned}
$$

as $n \rightarrow \infty$. Thus we have the desired result.
7. We shall now give an application of Lemma 3 to the sequence $\left\{n B_{n}\right\}$, where $B_{n}=B_{n}(x)$ is defined by (1.1).

Let $\bar{\tau}_{n}^{\alpha}=\bar{\tau}_{n}^{\alpha}(x)$ be the n-th (C, α) mean of $\left\{n B_{n}\right\}$, i. e.

$$
\bar{\tau}_{n}^{a}=\frac{1}{A_{n}^{\alpha}} \sum_{\nu=1}^{n} A_{n-\nu}^{a-1}\left(\nu B_{\nu}\right)
$$

Then we have the well-known identity

$$
\begin{equation*}
\bar{\tau}_{n}^{a+1}=(\alpha+1)\left(\bar{\sigma}_{n}^{\alpha}-\bar{\sigma}_{n}^{\alpha+1}\right) \tag{7.1}
\end{equation*}
$$

for $\alpha>-1$. On the other hand, from (3.2) with $\beta=\alpha+1$ and $m=n$ it follows

$$
\begin{aligned}
\bar{\sigma}_{n}^{\alpha}(x)-\bar{\sigma}_{n}^{\alpha+1}(x) & =\frac{l(x)}{\pi}[\lambda(\alpha, n)-\lambda(\alpha+1, n)]+o(1) \\
& =\frac{l(x)}{\pi}\left(\frac{1}{\alpha+1}-\frac{1}{\alpha+1+n}\right)+o(1)=l(x) / \pi(\alpha+1)+o(1)
\end{aligned}
$$

as $n \rightarrow \infty$ if $\psi(t)$ satisfies the conditions (a) and $\bar{\Lambda}(\alpha, n)=o(1)$. Therefore by (7.1) we have the following

Lemma 5. If $\alpha>-1$ and $\psi(t)$ satisfies the conditions

$$
\begin{equation*}
\int_{0}^{t} \psi(u) d u=o(t) \quad \text { as } t \rightarrow+0 \tag{a}
\end{equation*}
$$

and $\bar{\Lambda}(\alpha, n)=o(1)$ as $n \rightarrow \infty$, then the sequence $\left\{n B_{n}(x)\right\}$ is summable $(C, \alpha$ $+1)$ to the value $l(x) / \pi$.

From this lemma we have immediately the following
Theorem 7. If $\alpha>0$ and $\psi(t)$ satisfies the conditions (a) and
(b)

$$
\int_{0}^{t} \psi(u) d u=O(t) \quad \text { as } t \rightarrow 0
$$

then the sequence $\left\{n B_{n}(x)\right\}$ is summable $(C, \alpha+1)$ to the value $l(x) / \pi$.
This theorem with $\alpha=1$ coincides with Theorem S_{2}.
The following theorem due to Hardy and Littlewood is well-known.
Theorem H. L. The Fourier series of $f(x)$ converges at the point x to the value $f(x)$, if the two conditions be satisfied.
(i) $f(x+h)-f(x)=o(\log (1 / h \mid))^{-1}$, and (ii) the coefficients a_{n} and b_{n} are $O\left(n^{-\delta}\right), \delta>0$.

The proof of Theorem M.N. in the section 1 is reduced to the condition $\bar{\Lambda}(0, n)=o(1)$, i. e.

$$
\int_{\pi / n}^{\pi} \psi(t) \frac{\cos (n+1 / 2) t}{2 \sin (t / 2)} d t=o(1),
$$

which can be proved analogously as Theorem H.L.. Therefore, Theorem M. N. is derived from Theorem H.L. and Lemma 5 immediately.

Finally, I wish to express my gratitude to Professors S. Izumi and G. Sunouchi for their kind advices.

References

[1] O Szász, The jump of a function determined by its Fourier coefficients. Duke Math. Journ. 4 (1938), 401-407.
[2] O. Szász, On some trigonometric summability methods and Gibbs' phenomenon. T. A. M. S. 54 (1943), 483-497.
[3] S. Izumi, Determination of function by its Fourier series. J. Math. Soc. Japan 1 (1949), 226-231.
[4] H. C. Chow, On a theorem of O. Szász. J. L. M. S. 16 (1941), 23-27.
[5] G. Maruyama, Determination of the jump of a function by its Fourier series. Tôhoku Math. J. 45 (1940), 66-74.
[6] R. Mohanty and M. Nanda, On the behavior of Fourier coefficients. P.A. M. S. 5 (1954), 79-84.
[7] G. H. Hardy and J.E. Littlewood, A convergence criterion for Fourier series. Math. Z. 28 (1928), 612-634.
[8] A. ZyGmund, Trigonometrical series. 1935, Warszawa, pp. 258-259.

Mathematical Institute, Nara Women's University.

