ON THE JUMP FUNCTIONS

By KENJI YANO

1. Let f(x) be an L-integrable function with period 2z, and its allied Fou-
rier series be

(1.1) ;1 (b, cOs nx — a, sin nx) = Z;Bn (x).
We write
(1.2) $@t) =¢.(t) =flx+1t) —fla—1t) —1(x),

and denote the n-th (C, a) mean of the series (1.1) by op(x) with
So(x) = on(x) and o,(x) = oA(x),
that is

ag

75 () = g 3} Ain Bo(a),

n V=

where A2 is Andersen’s notation, A% = (a + 1)(« + 2) - (& + n) /n!.
In this paper we shall consider a particular value of x such that 0<x < 27.

O. Sz3sz [1] has showed:

THEOREM S,. If ¢ (t) satisfies the two conditions

(a) [[¢aau=oq),
(b) [ ¢ au=00
as t— + 0, then
(1.3) Tan(x) — @) = '@ log2 1+ 0(1)

as n—r oo,
S. Izumi [3] improved this theorem as following:

THEOREM 1. Theorem S, is valid even if the condition (b) would be replaced
by
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(1.4) " 19O =gt/ g - o)

as n—r oo,
H.C. Chow [4] has showed:
THaeoreM C. If a > 0 and ¢ (t) satisfies the conditions () and (b), then

o8,(x) — a5t = '@ log2 4 0(1)

as n— o,

G. Maruyama [5] has showed:

THEOREM M,. Under the conditions () and (b), if pn > An and im (pn/Ay)
= A, then

T (%) — a, (%) = @logA +0(1)
as n—r oo,
Further if w,/A,— oo then

(1.5) [5 s (2) — 0, 1)1/ (108 1 — log A) = P& 4 o(1).

THEOREM M,. If f(x) is of bounded variation and pn/Nn— 1 then (1.5) holds
as n—r o,

O. Széasz [2] showed:

THEOREM S,. If ¢ (t) satisfies the conditions (a) and (b), then the sequence
{nB,(x)} is summable (C, 2) to the value l(x) /7.

Recently, R. Mohanty and M. Nanda [6] proved:

THEOREM M.N. If ¢(t) = o(log (1/8)™" and a, = O (w3), b, = O n3%), 0< 3§
<1, then the sequence {nB,(¥)} is summable (C, 1) to the value l(x)/x.

In this paper, we shall prove a number of theorems which contain the
above theorems as particular cases.

2. We denote the n-th (C, @) conjugate Fejér kernel by K*(f) with D, (¢)
= Kj(t), i.e.

@.1) Re@) = L ﬁIA‘,’:_v sin vt,
n V=
then we have, from the definition of ¢ (¢) in (1.2),

@.2) 7o (x) = Lﬁri)s:m t)dt + 7175: ¢ (1) K5 (1) dt.
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We shall first prove the following

LemMma 1. If a > —1 then

(2.3) S:I—{,".(t)dt=7\(a, n) +log2+o0(1)
as n— oo, where
1 1
@.4) Ala, m) = a+1+a+2+ +a+n
In fact, from (2.1) we have
" @ (=1 1) o
UKs@di = AT+ Lo VAL,

P+ Q,

Il

say. Then
1 n-1 « 1
Pn - Pn—1 = T 2 An-—y V - Ag—l ’EAn—l—v ll<

n v=1
_.1 1 An, AT
B A2n+§1v< A° T A, )
1 1 n=t
= : Dt
(e + n) +(a+n)Ann2' Y

1 1
= (*“n—) A% VZ ATy = aFn’
and, since P, =1/(a + 1) we have

1 1 1
Pomaritarzttatw
which equals to A (a, ). @, is the n-th (C. «) mean of the convergent series
0+1—1/2+41/3 — ---, which is summable (C, — 1 + 8) for every & > 0 since
the #-th term (—1)"*'/n is O(1/x), and so

Q,=1log2+0(1)

as n— oo for every a > —1. Thus we get (2.3) and our lemma is established.

ReEMARKS. More precisely we can show that

@.4) Met m) = log ]+ cu + O(U/n)

if a > — 1, where c¢. is a constant depending on «, and 0 < ¢, < 1/(a 4+ 1).
And
flog2+ O(1/n) (¢ =0),

“ liog 2+ 0(1/ne") (—1< a<0).
Thus we get
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. O(1/n) (x=0),
2.3) Ko()dt =log %% ¢ 4 log 2 /
2.3) So ® a1 T T g ey (L1ca<o).
3. We write
- 1 & sin (nt + (a + 1) (¢t — =) /2)
&0 Al 1) =gz |1 90 @sint/2)e 9k

then, by Lemma 1, we have the following

LEmMMA 2. If a > —1 and ¢(t) satisfies the condition

(a) [ gwan=ow
s t— +0, then
o (%) = ?fﬁf—)[x (a,n) + log2] + '%'S:/nz—t%t’)ﬁz*dt + A(a, m) +0(1)
as m—r o, |

Indeed, in the expression (2.2)

Foorswar ="+ -1+1,

say. Then from

d

K; (t) = O(n) and ‘at—

K, () =0

we have, integrating by parts, I, = o(1). I_{g (f) is the imaginary part of the
expression

1 1 =2
-5 + A% go A, e,
which is written in the form
P e r AT
ztan(t/2) T A H (-
Nt int oo
A e T AR e, S, AT e

where k is the positive integer such that —2 < a — k< — 1. We can easily
see that from the last expression, integrating by parts, I, equals to the
imaginary part of
(o) P,
izt 2%+ a7 ) (et + o)
under the condition (a), analogously as A. Zygmund [8]. Thus we get the
desired result. - B
Evidently, if 8 > a and 4(«, n) > 0 then A(3, n) — 0.
If ¢ (¢f) satisfies the condition (a) then
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Jo 2tfn(t()z/z) dt = o(logm —logn) +o(1)

as m— oo and #— co. Particularly if 0 < H < m/n < K then o(log m — log »)
= o(1).
From the above facts and Lemma 2 we have immediately the following

LEMMA 3. If —1<a<pB and () satisfies the conditions (a) and A(a,n)
— 0, then

(3.2) ah(x) —on(®) =" INB,m) —Na,m)] +o(1)

as n— o for 0 < H<m/n < K.

4. TueoreM 1. If a >0, p >0 and ¢ (t) satisfies the conditions
(a) [(gwdu=0w) ana () [ ¢wlau=00

as t— + 0, then
- I(x
tm(x) — o5 = ' Plog p+0(1),
and for each tositive integer k

[ 1 1
= "frx)(logp Ta+rit Tt ar k) +oll)

Efpm (x) — antr (%)
as n—r oo,

Indeed, since the condition A(a, n) =0 follows from (a) and (b) if @« >0
we have the desired result by Lemma 3 and the definition of A (a, #) in (2.4).

This theorem contains Theorem C and the first part of Theorem M,.

THEOREM 2. If 0 < a < B and ¢ (t) satisfies the conditions (a) and (b) then
l(x)

[oh(x) —on(x)]/(logm —logn) = +0(1)

as n— oo for m/n—r .

In fact we have

1(x)

ah(x) — ai(x) == [N(B,m) —N(a,n)] + o(logm — logn) + o(1),

analogously as Lemma 3. And, since A(«, #) = log # + O(1) the first term
of the right hand side equals to /(x)(log m — log n) /= + O(1). Thus we have
the desired result.

This theorem contains the second part of Theorem M,.
Theorem M, is valid even if o, would be replaced by s,, i.e.:

THEOREM 3. If f(x) is of bounded variation in (0,27) and m/n—1, m —n
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oo, then
I(x)

- +o0(1).

[Sn(x) — su(x)1/ (log m — logn) ="
Indeed we have, by (2.3)’
g:l_)n(t) dt =logn + ¢, + log2 + O(1/n),
and by (2.2)
w5a(®) = [ 9D dt + 1) | Daat.
Therefore
wlsn(x) = 5001 = | 90 [Datt) = Du(®)1dt + logm — log n + O (1/n).
We write
[feo .0 -Daw1at = + [ =1+1L
say, where 8 > 0 is small. It is evident that ¢(¢) = o(1) and
v = 1ag@|=oq)

as t— + 0, since we may suppose that ¢ (0) = ¢(+ 0) =0. Considering the
positive and negative variations of ¢ (f), by the second mean value theorem
we have

I,V () - Osgtlgs ‘ S; [sin (n + 1)z + -+ + sin mu]dui

< V(3)-4(m — n) /n,
and

o cos(m +1/2)t —cos(n+1/2)¢t ,, | V(x) 4
L= 90 2sin (¢/2) U< 2sin(6/2) " n

Thus we get the desired result since it is evident that

m—n

~logm — logn and }1 = o(log m — log n)

under the restriction concerning m and .

5: It'is easily seen that Theorem 3 is valid even if s, would be replaced
by oy for @ > 0. On the contrary, for the negative value of a we have the
following

THEOREM 4. Let —1 < a <0 and & >0 be small. If f(x) be of bounded
variation over (0,2x), and

(.1) S:Td(sb &) — ¢+ h) =0 R NK+D)
as h— +0, then
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(5.2) [om(x) — on(x)1/ (logm — logn) = (%) /7 + o(1)
as n— o for (m—mn)/n—>0 and (m — n) /0" — co.

In the case a = 0 this theorem coincides with Theorem 3.
We require a lemma.

Lemma 4. If —1 < a <0, f(x) is of bounded variation over (0,27x) and 1
<m/n < H, then

[° o0 - K@l = of " ) + O i)

1 (8 ¢@t)— ¢+ n/n)
2 A% S,,,n (2 sin ¢/2)+!

as n—r oo, where a; = (a + 1)t —7) /2, 8 > 0is small, and o depends on n and d.

(5.3)

+ [sin (mt + a;) — sin (nt + ;) 1dt

This lemma can be proved by an elaboration under the conditions
12
(5.4) ¢ =0() and [ [dg@)=0()
as t— + 0, which are the consequence of f € B. V.. The proof is omitted.

The proof of our theorem is as following: under the restriction concerning
m and » it is evident that

— 1
m—nn—~logm—-10gn, W=o(logm——logn),

and moreover, we have by an elaboration
¢ 72 7 m—n
|\ s o) — K3 ) 1w = o(Z2=n), o<t=n/n,
and
(3
7l o 1
gz~ Krwlan=0( k)  s<i=m
We write
wlon(x) — og (x)]

=10 [[ K8 (0 — K3 (0))at

wn t “ — —
+ ([ + D)oo maw - Ka@a
=I+1L+L+1
say. Then by (2.3)’ we have
I =1[(x)[log(ex + m) — log (& + #n)] + O (1/n**?)
= [(x) (log m — log n) + o(log m — log ).
Integrating by parts we have I, = o((m — n)/n) and I, = O(1/#**') under the
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conditions (5.4). Therefore it is sufficient to show that I, = o(log m — log )
under our assumption. From (5.1) it follows

(5.5) A (8) — A4 (0) = O (hi*e+D)

as h— + 0 in (0, &), where 4¢ (f) = ¢ (#) — ¢ (t + k). On the other hand from
the fact

1 _SS sin (mt + o) — sin (nt + ),
A% Jain (2'sin £/2) °+

- Si/n[lzz‘ (t) — K5 (#) 1dt + O (log m — log n)

= O (log m — log n),
we have under the condition (5.4), by Lemma 4

nlel K A . 3 .
I, = 5%45( Sh / SZ‘“/K)_T%%77AZ‘)¢‘}“S?2 [sin (mt + a;) — sin (nt + a.) ]dt

+ o(log m — log n)
=Ji+ J. + o(logm — log n),
say, where & = z/n and K > 0 is arbitrary. Letting

X () = ’z‘éal“(f/i)" [sin (mt + a;) — sin (ut + az) ]

=cos((m+1/2)t + az) + -+ + cos((m — 1/2)t + ),
we have SZX (uydu = O((m — n) /n). Therefore, integrating by parts under the

conditions (5.1) and (5.5) we have

T = Ei-%-g"'""(sin 5)" 149(0) — 401X ()t

h
—ofM—" g
=o(”= /K )
On the other hand, from
SZ [sin (mu + «,) — sin (nu + a,) 1du = O(1/n),

again integrating by parts we have J, = O (K/»)*t'. Thus I, = o(log m — log n)
since K > 0 is arbitrary, and our theorem is established.

Further we have the following theorem under another Lipschitz condition
cf. [7]).

THEOREM b. Theorem 4 is valid even if the condition (5.1) is replaced by
¢ ELip(1, p) in (0, 8), where ' ' p > 1.

It is sufficient to show that I, = o(log m — log #). But by Lemma 4
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1 Ss AP (@) |

'L . (@sin t’/z’)a'_i_i’dt + o(log m — log n)

= a3
where 4¢ () = ¢ (t) — ¢(t + n/n). And since it is evident that from |a|p
>1 it follows (a +1)g <1 where 1/p + 1/q =1, the fisrt term of the right
hand side does not exceed

ol avwra)” ([ ganigem) "

= *1‘;.' : O( Z) = O(ﬁ)’

n

which proves our theorem.

6. Theorem I in the section 1 is trivial under the condition (1.4). The
purpose of S. Izumi [3] is, I suppose, to show that the theorem is valid even
if O(1), in the right hand side of (1.4), would be replaced by O (log #). This
will be negative. But we can show that (1.4) may be replaced by a weaker
condition.

Evidently, from the condition

(b) SZ‘sb(u)Edu:O(t) as t—0
it follows
© 1404 - ofis )

as 0 < ¢ <¢—0. Inversely, if (c) holds then

R

0 uﬁ
= 0(‘: log th dv) = 0(f),

which is the condition (b). Thus the conditions (b) and (c) are equivalent.
Therefore the condition

() [ = It t)ly, 0(tog 2t )

% u t)

as 0 < ¢ <¢—0, is weaker than (b), and also evidently than (1.4). Now we
have the following

THEOREM 6. If ¢ (t) satisfies the conditions SZ«/!(u) du = o(t) and (d) then
Tun(®) — 7ale) = L tog 2 4 0(1)

as n—r oo,

It is sufficient to show, analogously as in the proof of Theorem I, that
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P, = %’l_s‘:nn L(’[i(t);if(éiﬁ)idt =0(1)

as #— oo, where 17 = z/n and {k,} is a positive sequence such that k, — oo
as n — co sufficiently slowly. We write

then integrating by parts we have

oo el T b
= 0(,:7 ; log (an)) + O(W}{S;n —tlz log 2%dt)

=0 ( (IOg kn) /kn,) = 0(1)
as # — oo, Thus we have the desired result.

7. We shall now give an application of Lemma 3 to the sequence {nB,},
where B, = B, (x) is defined by (1.1).
Let 74 = 7%(x) be the n-th (C, @) mean of {#B,}, i.e.

1 i a—1
Y Z}l AT (vBy).

Tn =

Then we have the well-known identity
(7.1) = (a+1) (o5 —on)

for « > —1. On the other hand, from (3.2) with 8=a + 1 and m =#n it
follows

oi @) — o5 (1) = L2 e, m) = Ma+ 1,01 + o)

=W L ) o) =l@/ra 1) o)

as n—co if ¢ (f) satisfies the conditions (a) and A(«, #) = 0(1). Therefore
by (7.1) we have the following

LEMMA 5. If a > —1 and ¢ (t) satisfies the conditions

(a) [gaau=0t) ast—+o,
and A(c,n) =o0(1) as n— oo, then the sequence {nBy(x)} is summable (C,
+ 1) to the value l(x)/x.

From this lemma we have immediately the following

THEOREM 7. If a> 0 and ¢ (t) satisfies the conditions (a) and
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(b) SZ!Q&(u)‘du:O(t) as t =0,

then the sequence {nB,(x)} is summable (C, a + 1) to the value I (x)/m.

This theorem with e =1 coincides with Theorem S,.
The following theorem due to Hardy and Littlewood is well-known.

THEOREM H. L. The Fourier series of f(x) converges at the point x to the
value f(x), if the two conditions be satisfied.

(i) fx+h) —f(x) =0(og(1/ k)™, and (ii) the coefficients a, and b, are
O(n%), §>0.

The proof of Theorem M. N. in the section 1 is reduced to the condition
400, n) =o(1), i.e.

" os(n + 1/2)¢t
Sﬂ/n¢(t> ¢ er?n (t/2)

which can be proved analogously as Theorem H.L.. Therefore, Theorem
M. N. is derived from Theorem H.L. and Lerama 5 immediately.

-dt =0(1),

Finally, I wish to express my gratitude to Professors S. Izumi and G. Su-
nouchi for their kind advices.
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