ON A PROPOSITION OF VON NEUMANN

By Masahiro Nakamura and Hisaharu Umegaki

1. J. von Neumann wrote, without proof, the following proposition in his monumental paper [3; footnote 10, p. 123]: "We could show that the operation $x \to x^{|p|q|\cdots}$ depends only on x and A (and not on the sequence p, q, \cdots)", where A is an abelian W^* -subalgebra of a semi-finite factor M acting on a separable Hilbert space H, and where p, q, \cdots is a sequence of projections in A generating the subalgebra A.

In this note, we shall give a proof of the above mentioned proposition as a consequence of a result due to one of the authors [5; § 4]. Furthermore, we wish to give a characterization of a maximal abelian subalgebra in a semi-finite W^* -algebra by means of conditional expectation.

2. Let *M* be a semi-finite *W**-algebra with regular gage μ . For any *W**-subalgebra *A* of *M* there exists a *non-negative linear operation* $x \to x^{\circ}$ (with $||x^{\circ}|| \leq ||x||$) from *M* into *A* satisfying that

- (i) $x^e = I^e x$ for $x \in A$, (ii) $x^{*e} x^e \leq (x^*x)^e$ and $x^e = x^{ee}$,
- (iii) $x_{\alpha}^{e} \uparrow x^{e}$ if $x_{\alpha} \uparrow x$, (iv) $(x^{e}y)^{e} = (xy^{e})^{e} = x^{e}y^{e}$;

cf. [1; Théorème 8]. When it satisfies $I^e = I$, we have called it to be normal expectation; cf. [2]. Further, the above operation $x \to x^e$ (not always $I^e = I$) satisfies that

(v)
$$\mu(x^e y) = \mu(xy^e)$$
 for every $x \in M$ and μ -integrable $y \in M$;

cf. [1]. Conversely if a non-negative linear operation $x \to x^{\varepsilon}$ (with $I^{\varepsilon} \le I$) from M into A satisfies (i),(ii) and (v), then it also satisfies (iii), (iv) and $x^{\varepsilon} = x^{\varepsilon}$ for every $x \in M$, cf. [5; Theorem 1], i.e. the $x \to x^{\varepsilon}$ is uniquely determined by A and μ . We shall call the operation $x \to x^{\varepsilon}$ to be conditional expectation (of x) conditioned by A.

Let p, q, \dots, r be arbitrary finite set of projections in M. According to von Neumann [3], we define the operations $x \to x^{|p|}$, $x^{|p|q}$ from M into itself such as $x^{|p|} = pxp + (1-p)x(1-p)$, $x^{|p|q} = (x^{|p|})^{|q|}$, and by successive application $x^{|p|q|\dots|r|}$ is defined which are normal expectations. Furthemore, if p, q, \dots, r, \dots is a sequence of mutually commutative projections in M, then it is possible to introduce an operation $x \to x^{|p|q|\dots}$ for μ -integrable operators $x \in M$, with respect to the metric convergence (i.e. L^2 -mean convergence)

$$(1) x^{[p]q|\cdots} = \lim_{r} x^{[p]q|\cdots|r};$$

Received September 27, 1956; in revised form October 20, 1956.

cf. [2; Lemma 2.1.6] and [5; Theorem 5]. Let C_p denote the associate subalgebra of the operation $x \to x^{(p)}$, in the sense of Nakamuru-Turumaru [2], which is the set of all elements $x \in M$ with $x^{(p)} = x$, then C_p is a W^* subalgebra of M consisting of all elements which commute with p. It is known [5; Theorem 4] that the operation $x \to x^{(p)q) \mapsto r}$ coincides with the conditional expectation conditioned by $C_p \cap C_p \cap \cdots \cap C_r$, and that each element of $C_p \cap C_q \cap \cdots \cap C_r$ commutes with every p, q, \dots, r (it is to be noted that the process corresponds to the process of taking the diagonal block of finite matrix; cf.[3; Introduction]). Furthermore, we have

THEOREM 1. If p, q, \dots is a sequence of mutually commutative projections in M, then the operation $x \to x^{[p]q|\dots}$ defined on the algebra M_{μ} consisting of μ -integrable $x \in M$ is uniquely extended to the conditional expectation $x \to x^{e}$ on M conditioned by

$$(2) C = C_p \cap C_q \cap \cdots$$

and $x \to x^e$ is independent of the choice of the regular gage μ , i.e. (v) holds for any regular gage of A, and C is the set of all elements in M commuting with p, q, \cdots .

It is sufficient to prove the conditional expection $x \to x^e$ being independent of the choice of the gage μ , because the other parts follow from the previous part of this theorem and [5; Corollary 5.1]. Let A be the W*-subalgebra of M generated by $\{p, q, \dots\}$, then we have

$$(3) C = A' \cap M$$

where A' is the commutor of A. Since the centre $M' \cap M$ of M is contained in C, by Dixmier [1; Proposition 8](v) holds for any regular gage of M.

3. Let A be an abelian W^* -subalgebra of a semi-finite W^* -algebra M acting on a separable Hilbert space. Then, by the well known theorem of J. von Neumann [4], there exists a sequence p, q, \cdots of projections in A which generates the algebra A, i. e. $\{p, q^{\dots}\}'' = A$. Clearly by the definition of the $C(=C_p \cap C_q \cap \cdots)$, we have (3) and C is uniquely determined only by A in the equation (3). If M is a semi-finite factor, then the regular gage μ is essentially unique and the algebre M_{μ} coincides with the algebra (denoted by M_0) consisting of all the elements of finite rank in the sense of von Neumann [3] which is independent of the regular gage μ . Thus the von Neumann's proposition follows immediately from Theorem 1:

THEOREM 2 (von Neumann). If M is a semi-finite factor acting on a separable Hilbert space H, and if A is an abelian W^* -algebra generated by its sequence of projections p, q, \cdots , then the operation $x \to x^{|p|q|\cdots}$ defined on the algebra M_0 (consisting of $x \in M$ with finite rank) depends only on x and A, and is independent of the choice or the order of p, q, \cdots .

In this theorem, if M is a semi-finite W^* -algebra with regular gage μ and

acting on H, then the same fact holds for M_{μ} without that the operation $x \to x^{|y|q|\cdots}$ depends also on the gage μ , because the algebra M_{μ} depends on μ . In general, we shall call the operation $x \to x^{|y|q\cdots}$ to be von Neumann's operation defined by $A^{(1)}$

4. An abelian W^* -subalgebra A of a W^* -algebra M is called to be maximally abelian in M if

$$(4) A = A' \cap M,$$

or each element of C of (3) is contained in A. If A, M, p, q, \cdots are as the beginning in § 3, and if A and μ are maximally abelian in M and regular gage of M, respectively, then by Theorem 1 the conditional expectation of μ -integrable $x \in M$ conditioned by A coincides with the von Neumann's operation $x \to x^{|y|q|\cdots}$ defined by A. Conversely, if the conditional expectation $x \to x^{|y|q|\cdots}$, then Theorem 1 implies that A satisfies (4), i.e. A is maximally abelian in M. Indeed, putting $C = A' \cap M$ and denoting $x \to x^{\varepsilon}$ the conditional expectation conditioned by C, then by Theorem 1 we have $x^{\varepsilon} = x^{\varepsilon}$ for every $x \in M$. Since A is the direct sum of $M^{\varepsilon} = \{x^{\varepsilon}; x \in M\}$ and $\{\lambda(I - I^{\varepsilon}); \lambda$ being complex numbers}, cf. [5; Theorem 1], A = C. Thus we have the following:

THEOREM 3. Let M be a semi-finite W*-algebra with a regular gage μ and acting on a separable Hilbert space. Then an abelian W*-subalgebra A of M is maximally abelian in M if and only if the conditional expectation of $x \in M_{\mu}$ conditioned by A coincides with the von Neumann's operation $x \to x^{|p|q|\cdots}$ defined by A.

References

- [1] J. DIXMIER, Formes linéaires sur un anneau d'opérateurs. Bull. Soc. Math. France 81 (1953), 6-39.
- [2] M. NAKAMURA AND T. TURUMARU, Expectations in an operator algebra. Tôhoku Math. Journ. 6 (1954), 182-188.
- [3] J. VON NEUMANN, On rings of operators, III. Ann. of Math. 41 (1940), 94-161.
- [4] J. VON NEUMANN, Über Funktionen von Funktionaloperatoren. Ann. of Math. 32 (1931), 191-226.
- [5] H. UMEGAKI, Conditional expectations in an operator algebra, II. Tôhoku Math. Journ. 8 (1956), 86-100.

OSAKA UNIVERSITY OF LIBERAL-ARTS AND EDUCATION, TOKYO INSTITUTE OF TECHNOLOGY.

144

¹⁾ If M is a finite W^* -algebra (not always a factor) acting on a separable Hilbert sprce H, and if A is an abelian W^* -subalgebra of M, then the von Neumann's operation defined by A, which coincides with the conditional expectation conditioned by $A' \cap M$, depends only on A and defined on every $x \in M$.