ON A RENEWAL THEOREM

By HIDENORI MORIMURA

1. Introduction. Let X;(:=1,2,...) be independent random variables
having the mean value s, and pnt S, =37X,. So-called renewal theorem
which is of the type as

1.1 mSIP(x < Sp=x+h) =1

z>00 =1 m
was proved by Feller [6,7], Técklind [12], Doob [5], Blackwell [1, 2], Chung-

Pollard [3], Cox [4], Smith [4, 11], Karlin [8], etc., in the case X; identically
distributed under the various conditions.

Recently, Prof. T. Kawata [9] showed (1.1) replacing lim,-. by limg_m%

. Sg -~ dx and m by limu.. X* E(X;)/# which is assumed to exist in the
case, where X; are not necessarily identical. In this paper, roughly speaking,
we shall discuss the limit of 3>} (# — x/m)P(x < S, < x + h) in the same case
as [9] by the method analogous to it.

Now, Prof. Kawata [10] discussed the convergence of

(1.2) j:;on{P(x<sn_s_x+h)—P(x<sn+1gx+h)}.

Of course 3= # P(x < S, < x + k) diverges. Our theorem will show the
appearance of its divergence in a sense.
For convenience’s sake, we shall devote sections 2 and 3 for preparations.

2. Notations and assumptions. Let X, (i =1,2,...) be independent random
variables having the distributions F,(x), and let us put

Su =3 Xu.
Suppose that
(2.1) 0< E(X;) =m; < oo,
(2.2) E(X}) = v; < oo,
(2.3) Mn=%§lmi—>m (n— ),
@.4) V=L Sy (n— co),
n i=1

Received October 11, 1956.

125



126 HIDENORI MORIMURA

and
(2.5) Vn=—l_nvi_}v (néoo))
n i=1
where
(2.6) E(X, — m;)? = v, — m] = v;.
Moreover
@.7) tim (" 2dF,(x) =0,
A—>oo VA4
uniformly with respect to ; and there exists an s; such that
-4
2.8) limS e=5dF, (x) =0,
A0 V=0

uniformly with repect to ; for 0 < s=<s,.
The distribution function of S, will be denoted by o,(x), i.e.,

(2.9) on(x) = F1 (%)% Fa ()% Fn(x).

Furthermore, we shall put

(2.10) fi(s) = S;e‘s”sz(x),

(2.11) P(s) = wae’“da'n(x) =ilifi(5);
and

(2.12) Ials) = n2als) + 3 Pi05).

3. Lemmas. Lemma 1 was given in [9] and we shall omit the proof.

Lemma 1. Let g(t) =0,

3.1) SO_ e g (t)dt < o Sfor 0=s=s,,
and
oo s _A—
(3.2) S_we tg (8)dt ~ 57 as s—0,
for some positive v > 0, then
t At
(3.3) S_“y(u)du~7-,m as 1o,

LemMA 2, Under the condition (2.3) ~ (2.8), there exist the numbers ss, N,
for arbitrary small € > 0, such that
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(3.4) {Q1—8&)P()I" =< Puls) {1+ E)P(s)}*  for 0<s<s; n> N,
where @(s) is a bilateral Laplace transform S:e‘“‘dcr (%) of a suitable distribu-
tion function o (x).

Proof. From (2.7) and (2.9), there exists a constant C,; independent of ¢
such that

(3.5) |~ war@ <c.
Let € be any given positive number. Take A so large that
(3.6) S: x2dFi(x) < E, S:: x%e50*dF;(x) < €.
Now we determine s; so that
3.7) S:: x%e " dFi(x) < S:: e 0°dF;(x) < € for 0<s<s, <s,.

Further, we take s, so that
(3.8) [1—eM4|< € for 0<s<s,<s,.

Then we have

Fils) = £i0) + sFi(0) + ~5— £ (65)

=l—smit+ 5 v+ 57065 - F1O],  0<6<]1,
and
4 . ’ —08w __ 2
e = oi=|(f + ] Jew—1)2arim)
= S #dFy(x) + 5 e dFy(x)+ | (e— 1) xd Fy(%)
x>A x4 r=A4
< E+E+(et—1) SjmaﬁdFi(x) < E2+Cy).
Hence
1 — o b S ST
3.9) fils) =1—sm+ 5= v, + —5— "

7] < €2+ Cy) for 0<s<s,
uniformly with respect to 7. Write
2 2
log fi(s) = log (1 — sm; + % v, + % m)

(3.10)

2 2 1 2 2 \2
= — sm; + %v, +%m——7<sm¢— %v,—im) —
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s, 9 s?
= — smy; + 5(1)£ —m;) + 5 &
Then there exists an s; such that

(3.11) [E,|< €& for 0<s<s; uniformly for i,

noticing that m;, v; are uniformly bounded.
Now we have

log u(s) = 31 Iog fils) = — snby+ "5~ Vit —5— V£,
(3.12)
s? s* o
—n(—SML+TVn+T~n>-
Let o(x) be a distribution function with mean m and variance v; m, v being
those defined in (2.3) and (2.5) and let its bilateral Laplace transform be
P(x) = SN e **do (x) which is assumed to exist. Then we have

log @"(s) = nlog ¢ (s)

= n[log (1+ 57 (0) + —5- #"(0) + —5— [#"(65) — " (O]]

(3.13)

[8|< & for 0<s<s,.

Hence, we have

2

[log @ (s) — log @"(s) | = n‘ — s(My—m) + “; (Va—v)+ i(En—B)

(3.14) 2
<n€log (1+s) for n> N,
and there exists an s; such as
1+s)é< 1 for 0=s<s;.

1—¢€
This implies (3.4) directly.

LemMA 3. Under the conditions (2.1), (2.3), (2.8) and that

(3.15) lim S” %dFy(x) = 0
A>o VA

(uniformly with respect to i) the following relatien holds:
. = 1 1

(3. 16) 1:}')1(;]. ng <P,,,(s) = e

Proof. Since M, —m (n— ), C; > M, > C; > 0, using the fact that for



A RENEWAL THEOREM 129
given € > 0, there exist an N and an sz such that
Pu(s) = 7m0t P,
(3.17) [8n| < € for »n > N,
lpul <€ 0<s=ss

which were given in Lemma 2 of [9], we have

(3. 18) n=1 % n=N+1 n
s 1 1
= C, Nts- o —e- (m— 28)s "
Thus noticing that € is arbitrary, we get
. had 1
(3.19) hr?_)soup snz_d%.(s) < e
Similarly since
> Pals) Sy Pnls) s 1 _
S,f?‘h n gsE}N M, = m+ € ((m—l— 2€)s N)’
we get
(3.20) liminf s3] 228 > 1
-0 n=1 n m

which, with (3.19), proves the lemma,

LemMMA 4. Under the conditions (2.3) ~ (2.8),

(3. 21) lim s3] ¢n(s) = —2.

$-0 n=1 md’
@u(s) being the one in (2.12).

Proof. Since, using (3.10),
Pa(s) = Puls) & (log fils)’
= n¢n(s) [’_ Mn, + sVn + SE",],
(3.4) will give the following relation:
(3.22)  n(@(s) — &)@ (s) — &) = P (s) = n(p(s) + €)' (s) + €),
for 0<s=<s; n>N;.

And by Lemma 2, for 0<s=<s;, # > N,, (3.4) holds, then we have

(8.28)  guls) = 37 (Malp(s) + &) + #'(s) + €} {P(s) + E}*.
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On the other hand, there exist N; and N, such that

(3.24) m—EL< M, <m-+ & for n > N;,
(3. 25) n—m—8>0 for #n > N,.
Putting as

(3. 26) N = max (Nl, Ng, N3, N4),

for » > N, we have

(3.27) g SN+ ¢,
L 8 (m+E)(@B)+E)+H(P(s)+E), 1
m— € s (1—p(s)—€)¥
where C,= ¢, (s)] (n < N). Now,
(3.28) 13}3 M — 1;5} M = 9" (0) = 7.
And since € is arbitrary, we get
(3.29) limsup s : Pnls) < fnls.
Similarly for # > N,
ST =5 31 gals) +5 3 duls)
SR S (m— €)(P(s) —5) + P'(s) — € | 1
- omtE s 1—¢(s) + &)

_ sN(]}’-!—j) C,

and therefore

1),
md "

(3.30) limint s f‘;.lrp,,, (s)=
§> n=
From (3.29) and (3.30) we have (3.21).

4. Theorem. Using these lemmas we shall prove the following

THEOREM. If (2.3) ~(2.8) hold, then

@) tim 2" BR (- ) Pa<S =t i) =t ( L~ B,

Proof. We shall put
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4.2) Gy =31 (n— 4f )P < Su=x+ )
and form

[" eaGain) = [ eatonta+ h) = o)) (n— 5]
=" (- ) earat+ =7 (0= 5 edoata)

n=1 -

1 (> _ <
43) =g | emaat mas+ gy |7 oo ax]
— T Sh__ = —sw - X . (esn_ 1) = -sz
—ng[(e n 1)S_ue (n Mn) do,(x) ML s_&e o, (x)dx
+ MLnesh Siowe—smdo-n(x)].
Now, by integration by parts
wy " ememar=— 1 [eraw] 4 L[ emana,

and the first term on the right hand of (4.4) is 0 according to (2.8). For,
5::e'mdcrn(x) -0 (A — ),
and
S::e'“”d%(x) = [e””dn(x)]::+ sS::e"S“’an(x)dx,

where the both terms on right hand are non-negative. And hence
(4.5) lim e*4o,(— A) = 0.

A—>oco
Therefore (4.3) implies
L " N sh 1 h s
4.6) {" Gy () = 31 [ = 1)(dals) = 415 205)) + pr-emn(s)].
Since 3} ¢ (s) and Y@, (s) are convergent by Lemma 3 and Lemma 4,

(4.7) tim Sle-sdeN(x)

N—>oo

exists, and we have

lim §°° e"dGy(x) = (efh— 1) ,g'l%(s) + 1—e"+ he'® i Dy (s)

N—vo0 J =co N n=1 Mn

(4.8) ) "
~ s (s—0).

On the other hand,
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. . _on L, x
lim e™**Gy(x) = lim e S”ZE(n— )P(x< S.<x+h)

> —oco T>—o0 Mﬂv
. o X x
= lim ¢ 31 (n— MT)P(Snéx+ h)
(4.9)
— lim ¢ “’“’Z(n—- ]‘; )P(Snéx)
= lim (e~ 1)e™Ky (2) + 5o lim (¢7"Hy (x)

holds, where we denote

KN( ::%_\( )P(snéx)
Hy(x) = 31P(S, < ).
In the proof of theorem in [9],

2> =00

(4.10) lim e Hy(x) =0

was showed. So we shall show a similar relation concerning Ky (x). From
Lemma 4 37 ¢,(s) converges, so we can put as

‘/’n (S) < C4’
and get

|" eaky () = 53 ¢uls) < NC..

By an argument analogus to [ 9], we have
(4.11) lim ="Ky (x) = 0.

Z—>=o0

Combining (4.7), (4.10) and (4.11) we get

(4.12) lim e**Gy(x) = 0,
And then
(4.13) [~ eraGu(n) =s[" e Gu(x)dz

Since Gy (x) increases as N — oo and tends to a non-decreasing function,
the existence of the limit (4.7), together with (4.13), shows that

(4. 14) lim S“ ¢ Gy (x)dx = S“’ ¢=°G (x)dx

N—>oo -o0

exists for 0 <s=<s; and

(4.15) s Sle‘s”G(x) dx = gle'”dG(x)
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exists. Combining (4.8) and (4.15) we have

Il 7
(4.16) s|" e Gan~ 1o

Thus by Lemma 1 we get

e

which proves the theorem,

COROLLARY. If the conditions in 2 are satisfied,

(4.17) —ijdxi P(x < Sp<x+ k)~ (X—o0)
. X ) dx X nP(x<S,=x oS .

Proof. Since by Theorem in [ 9],

x X-h
M, P(x<Sn§x+h)~fW,

(4.18) —+ §X dxng

(4.17) is immediate from (4.1).

In conclusion, I express my sincerest thanks to Professor T. Kawata who
has suggested this investigation and given valuable advices.
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