ON SOME LIMIT THEOREMS FOR THE SUMS OF
IDENTICALLY DISTRIBUTED INDEPENDENT
RANDOM VARIABLES

By MasaTomo Upacawa

The contents of this note contain two different parts. In § 1, we are
concerned with the renewal theory, and in § 2 a limit theorem for probability
densities.

1. Some extensions of the result of Lévy for the coin-tossing game.

In this section, we are concerned with the distributions of the number of
zeros of the partial sums of the independent and identically lattice distributed
random variables. Let X;, X,,---, X,,--- be identically lattice distributed
independent random variables. We assume, without loss of generality, that
X, X+, Xy, - are integral valued random variables with span 1. In the
coin-tossing game,

Pr{X, =1} = Pr{X, = — 1} = %

Let Sy =X, + X, + Xy, k=1, 2, ---, and let N,, denote the number of Si’s,
1 <k =< n, which are zero. In the coin-tossing game, the following result is
known [1, p. 253].

N, 2 ("
i = < = —_— —t° /2 =
lim Pr{ o = x} ‘/” goe dt for x=0,

N—>co n

=0 for x<NO0.

For a fixed integer j, even if we denote by N, the number of Si’s, 1 <k =< #,
Sr = j, the above result is also obviously true.

Now it seems to me that the following extension of this result was not
yet given in references explicitly.

THEOREM 1. Let X,, X,, -+, Xu, -+ be identically lattice distributed inde-
pendent random variables taking only integral values, and let its span be 1.
We assume also that

(*) EX, =0, DX, =02
Then

Received May 7, 1956.
1) That is, the greatest common divisor of all differences £—j for which Pr{X;=k}
>0, Pr{X;=7s} is equal to unity.
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Nn 9 9
(1) lim Pr{ N gx} = '//%j e~ 12dt for x =0,

£
n—>c0 0

0 for x <0.

where N, is the number of S%-1X; =Sk, 1=k =<mn, such that S; =74, for a
fixed integer j.

THEOREM 2. If the assumptions of Theorvem 1 arve valid, except the condition
(*), and if for some a, 1 < a < 2,

. Sn
(2) lim Pr{,

éx} = Va(x)

where Va(x) is a symmetric stable distribution with exponent o, then
i) for 1 < a <2, we have

. N"'
(3) it Pr{ s (1 /0y 1 = )

=1— G1—-1/a(<—1—v(—1£—m‘)-"ﬁ),

wherve Gg(z) is the stable distribution defined by the characteristic function

w(z)=exp{—§z|ﬁ<cos ”ZB — isin 7[26 sgnz)F(l—B)},

<z}

(ii) for a = 1, we have

Na <x

(4) IimPr{m_ |

n—>c0

=5 e~'dt, for x=0,
0

and =0 for x <0,
(iii) for a <1, {N,} is bounded with probability 1.

To prove Theorem 1 and Theorem 2, we shall use the following lemmas.

LEMMA 1. Under the assumptions of Theorem 1, we have

Pr{Sx =k} =

1 2
4/2—7E0' nL/? + cn,ky

for any fixed integer k, where cun, = o(n7'1%).
LEMMA 2. Under the assumptions of Theorem 2, we have
Pr{S: = k} = c'z'a ' I'(1/a)yn1!* + ¢y,

for any fixed integer k, where cnx = o(nt*).,

These lemmas are easy consequences of the local limit theorems of Gne-
denko-Kolmogorov [3, p. 233, 236].

Now the proofs of Theorem 1 and Theorem 2, are the same as in G. Kal-
lianpur and H. Robbins’s proof [4, Theorem 3.1]. For example, the proof
of (i) in Theorem 2 is as follows.
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E;=1 if S;=k,

=0 otherwise.

N. =3 &,
J=1

EM=ﬁEa=iw@=m
5= 3=

= ¢zl (1/al) jj"jl %+ e
> )

ﬁ ’—I/a. nl_lla En — l—l/a)
2T T T g B =
we have
EN,~ 220
"Y1 —T1a

For any positive integer » (» = 2),

Let
Then
We have
Since
by Lemma 2,
(5)
(6) EN,"
Now

EE; Ejy-

7

= 33 SYE(E, Ei £}

J1=1

87

=S\EE, 7 N EEE, ol S EEE, - E,
>

12, <005 1551 <o oS

E;,=Pr{S;,=Fk, S;,=Fk, -+, Ss, =k}
=Pr{S;, =k, S;,— S5 =0, -+, Sj, —Sj,_, =0}
= Pr{S;, = B}Pr{S,, — Sj; = 0} --- Pr{S;, — Sj,_, = 0}
= (cra)=" I' (/)" [j1(Jz — J1) = (G — Jr=) I7H® + Ajyygess

say. Then, as in the proof of Kallianpur and Robbins, since

1S5, < gl iy

1591 <9< <L orSn

we have

7 7!

Since

1591 <0p <<y <0

e EnEn ™~ TP 1 7 (1 = 1a))

(cra)="I'(1/ ) [j1(Je — J1) =+ (G, — T, I7V°

[F(l/a)r(l - 1/a)]r pra-1jo
(cra)™I'A 4+ 7v(1 — 1/a¥)) ’
nra-1/e)

Ajljz...jr ~ 0(

LA/OIrA —1/]" ) raajey,

Eg gL g = E
EJIEJZ gjl 15J1<J2§'<J;S" Ejl‘i:jz Efl
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the other terms of (6) except the last one are, by (7),
o(nra-1/o),

Thus we have

ENnr ~

1 [ Ir'l/a)I'd —1/a)
I''lt+»1—-1/a)] cro

from which, by the same arguments as in the Kallianpur and Robbins’s, we
can complete the proof of (i) in Theorem 2.

Theorem 1 and (ii) of Theorem 2 can be proved in the similar manner.
The result of (iii) of Theorem 2 is an easy consequence of Borel-Catelli’s
lemma.,

>
] 7,! nr(l—l/a)’

2. A frequency function from of central limit theorem.

W. L. Smith [5] proved the following theorem:

Let X, Xs,---, Xu,-- be identically distributed independent random variables
with a distribution function F(x) and let its characteristic function be ¢ ().
If
(A) EX, =0, DX, =1
(B) (¢ <A/|t*, for [t =R,
for some positive A, R, «, then, for sufficiently large », the random vari-
ables S,/a/ % have always probability densities %,(x) and it holds

e
Hm % o (x) = — 21 s for 0</<2,
Nn—>o00

N 2
uniformly with respect to x in the interval (— oo < x < o),

On the other hand, Gnedenko-Kolmogorov [3] proved the following theo-
rem: If

(A) EX;=0, DX, =1,

(BY) if the probability density p,(x) of the sum S,, exists for some m =1
and p,(x) belongs to the class L"(— oo, o) for some 7, 1 <7 < 2, then

lim hn(x) = 7127[*6_%2/2

N—>o0
uniformly with respect to x in the interval (— oo < x < o0),

Obviously the Gnedenko-Kolmogorov’s conclusion is implied in Smith’s,
But for their assumptions, Smith’s are contained in Gnedenko-Kolmogorov’s,
Because, under the assumptions of Smith’s theorem, ¢™(f) & L(— oo, o) for
m > 1/a, and so by the inversion formula, the density function p,,(x) of S,
gxists, and

2P (%) = jle—"‘qum ®)dt.
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Thus pn(x) is bounded in the whole interval (— oo < x < o), from which,
with p,(x) € L, it holds that p,,(x) belongs to L” for all » = 1.

Now we shall prove that the conclusion of Smith is also true under the
assumptions of Gnedenko-Kolmogorov. That is:

THEOREM 3. Under the assumptions of (A), (B'),

'

lim | x th,(x) = o~ 12 for 012,

xt
n—>oco «/272’

uniformiy with respect to x in the interval (—oo < x < ).

Proof. Since p,,(x) belongs to the class L”, by a theorem of Titchmarsh,
we have

™ (t) =j1e“”pm(x)dx L for v'= ; i i
Thus
(1) pris)yelLl
for all n =mr/(r — 1).
Let
ot = {0 (/)] n=1,2, -

then we have

(2) 6"ty =(m—1) {(P’(;f;f)}z{‘p(i%)} e (;7%’){‘75 («/trf)} "

Since, by assumptions

by (1),
(3) O." (1) E L.

Clearly, we have

0. (0) =;j°° G hy(n)dx, 0" (t) = — j“’ ¢t () dx,

and hence from a theorem on Fourier transform, using (3),

- -oo

(4)  27ha(x) = r G Gu(O)dl,  2mxhn(x) = — j " et g () dt.

Thus we have

(5)  wha(x)—ate*R = —21;r e (Ga" () — (2 — et
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To prove the theorem, it is sufficient to show that
R, = r e (0,7 () — (82 — 1)e=")dt -0, as n—oo

uniformly with respect to x (— oo < ¥ < ).
Following after Kolmogorov-Gnedenko’s arguments, we represent R, as
the sum of four integrals:

4 : ;
I, = j et (9, () — (82 — l)e“zlz)dt, I, = j et (2 — 1)e"‘z’2dt,
-4 Je] 2.

| >4

e—iﬁm enll (t) dt, 1'4 o X e—-itw 07&” (t‘) dt’

I. =
3 A=|t| e iz evn

where the number A > 0 depends on € arbitrarily given and will be chosen
later.
By Lemma 2 of [5], it follows that

lim 6,"(¢) = (2 — 1)t

uniformly with respect to ¢ in every finite interval and hence for any con-
stant A

I,—>0 as 7 —r 0o

uniformly with respect to x (— oo < x < ). Choosing A sufficiently large,
we have, obviously I, < €.

L= Léméwn_e“m(),,,"(t)dt N Lgnrgey;(” -1 {‘b, («/%)}2{(15 (N/tn_>}n—2dt
)]
J

* Lé!tlée/n“(p" <~/tn_>{¢ («/t;z—) Tar= Ji+ T
say.

Since, in the neighbourhood of the point f = 0,

=1L to@), $w=—1+00,

we have
(6) [6t) =1— L=
and
— t
/ — = - en, en 0 ’
«/n¢'<vn> £+ Ent - as n— oo
that is,

(7) nl¢/(~/%>l<t2+8t2
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for large n. Thus we have

= SAé"tléﬁ/'n(n -b } ¢/(«/%) 2 { ¢(~/tﬁﬁ)
€

co -2
= zs (2 + e)e ™ Pdr < 5,
A

N—2

dt

€

fleéj ¢(J%:)‘"~l dt§2§je'%1‘2dt <L

A=(t|=Sevy
for sufficiently large A > 0. Thus we have
1L < E.

Since p,({) € L, p™(t) > 0as |f — oo, by the theorem of Riemann-Lebesgue,

that is ¢(f) >0 as [ { — oco. Hence there exists a constant ¢ >0 such that
()| < e for all !#/=€.

Let 8> mr/(r —1) be a constant. Then

:mgj 04" (1) | dt
v

[t]ze

éjltlésﬁ (n=1) |¢(«/t17) ;nnzdt +j!t"zw,; ¢<27%)

o),

=2/ {(n — 1)e~n=2=F>e +e—(”—1‘ﬂ)°}r| ¢@)Pdt -0 as n—roo.
€

n—1

dt

<2 — 1)e—<"—2-ﬂ>65

oo
v'n

The above estimations complete the proof.
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