AN INVERSION FORMULA FOR CONVOLUTION TRANSFORMS

By Yukichi Tanno

1. Introduction.

In the present paper we shall study the inversion theory for the class of convolution transforms

$$
\begin{equation*}
f(x)=\int_{-\infty}^{\infty} G(x-t) \varphi(t) d t \tag{1}
\end{equation*}
$$

for which the kernel $G(t)$ is of the form

$$
\begin{equation*}
G(t)=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{1}{F(s)} e^{s t} d s \tag{2}
\end{equation*}
$$

Here

$$
\begin{equation*}
F(s)=\frac{e^{\partial s} \prod_{k=1}^{\infty}\left(1-s / a_{k}\right) e^{s / a_{k}}}{\prod_{k=1}^{\infty}\left(1-s / c_{k}\right) e^{s / c_{k}}} \tag{3}
\end{equation*}
$$

where $b,\left\{a_{k}\right\}_{1}^{\infty},\left\{c_{k}\right\}_{1}^{\infty}$ are real constants such that

$$
\begin{gathered}
a_{k} c_{k}>0, \quad\left|a_{k}\right| \leqq\left|c_{k}\right|, \quad k=1,2, \cdots \\
\sum_{k=1}^{\infty} a_{k}-2<\infty, \quad \sum_{k=1}^{\infty} c_{k}{ }^{-2}<\infty
\end{gathered}
$$

The integral transform

$$
\begin{equation*}
F(y)=\int_{0}^{\infty} e^{-\frac{1}{2} u y} W_{k+1 / 2, m}(u y)(u y)^{-k-1 / 2} \Phi(u) d u \tag{5}
\end{equation*}
$$

$W_{k+1 / 2, m}(u y)$ being a Whittaker's function, is an example. After an exponential change of variables, (5) becomes putting $f(x)=F\left(e^{x}\right) e^{x}, \varphi(t)$ $=\Phi\left(e^{-t}\right)$,

$$
f(x)=\int_{-\infty}^{\infty} e^{-(k-1 / 2)(x-t)} e^{-\frac{1}{2} e^{x-t}} W_{k+1 / 2, m}\left[e^{x-t}\right] \varphi(t) d t
$$

we may verify that

$$
e^{-(k-1 / 2) t} e^{-\frac{1}{2} e^{t}} W_{k+1 / 2, n}\left[e^{t}\right]=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{\Gamma(1 / 2+m-k-s) \Gamma(1 / 2-m-k-s)}{\Gamma(-2 k+1 / 2-s)} e^{s t} d s
$$

Received April 27, 1956.

This transform has been studied by Meijer [4].

2. Infinite convolutions of distribution functions.

We must define here certain "elementary functions"

$$
\begin{align*}
& g_{k}(t)=\left\{\begin{array}{cl}
a_{k} e^{a_{k} t-1}, & \left(-\infty<t<1 / a_{k}\right) \\
0, & \left(1 / a_{k} \leqq t<\infty\right)
\end{array} \quad \text { if } \quad a_{k}>0,\right. \\
& g_{k}(t)=\left\{\begin{array}{cl}
0, & \left(-\infty<t<1 / a_{k}\right) \\
-a_{k} e^{a_{k} t-1}, & \left(1 / a_{k} \leqq t<\infty\right)
\end{array} \text { if } \quad a_{k}<0,\right. \tag{1}
\end{align*}
$$

and
(2) $h_{k}(t)=\int_{-\infty}^{t}\left(1-\frac{a_{k}}{c_{k}}\right) g_{k}\left(u+\frac{1}{c_{k}}\right) d u+\frac{a_{k}}{c_{k}} j\left(t-\frac{c_{k}-a_{k}}{a_{k} c_{k}}\right)$,
where $j(t)$ is the standard jump function

$$
j(t)= \begin{cases}0 & (t<0) \\ 1 / 2 & (t=0) \\ 1 & (t>0)\end{cases}
$$

Lemma 1. If $h_{k}(t)$ is defined as in (2), then $h_{k}(t)$ is a distribution function. The mean of $h_{l_{k}}(t)$ is zero and its variance is $a_{k}{ }^{-2}-c_{k}{ }^{-2}$. The characteristic function of $h_{k}(t)$ is

$$
\begin{aligned}
& \left(1+i \tau / c_{k}\right) e^{-i \tau / c_{k}} \\
& \left(1+i \tau / a_{k}\right) e^{-i \tau / a_{k}} .
\end{aligned}
$$

All the requisite properties may be verified by the straightforward computations starting from the definitions of the variance and the characteristic function of a distribution function.

Lemma 2. If $H_{m}(t)$ is defined by the equation

$$
\begin{equation*}
H_{m}(t)=\lim _{r \rightarrow \infty} h_{m+1} * h_{m+2} * \cdots * h_{r}(t), \tag{3}
\end{equation*}
$$

then it is a distribution function with mean zero and variance

$$
\sum_{m+1}^{\infty}\left(a_{k}-2-c_{k}-2\right) .
$$

The characteristic function of $H_{m}(t)$ is given by

$$
\prod_{m+1}^{\infty} \frac{\left(1+i \tau / c_{k}\right) e^{-i \tau / c_{k}}}{\left(1+i \tau / a_{k}\right) e^{-i \bar{T} / a_{k}}} .
$$

These properties are well known from the theory of probability.

3. Bilateral Laplace transform of non-decreasing functions.

The following lemma is implied in [6;58-59].

Lemma 3. If the bilateral Laplace-Stieltjes transform

$$
\begin{equation*}
\chi(s)=\int_{-\infty}^{\infty} e^{-s t} d h(t) \tag{1}
\end{equation*}
$$

where $h(t)$ is non-decreasing, is defined on any line $\Re s=c$, then the region of convergence of (1) is the largest vertical strip containing the line $\Re s=c$ in which $\chi(s)$ is regular when continued from the line $\sigma=c$ into the complex plane.

Let us define the constants

$$
\begin{equation*}
\alpha_{1} \equiv \max _{a_{k}<0}\left(a_{k},-\infty\right), \quad \alpha_{2} \equiv \min _{a_{k}>0}\left(a_{k},+\infty\right) \tag{2}
\end{equation*}
$$

Further we define

$$
\begin{gather*}
E_{1}(s) \equiv e^{v_{s}} \prod_{k=1}^{\infty}\left(1-s / a_{k}\right) e^{s / a_{k e}} \tag{3}\\
E_{1, m}(s) \equiv \prod_{k=m+1}^{\infty}\left(1-s / a_{k}\right) e^{s / a_{k}}, \quad m=0,1,2, \cdots, \tag{4}
\end{gather*}
$$

$$
\begin{gather*}
E_{2}(s) \equiv \prod_{k=1}^{\infty}\left(1-s / c_{k}\right) e^{s / c_{k}} \tag{5}\\
E_{2, m}(s) \equiv \prod_{k=m+1}^{\infty}\left(1-s / c_{k}\right) e^{s / c_{k}}, \quad m=0,1,2, \cdots \tag{6}
\end{gather*}
$$

Lemma 4. If $H_{m}(t)$ is the function defined in (3) of Lemma 2, then the bilateral Laplace-Stieltjes transform

$$
\int_{-\infty}^{\infty} e^{-s t} d H_{m}(t)=\frac{E_{2, m}(s)}{E_{1, m}(s)}
$$

converges (absolutely) in the strip $\alpha_{1}<\Re s<\alpha_{2}$ to the function indicated.
Using Lemmas 2 and 3, and properties of the function of $\S 2$ considered as a function of a complex variable, the result follows immediately.

Lemma 5. If $H_{m}(t)$ is defined by (3) of Lemma 2, then

$$
\frac{d}{d t} H_{m}(t)=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{E_{2, m}(s)}{E_{1, m}(s)} e^{s t} d s \quad(-\infty<t<\infty) .
$$

This is an immediate consequence of the complex inversion formula for the bilateral Laplace transform. See [6; 241-243].

4. Admissible sequence.

The sequence a_{k} / c_{k} is said to be admissible with respect to the kernel $G(t)$ if

$$
\begin{equation*}
\lim _{|\tau| \rightarrow \infty}\left|\frac{1}{F(\sigma+i \tau)}(\sigma+i \tau)\right|=0 \tag{1}
\end{equation*}
$$

uniformly for σ in any finite interval, and if the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|\frac{1}{F(\sigma+i \tau)}(\sigma+i \tau)\right| d \tau \tag{2}
\end{equation*}
$$

converges for every value of σ for which $E_{1}(\sigma) \neq 0$.
The convergence of the integral (2) implies that the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{1}{F(i \tau)} d \tau=\int_{-\infty}^{\infty} \frac{E_{2}(i \tau)}{E_{1}(i \tau)} d \tau \tag{3}
\end{equation*}
$$

is absolutely convergent.
It is trivial to establish that the integrals

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{E_{2, m}(i \tau)}{E_{1, m}(i \tau)} d \tau \quad(m=0,1,2, \cdots) \tag{4}
\end{equation*}
$$

are convergent absolutely as well.
The absolute convergence of the integrals (4) implies that $H_{m}(t)$ have continuous first derivatives, so that we may write

$$
\begin{equation*}
\frac{d}{d t} H_{m}(t)=G_{m}(t) \quad(m=0,1,2, \cdots) . \tag{5}
\end{equation*}
$$

Lemma 6. If the sequence a_{k} / c_{k} is admissible with respect to the kernel $G(t)$ and if $G_{m}(t)$ are defined by (5), then $G_{m}(t)$ are frequency functions with mean equal to zero and with variances equal to $\sum_{k=m+1}^{\infty}\left(a_{k}{ }^{-2}-c_{k}{ }^{-2}\right)$. Further the Laplace transforms

$$
\int_{-\infty}^{\infty} e^{-s t} G_{m}(t) d t=\frac{E_{2, m}(s)}{E_{1, m}(s)}
$$

converge absolutely for $\alpha_{1}<\Re \ll \alpha_{2}$.
This follows from Lemmas 2 and 4.
Lemma 7. If $G_{m}(t)$ are defined by (5), then

$$
\begin{equation*}
G_{m}(t)=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{E_{2, m}(s)}{E_{1, m}(s)} e^{s t} d s \tag{7}
\end{equation*}
$$

This follows from the well-known inversion formula for the bilateral Laplace transform and the convergence of the integral (4).

5. Operational calculus.

Denote by D the operation of differentiation and by $e^{D / a}$ the operation of translation through a distance $1 / a$. Suppose that we seek a solution of the differential equation

$$
f(x)-\frac{1}{a} f^{\prime}(x)=\varphi(x),
$$

by the operational method. Using the symbol D, we have

$$
(1-D / a) f(x)=\varphi(x), \quad f(x)=1 /(1-D / a) \varphi(x),
$$

but it remains to interpret the operation $1 /(1-D / a)$. Now

$$
\frac{1}{1-x / a}=\int_{-\infty}^{\infty} e^{-x y / a} h(y) d y, \quad 1<x / a,
$$

where

$$
h(y)= \begin{cases}e^{y} & (-\infty, 0) \\ 0 & (0, \infty)\end{cases}
$$

This is easily verified by direct integration. Hence

$$
\frac{1}{1-D / a} \varphi(x)=\int_{-\infty}^{\infty} e^{-y D / a} \varphi(x) h(y) d y .
$$

Thus we may interpret the following operations [5].

$$
\begin{gathered}
F(D) \equiv \frac{e^{b D} \prod_{k=1}^{\infty}\left(1-D / a_{k}\right) e^{D / a_{k}}}{\prod_{k=1}^{\infty}\left(1-D / c_{k}\right) e^{D / c_{k}}}, \\
F_{m}(D) \equiv \frac{e^{b D} \prod_{k=1}^{m}\left(1-D / a_{k}\right) e^{D / a_{k}}}{\prod_{k=1}^{m}\left(1-D / c_{k}\right) e^{D / c_{k}}}
\end{gathered}
$$

6. Inversion formula.

Theorem. If
(1) $G(t)$ is defined in (2) of $\S 1$,
(2) a_{k} / c_{k} is admissible with respect to $G(t)$,
(3) $\varphi(x)$ is bounded and continuous on $(-\infty, \infty)$,
(4) $F(D)$ and $F_{m}(D)$ are defined as in §5,
(5) $f(x)=\int_{-\infty}^{\infty} G(x-t) \varphi(t) d t$,
then

$$
F(D) f(x)=\lim _{m \rightarrow \infty} F_{n n}(D) f(x)=\varphi(x) \quad(-\infty<x<\infty) .
$$

Proof. Our desired result is equivalent to

$$
\lim _{m \rightarrow \infty} \int_{-\infty}^{\infty} K_{m}(x-t) \varphi(t) d t=\varphi(x), \quad \text { where } \quad K_{m}(x) \equiv F_{m}(D) G(x) .
$$

We have applied the operator $F_{n}(D)$ under the integral sign (5), a step easily justified with present hypotheses.

Again applying $F_{m}(D)$ to $G(x)$, and using Lemma 7,

$$
K_{m}(x)=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{e^{s v} F_{m}(s)}{F(s)} d s=\frac{1}{2 \pi i} \int_{-\infty}^{i \infty} \frac{E_{2, m}(s)}{E_{1, m}(s)} e^{s x} d s=G_{m}(x)
$$

From the Lemma 6, we may set

$$
I_{m}(x)=\int_{-\infty}^{\infty} G_{m}(x-t) \varphi(t) d t-\varphi(x)=\int_{-\infty}^{\infty} G_{m}(t)[\varphi(x-t)-\varphi(x)] d t
$$

For a fixed x and $\delta>0$ write the integral $I_{m}(x)$ as the sum of two integrals $I_{m}{ }^{\prime}(x)$ and $I_{m}{ }^{\prime \prime}(x)$ corresponding to the ranges of integration $t \leqq \delta$ and ' t '.
$>\delta$ respectively. Then

$$
\left|I_{n^{\prime}}(x)\right| \leqq \max _{|t| \leqq \delta} \varphi(x-t)-\varphi(x) \mid,
$$

also

$$
\begin{aligned}
\left|I_{m}^{\prime \prime}(x)\right| & \leqq 2 \sup _{-\infty<t<\infty}|\varphi(t)| \int_{|t|>\delta} \frac{t^{2}}{\delta^{2}} G_{m}(t) d t \\
& \leqq 2 / \delta^{2} \sup _{-\infty<t<\infty}|\varphi(t)| \sum_{k=m+1}^{\infty}\left(a_{k}^{-2}-c_{k}-^{-2}\right)
\end{aligned}
$$

by the properties of Lemma 6. It is thus clear that $I_{m}{ }^{\prime}(x)$ can be made small by choice of $\delta, I_{m}{ }^{\prime \prime}(x)$ by choice of m, so that $I_{m}(x) \rightarrow 0$ when $m \rightarrow \infty$, as desired.

Remark. Hirschman and Widder had studied the inversion and representation theory for the class of convolution transforms (1) of § 1 , for which the kernel $G(t)$ has a representation of the form (2) of $\S 1$, where

$$
F(s)=e^{u s} \prod_{k=1}^{\infty}\left(1-s / a_{k}\right) e^{s / a_{k}}
$$

See [1], [2], [3], [5].

References

[1] I. I. Hirschman, Jr. and D. V. Widder, Generalized inversion formula for convolution transforms. Duke Math. Journ. 15(1948), 659-696.
[2] I. I. Hirschman, Jr. and D. V. Widder, The inversion of a general class of convolution transforms. Trans. Amer. Math. Soc. 66(1949), 135-201.
[3] I. I. Hirschman, Jr. and D. V. Widder, A representation theory for a general class of convolution transforms. Trans. Amer. Math. Soc. 67(1949), 69-97.
[4] C. S. Meijer, Eine neue Erweiterung der Laplace-transformation. I, II. Nederl. Akad. van Wetensk., Proc. Sect. Sci. 44(1941), 727-737, 831-839.
[5] D. V. Widder, The convolution transform. Bull. Amer. Math. Soc. 60 (1954), 444456.
[6] D. V. Widder, The Laplace transform. Princeton, 1941.

Hirosaki University.

