
A COEFFICIENT PROBLEM FOR FUNCTIONS
UNIVALENT IN AN ANNULUS

BY YUSAKU KOMATU

1. Introduction.

Let f{z) be an analytic function regular and univalent in z < 1 whose
Taylor series expansion is of the form

f(z) ^ί±anz™ («i = l ) .
n = l

Coefficient problems for functions univalent in the unit circle have been
attacked from various aspects by several authors. Among others, Bieber-
bach [2] has announced, after proving , a2 ^ 2, a famous conjecture that
there would hold, in general, the estimation

aή' g n (n = 2, 3, •••)

accompanied by extremal functions

But this conjecture has been affirmed since then only for n =3 by Lowner
[11] and for n = 4 by Garabedian and Schiffer [6], while its general validity
seems probable. Bieberbach [3] has derived, in general, only a rough
inequality an , < e2ήz/4. Littlewood [10] has subsequently succeeded to ame-
liorate it by proving a more precise inequality

an < en

which has been obtained soon after also by Prawitz [13] in a different way.
Several sorts of refinement have been brought from various aspects. De-
tailed results in this field have been collected in a book worked by Schaeffer
and Spencer [14]; cf. also a survey written by Bernardi [1] which involves
several references.

Compared with a plenty of results on coefficient problems for functions
univalent in a circle, very little attention has been given to the corresponding
problems for functions univalent in an annulus.

Let R be a real number greater than unity and w = F(z) be a regular
analytic function which maps the annulus
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1 < z < R

univalently onto a ring domain contained in the exterior of the unit circle
in such a manner that z —\ corresponds to w — 1, and let its Laurent
expansion be

F(Z) - | ] CnZ\
n=-oo

We may suppose without loss of generality that a conditon of normalization
expressed by

F(l) = 1

is to be satisfied, so far as concern the absolute values of the coefficients.
The family consisting of all such functions will be designated by $R. In
view of the definition, the family $B contains, together with a function F(z),
any function F{^z)e"lΆτ^F^ for every 8 with ' 6 , = 1. In particular, if there
holds F{— 1) = — 1, then — F(— z) belongs to %R provided F(z) so does.

Our problem is then to estimate cn from above, i. e., to obtain an upper
bound for cn depending only on n which is valid for any function in g#.
Since the family §•# is locally bounded (cf. the distortion theorem referred
to below) and hence normal, the maximum of cn is really attained for every n
by some functions of the family. However, it will be very difficult to solve
the extremal problem completely, since even the Biberbach's conjecture is
still open. The present paper involves, accordingly, no precise estimation in
the strict sense. But it would play a role of a foundation stone in proposing
the problem. Main purpose of the present paper is to establish for Laurent
coefficients of functions from g# an estimation which is analogous to Little-
wood's result referred to above in case of the unit circle.

Now any function w = F(z) £ S# maps by assumption the whole unit cir-
cumference i z = 1 onto w' = 1 so that it is prolongeable analytically across
z • = 1 by means of the reflection principle. The functional equation

F{z)F{Vz) = 1

determining this prolongation can be expressed in terms of Laurent coeffi-
cients by the fact that an infinite matrix C with Cj-jc as (j, k)-element (/,
k = 0, 1, 2, •••) is unitary, i. e.

cσ = JE,

E being the infinite unit matrix, and bar and prime designating, as usual,
the passage to conjugate and to transposed matrix, respectively. Thus, the
family %κ can be interpreted as consisting of analytic functions F(z) regular
and univalent in the duplicated annulus

R-1 < z < R,

satisfying the functional equation F(z)F(l/z) == 1 and the normalization F(l)
= 1, and further subject to the condition that F(z) > 1 for z \ > 1.



A COEFFICIENT PROBLEM 51

In a recent paper, Nehari and Schwarz [12] have dealt with coefficient
problems of univalent Laurent series. By using our notations, one of their
results may be stated as follows: Let F(z) = ΣJΓ=_OO^I2W be regular and
univalent in R~ι < \z < R (but not necessarily satisfying the condition
\ F(z)! = 1 f or . 2 I = 1) and let its all coefficients be real. Then there holds

nR~n

(« = ± 2 , ± 3 , •••),

and the inequality is sharp for any n with n! Ξ> 2, as shown by the function

_ Jv±_) _
12

where 2 ' designates that summation is extended over all integers n save
n = 0; it is obvious that the extremal character is preserved by trivial
transformations.

The extremal function maps R"1 < \z \ < R onto the whole plane cut along
a half-line and a rectilinear segment both lying on the real axis. We remark
here, in particular, that, if C\ and c~x are supposed to be of order 0(1), the
above inequality implies asymptotic estimations

cn == 0(nR~n) as n -> -f oo

and

cn = O(— nRn) as w -> — oo,

while for the extremal function mentioned above the latter estimation can
be replaced by a far restrictive one, namely cn = O(— nR3n) as w-> ~ oo by
virtue of a special circumstance CiR"1 = c_ii?.

We now turn to our own discourse concerning the family %B. The matrix
equation CO = ^ involves a relation Σ»--βol^n!a = 1 implying the uniform
boundedness of the coefficients. But this relation may also be obtained from
the identity

f ] 'Cn V 2 w = ^?— \ \F(retθ)\2dθ {R~ι < r < R)

by merely putting r = 1. T h e last identity fur ther implies

δ)~"w) as ^ -> + oo,

δ ( < R) being here any positive number. T h e same result can be deduced
also from the fact t h a t the Laurent series of F(z) £ §•# converges itself
absolutely on z = R — δ. But the o-notation involved here is not uniform
but m a y depend on the choice of δ even when a function F(z) is fixed.

On the other hand, since there holds ' F(z)! < 1 for R~ι < \ z I < 1, we get
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53 ; C H 2 ^ - 2 W = = _ L _ J ^ F(R~ίeiθ);1dθ<l

where F(iv?~Vθ) denotes the radial limit F((R — O)-1^) existent almost every-
where for 0 ̂  θ < 2τr. Consequently, we can conclude, in particular, that
there holds, besides an asymptotic estimation

cn = o(Rn) as n -+ — oo

in which the o-notation may depend on F(z), a uniform estimation

cn <Rn for »gO.^

2. Preliminaries.

In the final part of the preceding section we have noticed that there holds
cn = 0((i? — δ)~w) as #-> + oo for any arbitrarily small positive 8. But the
uniformity of the α-notation has not been ensured with respect to 8. A
question will arise whether we can put here δ = 0 or not. It is our purpose
to show that, though the question is answered negatively, it is affirmatively
verified after a slight modification and really in a more quantitative form.
On the other hand, it will also be shown that for the coefficients with
non-positive suffices, we can derive, besides an asymptotic behavior cn

= o(Rn/\/ —n) as n -> — oo, uniform bounds more precise than those mentioned
above. In fact, roughly speaking, we can conclude a pair of estimations
of the form

r A(R)n.

i Rna-

A(R)nR~n (w = 1, 2, •••),

(l-B(R)) (w = 0, - 1 , - 2 , ...),

where A(R) and B(R) are definite positive quantities depending only on R.
In order to see the order of preciseness of our result, it will here be no-

ticed especially that, for n > 0, cn can be really of order nR~n within the
family $#. For that purpose we consider a function

F5(«)= Σ3 cZz"
W=—oo

which maps the basic annulus 1 < | z < R onto the exterior of the unit circle
cut along a half-line on the negative real axis terminating at the point at
infinity in such a manner that \ z \ = 1 corresponds to the whole unit circum-
ference. Under the condition of normalization FR (1) = 1, this function F£ (z)
is uniquely determined and belongs to the family %B.

It is further noted that the coefficients of FR (Z) are all real. Since FR (Z)
is evidently regular throughout the closed annulus 1 fg 1 z \ t==k R except a pole
of the second order lying at z = R, we can conclude that its Laurent coeffi-
cients with positive suffices n must really be asymptotically of order nR~n

as n-+ Λ- oo.

1) We shall later derive a more precise estimation; cf theorem 8.
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The behavior of the so-called Grδtzsch's extremal function FR(Z) will be
availed especially around its pole. As shown in a previous paper [9],2) this
function is expressible explicitly in terms of elliptic theta-f unctions:

π(9\ J M A M ^ M ^ L „ 1 σ

theta-functions depending on the parameter q = R*1. Transforming them
into sigma-functions in the Weierstrassian theory of elliptic functions with
primitive periods

2Ω1 = 2π and 2Ω3 = 2/ lg 7?,

it may be written in an alternative form

o _ 1 - Z

——In the following lines we shall, however, mainly use the functions con-
cerning the primitive periods

2ωx = 2iτr and 2ω3 = — 4 lg 2?

rather than those concerning the primitive periods 2τr and 2% lg R. Accord-
ingly, the ordinary notations will be reserved for the former system while
the quantities concerning the latter system will be designated, if necessary,
by the capital letters corresponding to the ordinary ones. Now the point
z = R corresponds to u = 0 around which the Taylor expansions of the entire
functions σ λ(« Ωu Ω3) (X = 2, 3) begin with σλ(u Ωu Ω3) = 1 - Eλu

z/2 +O(^4),
Eκ = fp(i2λ Ωly Ω3) where the O-notation concerns ^->0. Consequently, FR(Z)
behaves in a neighborhood of z = i? such as

the last O-notation concerns z-> R. Thus, the function defined by

being regular throughout the closed annulus R*1 ̂ 'z ^Rf the coefficients
of the Laurent expansion of F£(z) must be asymptotically of the form

4 n , / 1
/ a s n ^ c o

and, as already noticed, c* = o(Rn) as n-> — oo.
Though the above analysis will suffice for our present purpose, it will be

more convenient for later arguments to make use of functions concerning
primitive periods

2ωx = 2iτt and 2ω3 = — 4 lg R,

2) In [9J we have mainly considered, instead of FR (Z) itself, the function defined
by -F^(-z).
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as done by Nehari and Schwarz [12], rather than those with 2Ωλ = 2τr and
2Ω3 = 2ί lg Ri. The transference can be performed by actual calculation by
means of classical formulas or more briefly in view of the uniqueness of
mapping. In fact, we have readily the identity

v 0i — eW £ 2 — 03
(lg -f~) - e3

where £λ(λ =1, 2, 3) are quantities depending, of course, on the periods 2ω1

and 2ω3, i. e., ωλ + ω2 + ω3 = 0 and

0λ = jp(ωλ) = {p(ωλ <»!, ωa) (X = 1, 2, 3).3>

Consequently, ί/z0 precise values of the Laurent coefficients of FR(Z) are given
by

± 2 ,

or, based on the formulas

£ 3 Λ / £ 2 — 0 3 a n d E3 = — e3 — 2\Zeλ — 03^02 — 03»

they can be expressed also in the from

4 nR~~n

c*a = ^E^E^ 1 - jR-4»" (^ = ±1, ± 2 , •••),

whence readily follows again the above-mentioned asymptotic expressions.
As once noted, the coefficients with negative suffices behave not only such
as Cn = o(Rn) but really such as Cn = O(— ̂ 7?37Ϊ) as n-> — 00.

Now it is a well-known fact that the function z/(l — z)~ possesses several
extremal properties within the family of functions f(z) regular and univalent
in the unit circle and normalized at the origin such as /(0) = 0 and /;(0) = 1.
In the theory of family ?$?# the function FR(Z) often plays corresponding
roles. For instance, the distortion theorem of Grotzsch [8] states that there
holds

- FS ( - z ) ^ F(z) ^ FS (> ) ( K , z ' < R)

for any function F(z) G \$R and further that the equality sign in the left-
and right-hand inequalities can appear at any assigned point ZQ in 1
< z \ < R if and only if F(z) is of the form

- F£(-z'z0 /zo)0-ίar*<-FSCH*o-7*o))
and

FSiz^Zo /*o)0-'argFJe(IZol/Zo),

respectively. It can be shown, on the other hand, that there exists moreover
a limit-equation

3) There holds et < e2 < £3 while £\ > E2 >
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valid for 0 < \z: < 1 uniformly in the wider sense; cf. [9].
In spite of such being the circumstance, the function FR(Z) does not play

a role of extremal function at least for some suffices n in our coefficient
problem on $B, contrary to Bieberbach's conjecture on functions univalent
in the unit circle. For instance, it is evident that the best possible estima-
tion for Cι is given by

with a unique extremal function z which is not identical with FR (Z) . More-
over, since the identity SίΓ--*. cnf = 1 remains always to hold, any function
F{z) £Ξ t?ze cannot be a universal extremal function for our coefficient problem.
However, it appears perhaps to be reasonable to propose a conjecture that
Laurent coefficients of any function belonging to 3^ would be asymptotically
majorized by c% at least for sufficiently large n.

3. Main results.

We shall now proceed to our main disccourse. Our tools of attacking the
problem are quite elementary. In fact, from the integral representation of
Laurent coefficients

-1 <r<R; n = 0, ±1, ±2,

we have readily a system of inequalities of Cauchy type

dθ (n = 0, ± 1, ± 2,

valid for any r with R~ι < r < R. Consequently, for any fixed n, whenever
once an upper bound Cn(r) of the right-hand member of the last inequality
is known for some r, there results immediately a corresponding estimation

Especially, if Cn(r) is obtained for any r belonging to a sub-interval / of
R-1 < r < R, then it can be concluded that there holds

cn ^infCn(r).
rcj

According to the just explained course, in order to estimate the integral
of F(reιθ) over 0 ^ θ < 2π, we shall here make use of a theorem of Prawitz-
[13] which can be stated as follows:

Suppose a ring domain laid on the w = peiψ-plane be bounded by two analytic
contours /\ and Γ2 such that 7\ lies in the finite simply-connected domain
bounded by Γ2 alone and that Γx itself {and hence Γ2 also) surrounds the origin.
Let further g(p) be a function taking non-negative values alone and increas-
ing with p. Then there holds an inequality
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the integrals being to be taken in the positive sense with respect to the interiors
of respective contours.

It is to be noted further that, as shows the own proof given by Prawitz,
we may permit in the assumption of the theorem the limiting case where
A touches Γ2 at some points.

In the following lines, based on our special normalization that any function
w = F(z) G $# maps z, = 1 onto w, = 1, the upper bounds of \cn\ to be ob-
tained for positive and non-positive suffices will be of somewhat different
nature. Accordingly, distinguishing these two systems, we shall state below
our main result separately.

THEOREM 1. For any F(z) G %R there holds an estimation

cn ^MinC n ( r) (n = 1, 2, •••)

where Cn(r) is defined by

Proof. Remembering the distortion theorem of Grotzsch, we may put in
the theorem of Prawitz re-stated above g(p) Ξ p and

Λ : peiφ = F(reiθ) ( 0 ^ θ < 2π),

Γ2: peiφ - Fϊt(r)eiθ ( 0 ^ θ < 2π).

We thus obtain an inequality

1 f2*

valid for any r with 1 ̂  r < R. By virtue of Cauchy-Riemann equation,
we have

da

so that the last inequality becomes

Integration with respect to r, after divided by r, leads in view of \F(eiθ)\ = 1
readily to

R

03

and hence
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cn g ^ - J - J F(retθ):dθ<Cn(r) (l^r<R; w = 1, 2, •••).

It is evident that, for any fixed n > 0, Cn(r) is a function of r continuous
for 1 g r < R and satisfying the limit-equation Cn(R — 0) = oo. Hence, the
infimum of Cn(r) for 1 ίg r < i? is really attained at some value of r in
1 ΐg r < R. The theorem has been thus proved.

The bound in the theorem just established is expressed in terms of trans-
cendental quantities. It will be of some interest to derive its asymptotic
behavior as n increases.

THEOREM 2. For any F(z) G T$R there holds an asymptotic estimation

valid for n -> + oo, the O-notation being uniform with respect to n as well as
F(z). By the way, we notice here an identity

Proof. From the expression for Cn{r) given in theorem 1 it follows readi-
ly that there holds an asymptotic relation

\ + 0(1))
ez

as r -> R — 0, the O-notation depending, of course, on the particular function
FR (Z) alone. On the other hand, if we put r = Re~~lln, then r tends to R — 0
as n -> oo. Hence, substituting this value of r, we get

β! - e-όV e2 - e3

whence follows the desired estimation.

0(1)\
J

In the proof of theorem 1 Prawitz's inequality has played an essential role.
As an alternative inequality we could have taken into account the Cauchy's,
i. e.,

However, this inequality would imply an asymptotic relation

! cn ^ -Jr ( V _ J - = _ -r-V^r + 0(1) )
r Wβ! - e,Ve2 - e Λ ΛV

as r -> R — 0, whence follows, by minimizing the right-hand member regarded
as a function of r for 1 < r < R, namely by putting r = Re~~Jn + o(l), merely
an estimation
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_?V4 »*_ + oί-L
—— / n « ~Γ iv l DM

which is far weaker than that given in theorem 2.

REMARK. Estimations stated in theorems 1 and 2 remain to hold also for
Laurent coefficients of any function regular and univalent in 1 < z < R,
which maps ' z ; = R onto a continuum exterior to the unit circumference
and I z | = 1 onto a continuum belonging to the closed unit disc. In fact, any
such function F(z) satisfies the distortion inequality F(z) ίg FR ( z ) , as
readily shown by means of Schwarz lemma, and hence the proofs of these
theorems remain valid without any alteration.

We next proceed to deal with the problem concerning the coefficients with
non-positive suffices.

THEOREM 3. For any F(z) £ f?τe there holds an inequality

π=-oo e\ #3

whence follows especially an asymptotic estimation cn = o(Rn) as n-ϊ — oo in
which the o-notation may depend on F{z) and further follows a uniform
estimation

v eλ - ez

Here we notice an identity

Min {4Rn-\ Rn} (n = 0, - 1, 2 - ,

Ve1 -e3

Proof. Let R"1 ^ r ^ 1 and 2 = r. Then, in view of the functional equa-
tion F(z)F(l/z) = 1, together with a distortion inequality, we get

and consequently we conclude

E c» 1R~-n = ̂ r f " F(Λ-V ) Uθ<(-F%{- R~ι))* < 1.

But we have

— Γ Λ l — K ) = — /— / — 7
V ^1 — ^ 2 V #2 — ^3 V ^1 — £3

- R v=i VI + i?-^+2 ) R '

4) Cf. theorem 8 below.
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which proves the theorem.

REMARK. In a paper of Teichmϋller [15], we find that the behavior of
the ratio Φ(P)/P plays an important role, where Ig Φ(P) denotes the modulus
of a Grόtzsch's extremal domain consisting of the exterior of the unit circle
cut along a half-line on the positive real axis which starts at a point
P ( > 1). In a previous paper [9], we have concerned this problem giving an
alternative proof of the fact that there hold the following relations:

Φ(P) < 4P and lim - ^ p - = 4

P_>oo if

The proof was based on a parametric representation

Φ{P) = R, P = - F | ( - R) - -J^ΓJ

where kr denotes the complementary modulus of sn-function with primitive
periods 2τr and 2i lg R. But, as shown in the above proof of theorem 3,
if the use is made of the quantities concerning the primitive periods 2iτt and
— 4 lg R, we can verify this fact more straightforward. In fact, we then
have

Φ(P) = R, P = - F5(- R) = -ηφjFΓ = - 1

P v Vei e3

However, it is also readily verified that two expressions availed above for
P are really identical. In fact, based on the relations ωλ = iΩ1 and ω3 = iΩ3,
we have

! — E3 — Ve2 — e3 '

It would be noticed that the estimation cn ^Rn(— F | ( — R*1)) contained
in theorem 3 is also a consequence of Cauchy's inequality. Indeed, we
readily get, for any r with R^1 < r ^ 1, an inequality

f <^~ A/To v ~pf('ypt'ΘΛ <CΓ ( -

which implies, for r-^i?"1, the desired estimation. As mentioned in a remark
subsequent to theorem 2, if we use Cauchy's inequality instead of Prawitz's,
there follows only a far weaker estimation for cn with a positive suffix,
while, contrary to this and as actually shown above, Cauchy's inequality
has been availed with some effect for estimating cn with a non-positive
suffix. But Prawitz's inequality may also be used for obtaining an alter-
native form of estimation in this case. The result will be formulated as in
the following theorem.
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THEOREM 4. For any F{z) £ &κ there holds

, cn < Rn (l - - , -, — (ζ (lg Λ)

* - - f] fΓ.^ - *3 lg
— l v=il + Λ -

(n = 0, - 1 , - 2 , ...).

Proof. Let i?"1 < r ^ 1 and 2 = r. Then, similarly as in the proof of the
preceding theorem, we get

F { z ) = F*Λr)

Consequently, by applying Prawitz's theorem in a similar manner as in the
proof of theorem 1, we obtain

θ) dθ = -J

whence readily follows

and hence

cn ^ - ^ r ( l - £ F 5 ( r ) - ^ ) (i?~ ι < r < 1; n = 0, - 1 , - 2 , •••)•

The last estimate is, for any fixed n^kO, a continuous function of r for
i?"1 ίg r ^ 1 and its minimum in this interval is evidently attained at r = 7?"1.
Thus we get

= 0, - 1 , - 2 ,

REMARK. We can consider a sub-family of §#, designated by ^ ( M ) , which
consists of all functions F ( 2 ) £ & subject to an accessory condition of
boundedness expressed by

F(z) <M for 1 < z < R.

It is evidently to be supposed that there holds M ^ R. For any function
F(Z)E:%R(M), we have the distortion inequalities

- F S ( - 2..; M ) ^ ' F ( ; 0 : ^ F S U : ; M)

where the extremal function F£(z; M) ELJSB(M) is defined by
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FjK*; M) = Fjf-KFjK*)),

FM"1 denoting the function inverse to FM. The function w = FR(Z; M)
maps the basic annulus 1 < z < R onto the annulus 1 < w < M cut along
the rectilinear slit connecting two points — M and Fi-^OFjK— R)).

Since the distortion inequalities are known, the argument employed in the
proof of theorem 1 leads to a corresponding result on Laurent coefficients
of functions from $H(M). Namely, we can conclude that for any F(z)
G δze(M) there holds an estimation

<cn < Min - ^ r l 1 FS(r; Λf)-^- + 1) (w - 1, 2, •••).

We get, in particular,

1 cn ^ Min jl, -™r(Mlgiv? -f 1) | (w = 1, 2, •••).

Analogues of theorems 3 and 4 can also be obtained similarly.

4. Elementary estimates.

The estimate given in theorem 1 has been expressed in terms of trans-
cendental quantities. On the other hand, while the asymptotic estimate
given in theorem 2 is of elementary nature, it is still accompanied by
a remainder term, though this remainder can be expressed explicitly in the
form of infinite series with elementary terms. We shall now attempt to
derive an alternative estimate for cn with n > 0, which is slightly rough
but of completely elementary nature and closed in form.

We first consider a rational function defined by

M*) = —tfΠfϊ (R-z)2 ίF+TΓ*

The annulus 1 < z < R is mapped by Z = \{z) univalently onto a doubly-
connected domain symmetric with respect to the real axis whose boundary
consists of a half-line extending f r o m λ ( - R) to oo along the negative real
axis and a closed curve Γ surrounding the origin; further z = 1 corresponds
to Z = 1. It is seen that the contour Γ contains in its interior the unit circle.
In fact, we have

I (J?Z _ Λ\2. pi9 OΏ

_ Λ , 4R2(R2 ~l)2sin»fl y^ -
~ V "*" (ie2 4- l)2(i^2 - 2Λ cos θ + I) 2 /

Based on the symmetry character of Γ, it is possible to map the simply-
connected domain consisting of the exterior of Γ onto the exterior of the
unit circle in such a mannar that the parts lying in the upper half-planes
correspond each other and the three points ± 1 and oo remain invariant.
The last-mentioned conditions determine the mapping function uniquely
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which will be designated by κ(Z).
Since the whole unit disc Z < 1 lies in the interior of Γ, the principle

of maximum modulus, or rather briefly the Schwarz's lemma applied to the
inverse function κ~1{w) with respect to w > 1, implies that the inequality

κ{Z)< Z

remains to hold provided 1 < ) K (Z) i < oo.
But, by virtue of the unicity of mapping, we have the identity

whence follows a comparison inequality

Thus, a majorant of Fχ(z) having been obtained, we can substitute it into
the bound given in theorem 1, yielding the following theorem.

THEOREM 5. For any F(z) G 3* there holds

where A(r) is defined by

R-r R-l

2iJΛ. f -i \ i -

in particular,

en <~jfrr

(i?2 — I) 2 _ 2R3 -Rλ-2R-\ 2R

provided n > 1/ lg R.

Proof. The inequality Fg (r) < X (r) for 1 < r < R obtained just above
leads, in view of theorem 1, readily to an estimation

Air)

valid for any r with 1-gLr < R. Putting especially r = Re~1Jn in the last
relation provided n> 1/lgR and then remembering elementary inequalities

-γ=^pr < n + 1 and - ^/» < - (l - ^-)

valid for any n > 0, we get
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&H-H1- ~ τ^τ) ~ A W 1 - -w) - 0
C ^ - J ) n 2i?3 - ff2 - 27? - 1 __2ff JL_\

w + 1) # 2 + 1 n r

ί -

By the way, it may be noted that a similar method can be used also for
obtaining an elementary estimate of cn with a non-positive suffix. In fact,
for R~ι < r < 1, we have an inequality

whence follows, based on theorem 4, an estimation

or, by actually evaluating the last integral,

x ( _
W(Rλ + I)2 +

However, the last estimate is, compared with that stated in theorem 3, not
so precise. For instance, for R-* oo the estimate just derived behaves such
as Rn~1(2lgR - 1 + OiR*1)).

On the other hand, we could have availed, instead of X(z), another ana-
logous majorant, for instance, denned by

_ {R + Vfz
μ{z) " {R-zY

But this would lead only to more rough estimations

and

c» < 7?w Γp-IΓTv (« lg Λ + Λ + 1) for n < 0.

5. Consequences from area-principle.

For analytic functions univalent and suitably normalized in the interior
or the exterior of a circle, a classical way to develop a unified theory is based
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on the so-called area-principle given first by Gronwall [7] and rediscovered
soon later by Bieberbach [2], Faber [5] and others. For the family %R under
consideration we can derive an analogous area-relation in terms of Laurent
coefficients which will be availed with some effect for our coefficient problem.

THEOREM 6. Let

and A(r) ΞΞΞ A(r; F) denote the area of the finite region laid on the w-plane
and enclosed by the contour w = F{reiθ) (0 < θ < 2π) f then there holds an
identity

A(r) =τt Σ n{cn 2r2n

which remains still true for r = R-1 and r = R if interpreted such as
= A((R + 0)-1) (^ 0) and A(R) = A(R - 0) (^ oo), respectively.

Proof. We get in turn, for any r with R*1 < r < R,

f2* 1 "I -

r±yrj —' \ Q K1 \'V ) \ 1 \f& )) QJ O < / I \-^ \r& ) -Γ \rk> ) )tiu

Σ vrv(cve
ιvθ -\-cve~ίvθ)dθ= f

~
o
2?ε

0

1
2

1
(i* (re ) + I

oo

X Ί A^ /yiμ-Q
•f Cμtί y o ί v-

r

here multiplication (of Cauchy type) of infinite series and termwise integra-
tion of the resulting series being justified since the series converge for fixed
r absolutely and uniformly with respect to θ. Finally, the expression repre-
senting A(r) is the difference of two series with positive (more precisely,
non-negative) terms alone, of which one (corresponding to negative suffices)
converges for R"1 < r < oo while another (corresponding to positive suffices)
converges for 0 ίg r < R. From this fact it is verified that the passage to
limits r-*(R ± 0)T1 is admitted as stated in the theorem.

It would be noted that the expression for A(r) just derived is, contrary to
Gronwall-Bieberbach's, not a single series with terms of the same sign, but
is the difference of series of such nature. Accordingly, it will be not imme-
diate to separate an estimation for a single coefficient. But there follows
readily as a corollary of theorem 6 the following theorem which involves
a noteworthy fact that the coefficients with positive suffices dominate as the
whole against those with negative suffices.

THEOREM 7. The Laurent coefficients of F(z) £ $# satisfies inequalities

( - F S ( - r)Y <Y\n cn V
2W - fl n \ c~n '

2r^n < FS(r)2 (Kr<R),
w = l

Σ3» c-n»r*Λ < (-.FjK- r)Y



A COEFFICIENT PROBLEM 65

and an equality
OO CO

Σ n cn~ — Y\nc-n-~ 1.

Proof. In view of Grδtzsch's distortion theorem, we have

π(-Fϊ{- r)Y < A(r) < τrF%(rY (1< r < R),

^ < A(r)

yielding the- J^sired inequalities. That the inequality sign holds here everywhere
in the strict sense is justified by the fact that the image-curve of Grotzsch's
extremal function corresponding to a circle z = r with any r φ 1 does not
coincide with a circle. On the other hand, the last equality of the theorem
is a consequence of normalization F(z) — 1 along z = 1 implying A(Y) = π.

By combining the result just obtained with previously established ones, we
can derive certain consequences on individual coefficients. For instance, by
taking theorem 1 into account, the content of theorem 3 can be replaced
partly by more precise estimations, as shown in the following theorem.

THEOREM 8. For any F(z) £ χ$R there holds an inequality

Σ n c-n ; 2 i? 2 M < M i n — £ J ^ / F*R(r)^- -f 1 ) .
w-i ι^r<R {K-r—1)- \Ji r J

In particular, we get

and hence

= ^ I — 7 = = - ) as n -+ — 00.

Proof. The second inequality of theorem 7 implies, by letting r -> (i? + 0)"1

(cf. the final remark in theorem 6), the inequality

0 = FU- R-1)'2 <Έn\cn\2R~2n - Σn | c_ } ι |
2 i ? 2 W .

On the other hand, we know by theorem 5 that the inequality holds good
for any r with 1 ̂  r < R. Hence, for any such r, we get the estimation

i
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which shows just the validity of the former part of the theorem. The latter
part is obtained by merely taking a special value r = 1.

Remembering theorem 5, we may replace the second factor of the estimate
in the inequality of theorem 8 by the square of the rational function Λ(r)
defined there; in fact, we have

for 1< r < R.

6. Passage to limit.

We can consider, instead of the family £$?Λ = {F(z)}, a related family
\B = {G(z)} denned by

= Σ bnZ
n

Any member w = G(z) of ©# maps R~ι < z < 1 onto a finite (but not
necessarily bounded) ring domain contained in R-1 < w < oo whose interior
boundary component originated from z = iv?"1 is w\ = R"1; G(z) is further
normalized by the condition G^R-1) = i?-1. The Laurent coefficients of
G(z) = R^FiRz) are connected with those of F(z) - Σ^«2n by

bn^Rn~ιCn (Λ = 0, ± 1 , ±2, •••).

Consequently, any result on the family £?# will be readily transferred into
the corresponding one on the family %n, and vice versa, by means of the
interrelation just explained. We shall now consider the limiting case as R
—> o o .

It follows from theorem 3 that a Laurent coefficient bn with a non-positive
suffix of any function G(Z)E:^B satisfies

The bound of the last inequality tends very quickly to zero as R -> oo, a fact
which would be previously expected. On the other hand, theorem 5 implies
for any G(2)G©^ an estimation

( i ? 2 - ! ) 2 2R*-Rλ-2R- 1 2/? 1

for ^ > ^ - .

The bound of the last inequality tends to ewas R-ΪΌO, SO that there would
follow the result of Littlewood [10], i. e.,

|/W(0) < nlen;

that the equality sign may be rejected here would be readily seen from the
proof of theorem 5.

A rigorous proof of just mentioned fact can be performed as follows.
Suppose that any function
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regular and univalent in z < 1 be given. For any i? > 1, Koebe's distortion
theorem implies

J]== u ? - i ) 2

Let H{w) map the simply-connected domain consisting of the exterior of the
curve defined by

onto the exterior of the circle with center at the origin and radius equal to
R"1 in such a manner that the points at infinity correpond to each other.
By virtue of the principle of maximum modulus applied to w/E(w), we can
conclude that there holds

Since the function H(f(z)) belongs to the family ®B, we get, for any r with

the last inequality being a consequence of Prawitz's theorem; cf. the proof
of theorem 1. Since, as noticed above, there holds a limit-equation

lim
R (1-z)*

for 0 < z < 1 uniformly in the wider sense, we get

• - . ^ i Γ i Λ. i

valid for any r with 0 < r < 1, whence follows, by putting r = ^-^o-1), the
aimed inequality

(it would be more preferable in the last step to put r = 1 — 1/w).

The argument just performed is essentially a mere reduction to the own
analysis by Littlewood. However, the fact that the Littlewood's estimation
may be regarded as a limiting form of our result can be proved also by



68 YUSAKU KOMATU

means of a more straightforward consideration. In fact, for that purpose
it is sufficient to verify that any function f(z) under consideration can be
approximated by a function G(z) £ ®# as a limit for R -> oo. We shall prove
here more precisely the following approximation theorem.

THEOREM 9. Let f(z) be an analytic function regular and univalent in\z\<\,
normalized at the origin such as /(0) = 0 and f(0) = 1. Let the image of \z\
< 1 by w = f(z) be denoted by Δ and its boundary by Γ. For each positive
number R greater than unity, let a positive number p ( < l / 4 ) be uniquely so
defined that the ring domain bounded by \ w \ = p and Γ possesses the modulus
equal to lg R. Let further KB(z) denote the function which maps R"1 < \ z | < 1
onto this ring domain and satisfies the normalization Kn{R~ι) = p. Then the
function defined by

GR(z) = -jz-Knίz)

belongs to the family ®# and satisfies the limit-equation

limG* (*)=/(*)

valid uniformly in the wider sense in 0 < | z \ < 1.

Proof. That the quantity p = p (R) corresponds uniquely to R is a con-
sequence of the monotony character of moduli. It is evident from Grotzsch's
distortion theorem that the family {GR{Z)} (1 < R < OO) is normal in 0 < z
< l(in the wider sense; for any δ with 0 < δ < 1, the function GR(z) is surely
defined in δ < z < 1 provided R ^ δ"1). Hence, it will suffice to prove that
limit function g(z) of any sequence {GBv(z)}ζ=i with increasing Rv -> co chosen
from the family and convergent uniformly in the wider sense in 0 < z < 1
is always coincident with one and the same function f{z). Let now the
Laurent expansions of G&v(z) and g(z) be

Gsμ(;z)= f l Bnvz
n (Rv~

1<\z\<V)

and

by assumption, we have

lim Bnv = Bn (n = 0, ± 1, ± 2, •••).

V->oo

Now, theorem 3 gives an estimation

\Bnv\<4Rv*
n-* (n<0)

which implies

Bn = 0 {n ̂  0)
and hence the origin being a removable singularity of g(z), this function
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may be regarded as regular throughout z < 1; evidently g(0) = 0. On the
other hand, theorem 5 gives an estimation

Bnv <en + o(l) as R->oo

valid uniformly with respect to n and v, so that the relation of normaliza-
tion

1 = RvGRv{Rv^) = fj BnvRv~
n+1

n- -co

yields, by letting v -> oo, an equation

1 = lim£ l t / = Bi = gf(0).
V->oo

Thus, g(z) satisfies the same normalization as f(z) at the origin. Since the
sequence of the image-domains of R'1 < z < 1 by w = GRv(z) possesses the
domain Δ pricked at the origin as its domain-kernel and converges to it in
the sense of Caratheodory [4], the limit function w = g(z) maps 0 < z < 1
onto this pricked domain and hence maps the whole unit circle z < 1 onto
Δ. This, together with the relations g(θ) = /(0) (= 0) and g*(0) = //(0)(= 1),
implies the desired identity g(z)=f(z).

It is noted, by the way, that the quantity p = p (R) introduced in the
theorem satisfies, by virtue of Koebe's distortion theorem, the inequality

Hence, the function Kκ(z) also tends to f{z) as R-^co.
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