
REMARKS ON THE INFINITESIMAL RIGIDITY

OF CLOSED CONVEX SURFACES

BY TAKIZO MlNAGAWA1)

1. Introduction. It is Efimov2) who pointed out that a closed convex
surface is infinitesimally rigid outside its planar portions3) even if it con-
tains some parts on which Gaussian curvature K vanishes identically.
The proof2) given by Efimov depends upon the " Drehriss-method "4) which
requires both the surface and the admissible infinitesimal deformation
vectors to be, e.g., of class C"r. In this paper we shall give an alterna-
tive proof of the same theorem under less differentiability conditions to
both the surface and the admissible infinitesimal deformation vectors,
resorting to the methods developed in [2 ]. The following is the theorem
to be proved here:

1.1. THEOREM. In the euclidean 3-space a closed convex surface S is infini-
tesimally rigid, outside its planar portions^ if it exist, if

(a) S is piecewise of class C",
(b) the admissible infinitesimal (isometric) deformation vectors are of

class O'.

As we see in this theorem, no explicit restrictions are imposed upon the
positiveness of Gaussian curvature of the surface S, but we only assume
its non-negativeness or the convexity of the closed surface S in the weak
sense that the surface S is a boundary of a convex body in 3-sρace and
S may contain straight line segments. Next we assume that the surface
S is piecewise of class C", which means that the surface is of class Cf as
a whole and moreover it can be subdivided into finite number of pieces
of surface, each of which is of class Ctr including its piecewise smooth boun-
daries. That is to say, it is a surface of patchwork with respect to the
second partial derivatives on S. Let £5)— %(u, v) be a regular(W> (^repre-
sentation of the closed convex surface S, where u, v are local para-
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meters. Let $(u, v) be a vector function with the same parameters u, υ
and of class Cr. If %(u, v) satisfies the following partial differential
equation for every line element everywhere on the surface S:

(1) έfcέfc = 0,

%(u, v) is said to be an infinitesimal (isometric) deformation vector of the
surface S. If any %(u, v) which satisfies (1) is necessarily trivial, i. e.,
t(u, v) = α x i -f- B, for two constant vectors α and b, we say the surface
£ = £(«, v) is infinitesimalΊy rigid.

The proof of THEOREM 1.1 is divided into two parts, i. e., §2 and §3. In
§2 we recall the important integral formula which was developed in [2 ].

In fact this paper begins from where the proof of the similar theorem
in [ 2 ] ends. In § 3 we leave [ 2 ] and go further to complete the proof.

1.2 Before going to § 2, we make some preparatory remarks. As is
well-known, Gaussian curvature of a closed convex surface which is
piecewise of class C'r cannot identically vanish on the whole of S. In
fact the area of the spherical image of S is not zero but ± 2τt. There-
fore we can assert that there exists a point O on S such that Gaussian
curvature K of S is positive at the point O and is also positive at any
near-by point of O.

Now let X be any point on the surface S different from the point O.
Then the straight line through X and the point O intersects the surface
S at no other points on S than X and O. For, if it were not the case,
the whole straight line segment OX would lie on the closed convex surface
S and consequently the Gaussian curvature of S at the point O could not
be positive and this is a contradiction.

1.3 We take the point O as the origin of the orthogonal coordinates
system of the 3-space, and take the tangential plane of S at the point
O as its (x, ;y)-plane. Now we apply the projective transformation (2),
(see pp. 246—248, [2]),

(2) *'=f, y = i

to the space, which maps the (#,;y)~plane onto the plane at infinity. By
the projective transformation (2) the surface S is mapped onto an open
convex surface Sf having similar shape as a paraboloid, and moreover
the pencil of straight lines through the point O is mapped onto a family
of straight lines which are parallel to ^-axis. Then we see that the
open surface Sf can be represented non-parametrically by x', yf and Sf is
a (1—l)-image of the whole (xr, /)-ρlane i. e., any point P' on S' can be
represented by a position vector (χ'f y', z'(x',y')).

Let i = (X, Y\ Z) be any infinitesimal (isometric) deformation vector
of the surface S. Then 3 is a vector function of point P:(x,y, z) on S.
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The purpose of § 2 and § 3 is to prove a is trivial. For this purpose we
can assume without loss of generality that

(3 ) a = 0 and dι = 0 on S at the point O. (See p. 263, [ 2 ].)

According to Darboux [3], we define a new vector function $ = (Xf,
Y', Z') by

(4) JC' = ,̂ F'=-, Z' = ^ + .yF + sg
2 <2 2

where a = (A", F, Z) is the infinitesimal isometric deformation vector
of S at the point (x, y, z) on S. Then g' is also an infinitesimal isometric
deformation vector of S' at the point (xf, yf, zf) which corresponds to the
point (x, y, z) on S by the projective transformation (2). If this $ is
trivial with respect to the surface Sf, the a is also trivial with respect
to the surface S. (See p. 248 of [2].) We shall show in § 2 and § 3
that the infinitesimal isometric deformation vector a' of Sf vanishes iden-
tically on Sf outside its planar portions.

2. (For the details of this section, see [ 2 ] on pp. 243—257.)

2.1 We hereafter deal exclusively with the open convex surface S'
which we represent non-parametrically by position vector (x, y, z(x, yj).
For the sake of simplicity we avoid to use the symbol (#', y', z'(xf, y'))
which is in 1.3. Now the open surface S' is represented by a position
vector function

(5 ) £ = ι(x, y} = (x, y, z(x, y)}

where £ is piecewise of class Crr and also convex6) in the weak sense, (see
1.1). We write simply a for the a' of 1.3. This a allows the parametric
representation with respect to the same x, y as in (5) :

(6 ) a = 3(*, JO - (X(χ, y), γ(*> y), z(*> JO)
By assumption a is of class O.

Since %(x,y) of (6) is an infinitesimal (isometric) deformation vector of
the surface Sf of (5), we have by definition

(7) rfa* = o

everywhere on Sf. Here (7) is equivalent to the triple system of linear
partial differential equations:

( 8 ) a* g* = x* + pz* = o,

( 9 ) B* ίv + 3» U = 0,

6) Differentiability and convexity of 5 are preserved by (2).
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(10) 3v E» - F!/ + ̂ i/ = 0,

where p = £«, (ΛΓ, jy) and q — zy (x, y} .
Next we define two auxiliary functions <z(#, y) and &(#, jy) by the

following inner products:

(11) a(x, y) = M* = X+pZ,

(12) b(x, y) = 35, - F + tfZ.

Since #(#, j>) and b(x, y) are piecewise of class C', considering (8), (9)
and (10), we see that

(13) ax = g^a, = rZ,

(14) y- (αy 4- &») = 3£a»v = sZ,

(15) ί*

hold except at the points at which r, s or £ is discontinuous, while r
— Z«5ίe> S = Zxy, t = 2τ/y.

Multiplying (13) by (15) and then subtracting the square of (14) we
have

(16) a» by - ay bx = (rί - s2) Z2 + ̂  (βy - Z?^)2.

We integrate (16) over a large circle CP of radius p in the (ΛΓ, jy) -plane
and with its centre at the origin. We have

(β* by - ay 6*) dx dy = j j^ (rf - s2) Z2 JΛ

Here the integration is carried out upon each patch of domains on which
the integrand is of class C" including boundary. Now the left-hand side of
(17) can be converted into the contour integral on each patch of domains
where S being of class C'f and summing them up, we have

(18) f f (an by — ay ft*) dx dy = -ί f .
JJCp Z JCp

where CP means the boundary of CP. There is on pp. 249 — 257, [ 2 ] rather
long calculation which gives the limit of (18) for p ->• + oo, i.e.,

(19) lim f. (adb-bda) -0.
p-> + oo JCp
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3.

3.1. Since the sign of Gaussian curvature is projective invariant by
(2) and the original closed convex surface S is piecewise of class C l f ,
we have rt — s2 > 0, while r, s, t could have discontinuity across the
piecewise smooth curves. As is mentioned before, the integration is
carried out on each patch of domains, on which Sf is of class C!f respec-
tively. So we can conclude from (17), (18) and (19) that

(20)

and

(21)

for any p, because both of the integrands are non-negative. From (20)
and (14) we have

(22) ay = bx = sZ

that holds except at the points at which r, s or t is discontinuous.
Recalling (11) and (12) we have by calculation

(23) Xy + pZy = Q

and

(24) Fβ + qZ» - 0

which hold everywhere on the (x, y) -plane, because by assumption p, q are
continuous and X, Y, Z are of class C' and the set of the points at which
r, s or t is discontinuous is non-dense in the (x, y) -plane.

Since in a sufficiently small vicinity of the point O on S Gaussian cur-
vature K of S is positive, we see that the rt — s~ of the integrand in (21)
is also positive outside a circle CPO for sufficiently large ρQ. So we have
from (21)

(25) Z = 0 outside CPo for sufficiently large pQ.

3.2. Next we eliminate p from (8) and (23) and have

(26) XaZv-XvZa=Q

which holds everywhere on (x, ^)-plane. Integrating (26) over a domain
D denned by x1 -f y- < p2, p > pQ and y>y$, (D is a circular segment), we
have

(27) ^ (Xx Zy - Xy Z,) dx dy = 0.

Since X(x, y) and Z(xy y) are of class C' by assumption, it can be con-
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verted into the contour integral

(28)
J-D

where D is the boundary of D. In (28) the curvilinear part of integral

along the circle CP is zero because Z = 0 on CP by (25). So we have

(29) Γ , Z (x, y0) X, (x, y0) dx = 0
J—P

where p' = (p* -jy0

2)1/2. Putting the relation (8), X, = - pZ* into (29) we
have

(30)

*'.?o)) = o
where Z is of class C' and />(#, 3>0) is a monotone7) function of x, with
fixed 3/0. Then by the formula of integration by parts of Riemann-
Stieltjes integral, we have

p, P (x, yώ d(Z*(x,
{31)

Z-(x, yQ] dp(x, yQ) = 0

where the first term of the left-hand side is zero by (25). Finally we
have

(32)

Now eliminating q from (24) and (10) we have

(33) Y, Zy - Yv Z* - 0

everywhere on the (ΛΓ, jy)-plane. We integrate (33) over the domain E
defined by xλ -f/2 < p2, p > p0 and # < ΛΓO, I Λ Γ Q ! < P Then by the similar
calculations to those from (27) to (32), we have

(34)

3.3 In this paragraph we shall show that Z(x0, y^) = 0 at any point
(#o,:Vo), ^2o + y-o < P2, if z(x, y) is of class C" and r + t > 08> in some neigh-

7) The surface 5; is convex and piecewise of class Cn and so is its non-para-
metric representation, z — z(x, y).

8) Without loss of generality we can assume p(xt y0) and q(yQ, y) are non-dec-
reasing functions with respective to x and y respectively. In this case r and / are
both non-negative.
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bourhood of the point (XQ, yQ). Suppose z(x, y) satisfies the conditions
mentioned above and also those assumed about the surface Sf. Then
Z-dp in (32) and Z*dq in (34) are both non-negative8) because z(x, y) is
convex and smooth enough. Therefore we have

(35)
and

(36) \βZ*(x0, y)dq(x0, y) - 0
J α

for any a and β, — pf < a < β < p f . As z (x, y) is of class C" in a neigh-
bourhood U of the point (XQ, yQ), so the differential dp(x, yQ) with respect
to x and dq(%o, y) with respect to y can be written by

(37) dp(x, y0) = r(x, y0) dx

and

(38) dq(x0, y) = t(x0, y) dy

in the neighbourhood U of the point (xϋ, yQ). If r + t > 0, then either r > 0
or f > 0. Suppose r > 0 in U. Since by assumption r and Z are both
continuous in [/, it follows from (35) and (37) that Z(x, yϋ) vanishes at any
point (x, jVo) which belongs to U. If t > 0, then by the similar argument
it follows from (36) and (38) that Z(x0, y) vanishes at any point (XQ, y)
which belongs to U. That is to say, if r -f t > 0 in U, then Z(xQ, y0) = 0.

Recalling that Z(x, y) is of class C' and z(x, y) is piecewise of class C" ',
we conclude that Z(x, y) vanishes identically outside the open set of
points at which both r and t of the surface Sf vanish simultaneously.
This exceptional open set of points may consists of any number of
domains and on each of them the surface S' is planar. Now we shall
show that a and b vanish identically everywhere on the (x, jy)-plane. In
fact, on each of the patches of domain on which r, s and t are continuous,
all axj ay, bx and bυ vanish identically, because we have (13), (15) and (22),
and we have Z(x, y) = 0 outside the planar portions and r = s = t — 0 on
the planar portions of S f . Consequently both a and b are constant on
each of the patches of domain mentioned above. But a, b are continuous
everywhere in (x, jy)-plane, which means that a, b are constant on the
whole ( x , y ) -plane respectively. Moreover we find, on p. 250 of [2], that
a(x, y) ->0 and b(x, y)-+Q for χλ + jy2->oo. Therefore we finally say that
a and b vanish identically on the whole (x, y) -plane. By the definitions
a = X + pZ and b - Y + qZ we have

(39) X=-pZ

and

(40) F - - qZ,
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which mean that X, Y (and Z) vanish identically outside the planar
portions of Sr. But on the planar portions of Sf, Z(x, y) may be an
arbitrary function of class C' vanishing on each of the boundaries, while
X and Y are defined by X = — pQZ and Y = — q$Z where pQ and qQ are
constant.

By way of the inverse transformations of (2) and (4), we can set the
above-mentioned results concerning the open surface Sf back to the original
closed surface S. That is to say, as the infinitesimal (isometric) deforma-
tion vector 3' of S' vanishes identically outside the planar portions of Sf,
so does the image 3 of 3' by the inverse transformation of (4). Considering
the condition (3), g is necessarily a trivial infinitesimal (isometric) de-
formation vector of the original surface S, while we have assumed 3 is
any vector satisfying (1). Thus the proof of THEOREM in 1.1 is complete.
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