TYPICAL FUNCTIONS CF SUMS OF NON-NEGATIVE
INDEPENDENT RANDOM VARIABLES

By Tatsvo KawaTa

1. Let the distribution function of a random variable X be F(¥) and
e
(1.1) @(h)—g_“x.—z_mdF(x), B> 0
which we shall call the typical function of X and is defined by K. Kunisawa
[1]. It is evident that
Oh)z0 (B>0), O0(+0)=0, O(+o0)=1L1

The function plays certain important roles in the theory of sums of in-
dependent random variables.

We consider a sequence of independent random variables
(1.2) Xy, Xoy o0-

and let F,(x) be the distribution function of X,. We form the typical
function @p x..xr, (k) of

Su = 31 Xu,
k=1
i.e.,
1.3) 0 m={" " _ ar F.
( -9 Fl*a'F’rb( ) = S_oo x‘-’*-m ( 1% * n(x)).

This is not necessarily non-decreasing with increasing », but converges
to 0 as n— o for every % > 0.

The aim of the present paper is to discuss the behavior of;(1.3) for
large n. We assume throughout that

(1.4 X.=0, i=12 ---.
Let
(1.5) Fols) = S:e-swm(x), i=1,2 -

be the Laplace transform of F,(x) and set

(1.6) Dus) = H Fuls).
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I have shown the following fact in proving a renewal theorem [2]
which is stated as

LemMMmA 1. Let {X.} be a sequence of mon-negative independent random
variables, and suppose that

(]—-7) 0<m,,=E(X¢,)<OO, i=1) 21 )
(1.8) lim -~ SVmg = m,
n—se N =1
and
1.9) lim rxdF,,,(x) =0
A—o00 J A4

holds uniformly with respect to n. Then we have

(1.10) lims 3 @a(s) = —1—.,
1 m

§~>+0 n=

This lemma is an essential part in proving the renewal theorem I have
got and we shall consider the consequence of it concerning the typical
function (1.3), and discuss about the behavior of (1.3) with z = 2(n) (h(n)
—» 00) as # — oo,

2. It seems convenient to state certain facts of elementary nature
as lemmas.

LEMMA 2. Besides the hypotheses of Lemma 1, we further suppose that
2.1) Fi(x) — F;(0)< Ax*, for 0<x <3,

where 8, A are constants independent of 1=i < co and p>1. Then there
exist s and B independent of i such that

2.2) fo(s)=< Bs™, for 0<sy<s,
q being any positive number less than p.

Proof. Put a = q/p. Without loss of generality we can suppose g > 1.
Then a <1, ap >1. We have

Fi(s) = S:e—wdF, (%)

(2.3) N 1)

0
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Thus by (2.1) there exists an sy > 0 such that the last expression does
not exceed

As=? 4 g=3'7"

=As™ + ¢

Since e—*'"" = 0(sP), B being any positive number, there exist s, and B
independently of i such that

fu(s) = Bs™.

LemMma 3. Under the conditions and notations of Lemma 2
(i) there exist s, and A such that

Ms

(2.4) @, (s) < As™9, (s > s0),

n=1

g being any positive number less than D,
(ii) we have, for every s >0,

(2.5) — gllpn’(s) < oo,

Proof. (i) By Lemma 2, there exists an sy’ (> 0) such that
P (s) = B"s™"4.

Therefore we have

oo e —q

for some positive constants A and s,.
(ii) We have

(2.6) 0=~ /() = [wewaFin = [Tk () = 1
0 S Jo S
and
8 co
fi(s) = jo + Sa < Fi(8) — F. (0) + e-5,
which does not exceed, by (2.1),
2.7 AS? + ¢—8%,

where § is the one in (2.1). If we take 8§, = 8,(s) such that Apd?~" = se—31°,
then (2.7) has a minimum value at § = 8; and A8 + e =9< 1, g =4(s).
Thus we have

(2.8) fi(s) <6
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Hence by (2.6) and (2.8) we finally have
— P (8) = = 1S Fia§) £ ) Fena(5) -+ Fa(6)

1
s

[IA

ngn-—-l’

which proves (2.5).
3. We shall now prove the following

THEOREM 1. Let @,, (h) be the typical function of o,(x) = FixFpx-- -xF, (%),
F,(x) being a distribution function. If conditions in Lemma 2 ave satisfied,
then we have

.1z _ T
(3.1) lim T7§10qn(h) = 2m.

>0

Proof. Since

(> Y A
5cs1nhye ’dy = ey s> 0,
we have
= (m ” =8 g
0,,h) =1 (SO e~ sin hsds)doa(x)
=h Vsin hsds Sme—“sdcrn (x)
JO 0
(3.2) =h S:sin hs @ (s)ds.

and hence we have

—}7 i} 0,,(h) = i Smsin hs@n(s)ds
n=1 n=1J0
(3.3) = S:sin hs i}lcpn (s)ds.

The interchange of S and > is legitimate here, because for small s, by

Lemma 1,
531 Pals)
n=1

is bounded and @,(s) =0, and for large s, by Lemma 3, Y@, (s) is integra-
ble, taking p> g >1. We divide the right hand side integral into two
parts

(Sf + S:) sin hsg% ()yds = I, + I,
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say, & being some positive constant. The.n since >@,(s) is integrable
over (8, o), Riemann-Lebesgue lemma shows

3.4 %Zim I, =0.
Since

. (8 sinhs oz

}zl—g;lgo S ds = —Q—_’
we get

7 _ (® sinhs

3.5) L— o= O (5000 — L )as + o)
as s — oo,

Now if we put
T 1
X(s) = s§l¢n(5) P
then it holds by Lemma 1 that

(3.6) lim X(s) = 0.

$—>+0

And sX(s) is a function of bounded variation, and the total variation over
0, u) is

[lasxe) =la(s Dono)|+ 2

m

3.7) SANED TNOFIEELES S PNS

u
ds + —WZﬁ

The differentiability of Y@, (s) is easily verified, for the series (2.5) of
Lemma 3 (ii) is uniformly convergent in every finite interval not contain-
ing the origin.

The series s>1®,(s) is bounded for small s, and it follows, putting
's@,(s) = M for small s, that (3.7) does not exceed

vl d & .

2Mu + SOS ds nglé"n(s)‘ds +
= 2Mu ——S:s‘-’ :Zi_sgl% (s)ds + 71';—

=2Mu—[szg¢n<s>] +2 (' N pae)ds + -

n=1

< oMu + ZMS:ds + =

= (4M + 7};)%
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Hence we get
(3.8) S:| AsX()) | =0@w)  (u—0).

(3.8) with (3.6) is nothing but the Young’s condition for the convergence
of Fourier series. Thus we have shown that

. T
wn = om

which is, with (3.4), the required conclusion.
4. In this section we shall prove the theorem.

THEOREM 2. Let N(h) be any integral valued function such that
4.1) -J\L;lh—)—wo (h — o).
Then under the conditions of Theorem 1, we have
. AL o
4.2) Hm = 3 0on (1) = 5,
For the proof, we show some lemmas.

LemMA 4. Under the conditions of Theorem 1, there exists a = 0(5, A)
less than 1, such that

4.3) S p=C"  for $=s=4,

where 8, A are any positive constants and C is a constant independent of n.

By (2.8), there exists a 6; = 6:(s) such that f,(s) < ;. 6.(s) is a con-
tinuous function of s and 6:;(s) <1 for d<s=<A. Let max s<s<a 0:(s)
=0, A) =6. Then (5, A) <1. Hence

Soe=3 0 = = com.
1=n+1 t=n+1 1 0

LeMMA 5. Assume the conditions of Lemma 1 and let & be an arbitrary
positive number. Then there exist & = 6(&) and ny = ny(E) such that

(4.4) Pn(s) = e Hnt0) for s< 8, n>n,
where My = N4,(S), 8, is independent of s and |8, < &, | 14| < E.

This was proved in my former paper [2].

LEMMA 6. Under the conditions of Lemma 1, there exist positive constants
my and D such that for s <1,

(4.5) f} @ (8) = Ds™le—37™, n > n.
1

i=n+
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This is immediate from Lemma 5, because, for n > ng

3 = N1 sn(m—sg) — e~ """ =D g—snmy
E (pl (s> = 2 e = 1_—-—31": = £ -
v=n+l 2 =ntl e~ ™ s

where we have put m — 2&€ = m;.
Now we shall prove Theorem 2. Put

Jn(h) = g:sin shzgﬂtpt (s)ds

Ll L
=L+ L+ I

where &€ is any positive number and 6, A are those of Lemma 5. We
take B such that (2.2) holds, ¢ being a positive number less than p, and
A such that A? > B. Further we take », such that

(1 — BA—)"'B® <A™ 1 <L g, n > .

Then since @;(s) < Bis™?t by (2.2) we have

L=< o o Js=< o Bn+1s—q(n+1)d
'3|_—‘Sm=§,1<pi(s) S_‘SA 1— Bs™? s
+1
= 1 B" <,

1 — BA-9 = Ae(+D-1
that is, it holds that for » > #n,, uniformly with respect to %
(4.6) I < &.

For this &, we take #,, such that C(4A —8)0" < &, where @ and & are
those in Lemma 4. Lemma 4 shows

4.7 L= 5 g.0ds=@a-5Con < &

8 j=m+1

Finally by making use of Lemma 6
\Iﬂé“ssin s 31 @i(s)ds
0 1=n+1
=h Sss-D-s‘le“”mlds
0
(4.8) <D-h- L
. = nm :

In (4.8), we put # = N(h). Since A/N(h)—0, we can take % such that
Dh/(nm,) < & and we let N(h) > max (ny, 7;). Then we get, by (4.6), (4.7)
and (4.8),

{4.9) | Jwanr+1(B) | < BE.
Theorem 1 and (4.9) with
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I+ = S sinks Y} @n(s)ds
0 n=NC)+1

=L S 0, M,

T h n =N +1
show the validity of Theorem 2.

5. If n(h) is an integral valued function such that n(k)/h—0, (n(h)
— c0), then it is evident that

1 7
W 0, (h)—0, h— oo,
n=1
since @,,(h)=<1. Hence by Theorem 2, we have
. 1 N () _ 7L
lim —— E ma-n (h'> = 2m ’

h—>o0 h n=nCh)+1

N(h) is the one in Theorem 2. This suggests the existence of lim @,,(nh),
& being a constant. Indeed we have

B2

Hm 0o, (nh) = =y

This is an immediate consequence of the law of large numbers, under
certain conditions, for

do (%)

oo 202
O Ouh) = | "

o 2
= S—mﬁ doy(nx),

and o, (nx) converges to &,(x) (law of large numbers), where

0, x < m,
Em(x) = {1. x > m.

We shall, here, prove this under the conditions of Theorem 1.

THEOREM 3. Under the conditions of Theorem 1, we have, for any fositive h

B2

Hm O, (Wh) = = e

Proof. We take as a & the same one as in Lemma 5. Let

’ nhS:sin nhs Py (s)ds ‘

4 ’
h being a fixed positive number. Making use of Lemma 4 in the first
integral and Lemma 2 in the second integral, the above does not exceed
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nCo" + nB"’S s™ds
A
nB®
(ng — DA™=

Let A? > B. Then this tends to zero as n —oco. Hence

= nCo" +

(5.1) lim nhS:sin nhs Py (s)ds = 0.

n—»oo

Now we have obviously
(5.2) lim nhg""sin nhse="msds = 0,
n—>co 8

from which it results
nhgssin nhs e=""ds = nh {:sin nhs e=*™ds + o(1)
0 J

e
63 = e o).

We consider

H, = nhﬁsin nhs (P (s) — e=™™)ds

3=

H
=n§ +nj =L; + L,
0 &

k being any positive number. Then

L3
Y n nhse._.nms(e-—ﬂ&‘ns — 1)d$ ,
JO

[Ll énh

where we have put @,(s) = e "(mt=s &, —0, by Lemma 5.

maxo<s<iim €a = &,

k

L= n38;h“"s " s2e=nmsds
0

k
n

= nth‘ze,;j enmids < BRE,

0

Hence

(5.4) limZL; =0.

n—>co

Next we have

21

Putting
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B
Ly = nhj , hsem" e (1 — enent)ds

5
= 2n2h2§ se~""msds

x
n

k
—nms yn 5
—owie{[s ]+ j e—st}
nm  1s nm ) x

Thus we have \

(.5) 1imsupinggikh;ji.

Using (5.1), (6.2) and (5.3), we have

7
mE - 2

hZ

D, (nh) — = nhgjsin nhs p,(s)ds — TEL T

nhgzsin nhsPu(s)ds + nhS:sin nhs Pu(s)ds — nhgjsin nhse~""ds + o(1)

nhS:sin nhs (Pn(s) —e"™ds + o(1)

Il

= H, +0(1).
(5.4) and (5.5) show
lim sup | @,,, (nh) — m‘/-lij = Zkh;:_km .

since k is arbitrary, we must have

im0, (nh) =~y

e M m? + h*
‘which proves our theorem.
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