ON TRANSFERENCE OF BOUNDARY VALUE PROBLEMS

By Yiisaku KOMATU

Introduction.

In potential theory two kinds of
boundary value problems, Dirichlet and
Neumann problems, have been investi-
gated among others in particular
detail, Let D be a basic Jordan
domain in the Z -plane with a boundary
contour C, along which a continuous
boundary function [U(s) or V(s) is
assigned, § denoting the arc-length
parameter. These problems may then
be formulated as follows:

Determine a function wu(z) bounded
and harmonic in D and satisfying the
boundary condition

w=U(s)

Determine a function v (%) bounded
and harmonic in D and satisfying the
boundary condition

v /v =V (s)

along C:;

along C,

3/3Y denoting the differentiation
along inward normal.

For Dirichlet problem the contour
() may be quite arbitrary. But
contrarily Neumann problem is, ac-
cording to its own nature, usually
considered with respect to a domain
whose boundary contour is everywhere
smooth, Further, while the solution
of Dirichlet problem exists without
any more restriction and is uniquely
determined, the solution of Neumann
problem exists if and only if its
boundary function possesses the
vanishing mean, When this condition
for solvability is satisfied, the
solution of Neumann problem is then
unique except an arbitrary additive
constant.

Let ) be mapped one-to~one and
conformally onto a Jordan domain &
with a boundary [ in the 73 -plane.
The mapping yields then a continuous
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correspondence between the closed
domain D+C and & +/ . Let the
mapping function and its inverse be
designated by 3 =3(2) and 2=2(3).
Since Dirichlet problem is conformal-
ly invariant, the transformed function

w(3) = U(Z(3)

solves the Dirichlet problem with the
boundary condition

w = UJ(s()),

where s=5s({") designates a corre-
spondence between the arc-length
parameters on the boundaries induced

by the mapping.

Suppose now that the mapping
function possesses a continuous and
non-vanishing derivative along the
boundary, This is surely the case,
for instance, provided both boundaries
C and [ satisfy a Holder copdition
of order greater than unity.l The
Neumann problem is not purely invari-
ant with respect to conformal mapping.
However, the differential of its so-
lution possesses the invariant charac-
ter. In fact, the transformed function

13 =v(z3)
solves the Neumann problem with the
boundary condition

w0 /o) =V (s(') ldz/dyl;

the condition for solvability is, of
course, preserved:

0=jcV(s)ots=Lv(s<f)){j{—;[M

Let G(z,3) and N(%,7) be the Green
function and Neumann function, re-
spectively, of the domain D. The
solutions of the original problems
are then expressible by means of the
well-known integral formulas



1 2G(z,8)
u( —_ = 4
z)——z,n:fc '(Oﬁ"ws a{,sS
and

1
V(Z) = a— RLV(S)N(Z’Q‘*SV

A being any constant. The transformed
problems are solved in the same manner
by the formulas

fd(})s E%LU(S(K))L@;%_@)_OL{)

" (3)=ou— = LV(s({ Nz LG,w) dE,

27
where €] and 91 designate the Green
function and Neumann function, re-
spectively, of & and ¢r is any
constant, When H- is, in particular,
the unit-circle laid on the 3 =pe*?
~plane, the last formulas reduce to
explicit forms:

27T .
e 1 9
w(y)= Z&EiU(S(‘J’» Ke%‘{%oty,

21
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()= 0- ;fchs @ILEOIR gz 4y

We now suppose that the contour of
the basic domain possesses angular
points, extreme cases especially such
as end-points of boundary slits being
admitted. There arises then no special
circumstance with respect to Dirichlet
problem. However, the normal deriva-
tive is not well defined at an angular
point. How should the formulation of
Neumann problem be then modified? For
the purpose it will be very plausible
to define the solution by means of a
mapping onto a smoothly bounded domain.
But it is thereby noted that the
mapping function shows a special
character at an angular point, In
fact, let Z, be an angular point of

where the interior angle is equal
to mX, with 0<% £2; for the sake of
simplicity, the case of the sharpest
angular points with X =0 will here be
omitted., If two branches of the
contour meeting at %, is subject to
a certain condition of smoothness,
the mapping function = ¥(2) then
behaves near zZ=%; as shown by

3(2)=3(z) + (z—zo)i/x’ 75') (2-2,),

lo(t) being a power series on U with
*(0)=k0, and hence its derivative
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behaves as
2= (224 {%p(z—zo)ﬂzqn)’/:)?z—za h

The derivative of the inverse function
behaves therefore near 9=3 =1(z) as
shown by 1=5=1%

(= (- 3,77 QG -3,

Q (1) being a power series on { with
Q(0)=*0. Thus, if one had restricted
oneself to boundary functions V/(s)
which are bounded about z=7%,, the
corresponding boundary function

Vs l2(pl
of the transformed Neumann problem
will vanish at 3 =3, provided XA >1
or will become infinite at 3 =17,
provided A <1 and V==0.

Consequently, in order that the
transformed problems cover the whole
ordinary range, the boundary functions
V(s) of the original problems must
be subject at angular points not to
a routine continuity but to a suitably
modified condition. Indeed, under
these circumstances, we have to frame
the following condition:

An analytic function g(z) whose
real part V(z)=R4(z) represents a
solution of Neumann problem must
satisfy, near an angular point %, with
interior angle TuX, a condition that

"(2)(z—2,)! %%, and hence also
(3(2) —}(Zo))(z_ Zo)‘i/x’ is bounded.

The uniqueness assertion for the
solution is then valid, of course,
also within an arbitrary additive
constant.

On the other hand, in case where
the basic domain is the unit circle,
there exists a remarkable interrelation
between the solutions of both kinds of
boundary value problems bearing a
common boundary function.2) In fact,
let u(x) and v(Z) be the solutions
of Dirichlet and Neumann problems,
respectively, satisfying the boundary
conditions

%“—:V and

w/w =V;



the mean value of ‘7 along the cir-
cunference vanishes necessarily ac-
cording to the solvability of the
latter problem and hence w(0)=0
The solutions are then connected by
the relations

be
) 2v(rer?)
wlye" )= —17 S
. T .
v (re)= a - j i‘—(;freﬁlotr,

& being a constant, 0

Let f(2z) and 4(z) be functions
analytic in |ZIK{ and satisfying

Rf=uw), Jf=0, Rgx)=v(z),

The above relations may then be
written, respectively, in the forms

b4
f( ®)=-%4 o), g(z): c— fo —Jg:z—)ocz,
C being a constant.

These relations can be availed in
order to transfer both kinds of
boundary problems each other, In
fact, let a Dirichlet problem with
boundary condition u=[] be given. We
first solve an associated Neumann
problem with boundary condition

2V T

'av = ’Z’TC aU(?)dV?o
The solution of the original Dirichlet
problem is then given by

M
8y 1f L ov(re?

weret= o2 | Uty 1 25552
Conversely, let a Neumann problem with
boundary conditionou/n=V be given,
We solve an associated Dirichlet
problem with boundary condition u=V.
The solution of the original Neumann
problem is then given by

In the interrelations just mentioned
between the solutions of both boundary
value problems, the coincidence of the
boundary function owes to the special
configuration of the basic domain,

For another sort of configuration a
suitable modification must be made
accordingly., It will be possible in
an elementary manner for some simple
configurations.

3

In the present Note we shall con-
fine ourselves to some simply-con-
nected slit domains, which possess
two end-points of slit as angular
points with interior angle 27, The
main purpose is first to illustrate
explicitly the singular character of
the solution of Neumann problem in
each of these particular domains and
next to establish the interrelations
transferring both boundary value
problems each other which bear the
definitely related boundary functions.

4. Rectilinear slit domain.

Let the basic domain be the whole
Z-plane slit along a rectilinear
segment

Rz=0,

We first construct an explicit ex-~
pression for the solution of Neumann
problem with an assigned boundary
condition

a *
5 =V

The condition for solvability is ex-
pressed by

1
j_L(V*(yHV_(y))d,}:O

and is, of course, supposed to hold.

~1< Jz g +1,

for Z=i0+¢y.

The basic slit domain is mapped
onto the unit circle in the }—plane
by means of

_1 1 N

Z‘E(}“}* or 3=z-Vi+2%,
the square root being, of course, such
that Z=co corresponds to 3=0. Let
z==40+n (-1 < <+!]) correspond to
y=e*®. Then —m/2<¢_<m/2<Q,<3m/2
and )

N=sing,, e %o imFoar,

There holds further
’ _L( 4
Z(}—z 1+}1)

and hence
|z'(e )| = cos gl=Fcosg for =0,

The transformed Neumann problem
thus becomes



-g—f)/’—::izf’??)wsso for }—;_e"’?
—M/2 <P L /2,

with
T/2<p<3m/a,

where we put

+
I )=V op=V"Ging).
The problem is readily solved by
2/*(3):_-%?(}), where ?(}) is defined

T/ AT/2.
Sy -] Pilesgled
which J.mplles the solutlon of the
original Neumann problem in the form

v(m—z’b{;(z) with ;(z>=7(2)sg(z~ﬁ?{*}.

We shall next observe the behavior
of the derivative 9/(z) near Z=ti.
In view of the condition for solva-
bility

L s T2 R a2,
0 =L(V (V) dy= { L/ZN?) - MZ/?*(?)} cosg dg,

we get

=z fm/a/’"(@ fsn/’f/’((y) }eosg g — 99 5 ap
- F&%‘@ [ ’“/?/’(w}wssml 45,

whence follows
g,'(z) = g;’(})
= J_ﬂ_.

Az Z'E

In/2

7/(9) J Zf(g»)} (C"s "’J{}) T ety

-l
T ix - | 21 )J IR
e -'r/g,/’(s’) 'n:/,?z/’ s e 9—}

Substituting the relations

Ao — M
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we can brought the above expression
into the form

=t (e s L
YO L(V -V (»p)f{{% d)

+i£7c{£ :;’J@*J W}f@)} o )

The second term of the last express:Lon
is nothing but the Poisson integral
w1th the weight function equal to
Y'9) and =7 (g) for 7c/1<iy<37c/z
and -1/2<$<m/2., respective

Hence, as % approaches £ 04y (~1<y <+y),
its real part tends to +V/* (4. It
may further be noticed that the first
term of the last expression remains
purely imaginary along the slit,
Consequently, we see that there holds,
along both banks of the slit, the
desired relation

22U —q 2V E’U' Y %3/(2) V (4})\

Y
for ——:t()—n,y,

Since $(z) shows a singular
character of the assigned order,
1(z)= z(z) obtained above represents
the solution of the given Neumann
problem. We thus have the following
proposition:

Theorem 1. Let the basic domain be
the whole plane slit along a recti-
linear segment Rz=0,-1<Jz<+1. Let
V()= R 4(x) anti U(z)= Rf(z), 3 and
F(x) being analytic, be the solutions

of Neumann and Dirichlet problems,
respectively, with boundary conditions

=V,  w=«Vy
for 2=x0+ éy,.

Then there holds a relation
$(2) = f(z) -« ]f(oo)
mwf v “1)~an))"31““1
?r@ $e) + f {3)~ i Jfeo)
- -;ﬂ—gz Rf (Vep —V?n))s—’—‘ﬁ’l i Jazs

here gr(oo) designates an indefinite
(complex) constant.



It would be noted, by the way,
that, g(x) being regular at z=9o0,
3,’(2.) is of order Z7% at z=o0 and
hence

00 ) — __1_ 4, 7 __._i~
R oY= zquL(V (*))~V(”|>),[1_—»,]z“°]f
[2(hz) ~ Fo)]*="

- A Lo Y M Pl
= L(V(v}%v (v))) f-i_nl n.

The last quantity is purely imaginary,
a fact which results from a special
property of the original boundary
function. In fact, it is supposed
that corresponding to the condition
for solvability of the Neumann problem,
there holds

i
S\ (u(+0+£~p—u(~0+t7)) d")=0,
-1
The transference of both kinds of
boundary value problems can be readi-
ly performed. We have indeed the
following proposition:

Theorem 2. Let a Dirichlet problem
with boundary condition w =11 (14) for
Z =4 0+iy (-1<4<+) be presented.
first solve by 'U'(z.):m&), ;(z)being
analytic, an associated Neumann problem
with boundary condition

w =[J (g)———-—f (U ()l U('q))o('r),

The solution u(z)=®Rf(z) of the original
Dirichlet problem is then expressed by

Ff=¢)+ Mj 1( U = U )y
\ il

1
t 14 f + e
+ ——

i U E e,
where (2'(z) denotes an analytic
function whose real part coincides
with the harmonic measure of the right
bank of the slit; we may put

2% ) -1 = ~—1g zre

““L
Conversely, let a Neumann problem with
boundary condition U/Ay=V*y) far
Z=+0+iy («t<4<+1) be given. We first
solve by w(z)=RFf(x), flz) being
analytic, an associated Dirichlet
problem with boundary condition
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+
w= £V (y).
The solution v (z)=%Ry) of the origi-
nal Neumann problem is then expressed

by

3(2) = c—f {f(g)—;]f(oo)
___.___ij_i, E N
V“gz,zch;(V("})*Vﬁ)))WaU;}d,g

B. Circular slit domain,

Let the basic domain be the whole
plane slit along a circular arc

[2l=1, d£argz <2m—d (0<k< ),

We first consider a Neumann problem
with boundary condition

2F=Ve) for z=(1x0e"

(k< B <2m—),
The condition for solvability is ex-
pressed by

27—0d
f (V(6r+V(8)do =0

and is supposed to hold here also.

The basic domain is ma.pped‘ onto the
unit circle in the }-—plane by means of

_ Q- t;z:

-y
% being a positive constant less than
unity which may be suitably determined.
It will be convenient to put

ﬁ.: COS%.

et 2z = (i_io)eLe correspond to % =e‘;?*.
We then get —«/2<g, <o/o <§_<2m-4/2 and

B ksing
A T hag (1%

We further getu
R(-2Ry+ %)

2'()=
} (£ -3)*
and hence
[2'(e*¥)]
(—l ‘__l 2R (etp-F) | 2klmy-k)
1- zf;wscﬁﬁf T UL 2heospri®
?m —2fe 90?9 -3 ez (e?)
(1-Be)(h—e™) Z (et?)

)



for ¢ = P, .

The transformed Neumann problem
thus becames

210 £ e frl(et?)
o, TN s
for = o*?
with —*/2 <@ < &/2,

KL< @< 2T~ /2,
where we put

21/ (3’) V(G) V (7 arccot1 &Cos
Its solution 7/:(})~ K«}(}) is gflven by

(3)
(7 ' T et et 1
=tro f 7/(50) f 7/’“}” ’Z(e”") Igeup_} ”{501

which ;unplles the solution of the
original problem in the form

v(z)= Rgm

with }(z)ﬁ(;)z g}

In order to observe the behavior
(z) near z=e®**, we remember

the condition for solvability

21-d
270~ J/z ( e *?)

0= (V(e)+V(e))d9-~ f7/'(?) J 7f(‘f) Z(e™) .
We get

P amedla &2 le ”")e‘+}
}7(;)~'- f#(ff) J‘ 7/’(?) Z(e“?’) o 3 19,

whence follows
Z}’(z) = zg/(}){‘-mk
_dlgry AR e 4]
dgz 2,1c{ Z/ - J 2/'@”}(z(e”) AT;;Z) }W

1 {f 7/}(90) 2m-d/2 q,

2/‘((() }
In view of the relatlons
dlgy (-kplEy) e Rlt-2heh ™) _ Ao
gz ft2kyryn) 269 4D ey
we get
Odi? ¥ ,“Pz'(e‘?)
Mgz C2(e)

it )

49,

dlez z) L

eLQ’_} AB

( 1+z~ylz- ez~ e‘“"*))
LA °

( (-8R-3)  (1-ke*)(B-e*)) P+
R(1- 1&34-51) T (-2he e x0) ”"—é
-t (e*?+3)(1- %)

& (L- —2by + 37 (1-28 e+ o)

and further, by returning to the
original variable and putting ﬁ:ws% ,

~;e/n.(1 ewz) 39) Il
o
[ =25, 81
2 2

I" 4RZ~ “*)(Z qu
Z (2= eH)z- o %)

i Z+1

for $=¢,,

Thus, by remembering the condition for
solvability of the Neumann problem,
we finally obtain

2T~

, i o8y, e
29 (z):‘,?t (Vte-V o) [t ® G-e%)

V 2~ ui)(z e-,m)
-— (’/o —_— "—_———"—‘—'—
L in8=%4gip 6+
SihZ==sin ey

4/2 VM-d/2 L(f
NG L
el o @)= Zf (9’)} 5,

The second term of the last express:Lon
is coincident just with the Poisson
integral bearing the weight function
equal to 2'(y) for —d/2 <g<o/2 and
to — Y (¢g) for oL/2<@p<2m—d/2, and
hence its real part tends to =V ()
as z approaches (1+0)e*®. The first
term is, as readily seen, purely
imaginary along the slit. Consequent-
ly, there holds, along both banks of
the slit, the desired relation

U _ oV _ _
= ;tB,r i’KZj(z) V(e
for zzfre“e——-(iiO)e

On the other hand, §'(%) shows a
singular character of the assigned
order. As readily seen, the singu-
larity at z=0 is, of course, merely
apparent. Hence, the function wv(z>
= R4(z) obtained above represents
the solution of the given Neumann
problem and we thus have the following
proposition:



Theorem 3. Let the basic domain
be the whole plane slit along a circu-
lar arc |2|=1, dLargzlan-d (0<A<m),
Let qr(z)~*a{g(z> and w)= Rf®), 4z
and f(z) being analytic, be the so-
lutions of Neumann and Dirichlet
problems, respectively, with boundary
conditions

AV <r
:077:\\[;(8), = 'J:T/i(e)

for 7= (1+0)e*®
(a<B<am—d),
Then there holds a relation

%g/(z)-——f(z)“ it

27-d

~&8 2(1_
(z—e~)(z o) 47c (Vo)1 o) gt 2 e

’ §—d
n9+o(

¢=Ifted -1 Zq(c_ =
V6)-V (6) mmee o
N S]’Le s 6+
or 1 sme
H0) = 9c0) + f [0t

2m-d

(1~¢%)

1
i —
m&&)(g e kd)/ifrc j (V (6)- V «”)ﬁd@} €S7

Sin 8=y, 014
2

here also $(»w) designates an indefi-
nite constant.

It would be noted, by the way,
that, =zg¢%x) vanishing at Z=o0,
there holds

21C-d 8
— { - - SIN >
7{36("")“‘& (Vio)-V (@) =,
o Ysingztsin oz

The transference of both kinds of
boundary value problems can be per-
formed as stated in the following
proposition:

Theorem 4. Let a Dirichlet problem
with boundary condition u«={J*(6) for
z~(]ﬂ»€w(¢<9(ﬂp-; g<d<m) be
presented We first solve by v(z)= ’%é(zb
3(z) being analytic, an associated
Neumann problem with boundary con-
dition

27C~d

1 + -
OB vy (Uen-UTy.
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The solution w(x)=R4{(z) of the origi-
nal Dirichlet problem is then ex-
pressed by

M=ok
AZ (2)-1
= Z
Fo= =g+ T m—d) (U(e) ~Ue)de
L L i 21 d teﬁ%1
‘V(Z—~e“‘)(z_ ) 411( (U(G)*’U (9)) __dvef
p 1/sm9 *va;f

where §'(2) denotes an analytic
function whose real part coincides
with the harimonic measure of the outer
bank of the slit; we may pui

2000 -1 = 11 z—e"*
81 =z

Conversely, let a Neumann problem with
boundary condition 2v/2Y =V *) for
Z=(140)e*® (%<0 <am—4; 0<i<T) be given,
We first solve by w(z)= R f(z), Fz)
being analytic, an associated Dirichlet
problem with boundary condition

=+ (e).
The solution mTz>==q&3(z) of the
original Neumann problem is then ex-
pressed by

Z
§(2)=c +j {§(€)~Lfr

G

+

27t-ol
L «
- eé)
(ACRTD) }~—
et e Wj v )1’5n°—g—”‘sm°r*‘ ¢’

¢ being an arbitrary constant.

3. Radial slit domain.

Let finally the basic domain be the
whole plane slit along a radial segment

A z=1, TSzl £ T,

This is a sort of rectilinear slit
domain, for which the standard case
has been dealt with in §1 and ac-
cordingly to which the present problem
can be readily reduced,

In fact, by means of a linear
integral transformatiocn

2=~ N
T—aT

the basic domain is mapped onto a slit
damain bounded by a vertical segment

2o c‘+fc)
5



Re*=0, —1s Jz*<+1,
The original Neumann problem with
boundary condition

v/ V=) for %=2%+:0

(~t<oe<—a)
is correspondingly transformed to an
equivalent one with boundary condition

2 U* T T—
’ax’*TV(“ <r* cr;t'c)
for Th= £ 0+iyT
1< yr<+ 1),

Accordingly the solution w( Z)=’ﬂ}(2),

(2) being analytic, is obtained from
TH M= f&g*(z*) by merely returning to
the original variable,

After suitably adjusting a purely
imaginary constant, we may put 3,(1)
= 3*(2*) , whence follows

/ — 2 */

j(z)-—_f;g (z*%)
2.y L 1 =9 LG K ot
- {VUQ*’*Z'I—E—[Z (ve ETE

T TGt T 2hem™
Vs ;,))ﬁf?%;””'/

+ %E(f(z) _— ]f(oo))},

where «(2)=R$(z) denotes the solution
of a Dirichlet problem with boundary
condition

U= 4T/ () for 2z =%xX*L0
(-T<x<—0),

Inserting further the original vari-
able 7, together with the corre-~
sponding integration variable

%___..’}_"_:‘: *_ G+ T

z 1T Tz

we finally obtain a relation
L) = f2)- L Jfeo)

)z §+ O+ T

4+ ___._"’_—— _A f(-.‘;.c- .V._
-V 5
e a ) T OTOGESES
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Quite similarly as in the previous
cases, the last relation may be inter-
preted as one showing the transference
between the solutions u(z)=Rf(z) and
'y-(z,)zfy\a,(z) of Dirichlet and Neumann
problems, respectively, with boundary
conditions

U= Uz(x) and

-a

S(U(i)—U(i))tii

or

ES
U= 4 Vi(%) and ;‘%‘E —_-_V (f).

The present problem may, however,
be directly dealt with by means of an
alternative procedure corresponding
to that availed in §2, which will be
outlined in the following lines,

It is convenient to introduce two
positive numbers % and % defuned by
the relations R

144 [3 att
T-% Vo’ Ty © U

t is less than unity. The end-points
of the boundary slits are then desig-
nated by

___k
(Lt 4)*
Now the basic domain is mapped onto

the unit circle in the y-plane by
means of

Ry
(1 ﬁ})(i 3)

Let z=§+0 correspond to 3= e
We then get 0<z¢ <7 and

ot
1-2keosp+k°

=1 —_*_____zf,fé.sm?t z) ( ~Saz’(e‘?)
(1-2kcospt )

s
(o= fe ))

[2/ (et (—-—

ol
“f

The transformed Neumann problem
thus becomes

for y=e¢™ with 0<tg<,



where we put

+ 18
Wiegy=VesH)=V (~i—:ml .
Its solutionm(}):?{?(}) is given by
‘?@

= c+— f ” (?)*f][’(?) } i) Ig_“‘ “b

which implies the solution of the
original problem in the form

() = ’k}(z)
with 9(2)=g()=0 (1% )Z‘fﬁ-W)
2=

Identification of the last formula
with one derived above may be per-
formed as follows. Taking the con-
dition for solvability into account,
we first get

LJ'(’L): ;?’(}) L3

z.a_z o flf(q’) f?/(?) Alﬂ

— w*“’z’(e”“")) b & ottf

\fV@“fVW)A#} “4.

The second term of the last expression
represents an analytic function f(zx) whose
real part coincides with the solution
w(z) of Dirichlet problem with
boundary condition

U = =+ V t( 2',)’
and hence we can put

1 ’ - r + "lf
Zf?c{’f it V‘f?>}§§t§~¢?= fio)- cJf0).
-TC [] —

By remembering the condition for
solvability

O=JEV&)+V?§))¢L§= ; f}?@ ~J ;ffso)} ez '(ei?)auf,
e 0 1

the first term of the above expression
for LJ’(z.) can be brought into the
form

J=ilnt fvwwf%w> 4

ey

Le“"z/(w))
=g fifﬂf%ﬁ/(go)

9y (2R 2 NAy ____?Z
X<~'€, Z( )(1 f} A.‘f % ()JZ., ‘Q«L‘P } (f'

Introducing a new variable %* to-
gether with a corresponding int:-
gration variable ¢* by the relations

« 3k e
? kl-ﬁ}’ ¢ i-ieitf}

the last expression further becomes

=i ow f%fw
x@g??@ ) "“9)w+x

~‘f_}* 4z kei

where we put
K+ +
Wo*)y =1 "o
and ¢ designates a real constant:

2 Rsing

f’r*‘—’ 7{(?)“‘}2/(?}) 1 lﬁooi(rﬂ-ﬁ ?

Since the connection between } and
z 1is given by

= S2iAE ( L1582
-%** [ ’

we finally obtain, a.fter some ele-

mentary calculation,

-2 /048"
(Veo-Ite)
V (1 ﬂ)")ﬁ (M‘)ﬁ ) —~ﬁ/(1 ne
Z+ g+ 2'“(121)1 cii 4 o,

\/(?*u m)(m 5).

An additive purely imaginary constant
being quite inessential, our present
farmula has thus been identified with
the previous one,
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