ON COMPACT ONE~-IDEMPOTENT SEMIGROUPS

By Takayuki TAMURA

(Comm. by Y. Komatu)

In our previous paper {0) we con-
sidered a finite one-idempotent semi-
group, i.e., a finite semigroup whose
idempotent is only one, and established
some theories on its structure. How-
ever most of these results are able to
be extended to a compact topological

one-idempotent semigroup (1). The aim of

the present paper is to give some part
of them, We see that if the dis-
cussions here are applied to a finite
case they become simpler than those in
the previous paper.

In § 1 and §2, we introduce the
concept of greatest group and topology
of difference semigroup respectively.
The propositions on zero-semigroups in
§ 3 not only play an important part
in the general one-idempotent semi-
group theory ( §5), but form a main
part of the present paper. In §.4 we
discuss on types of compact zero-
semigroups and give their examples,

On compact enclosed extensions and
compact power semigroups, we shall
discuss more generally in other papers.

1l Greatest group.

We see in this paragraph that a
compact one-idempotent semigroup
generally contains the greatest com-
pact group which is at the same time
the least ideal,

Now a bicompact semigroup was
proved to have at least one idempotent
element (2], but we can prove in
Lemma 1 that this holds even if a
semigroup is compact (3],

Lemma 1. A compact semigroup S
has at least one idempotent.

Proof. Let a be any element of
S . If we set A= {a"; n=113, .-},
then the derived set A' (%] will be a
group, Take elements 4, ¢ of A!,
there exist positive integer sequ-
ences {mi} and {m;} , where
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MANH 3 m; < WMy 3 L=y, "
such that AN >4 2 aM™Moyeas
{ =»© | Then, putting y;=m+mi,

it is easy to show that the sequence
{a¥y converges to 4¢ vecause of
compactness and continuity of semi-
group operation, Therefore 4e=c4
€A'; A' is a commutative subsemi-
group of § . Next, we shall prove
that for 4e€A', ceA' , we can find
x¢ A' such that 4x=e . Letting
A% >4, a™=re as >, we
choose a subsequence {p;t of {mi} which
satisfies p,¢ pac---<pucpic -,
Q < Prrm M < Pim (o0 ~)e Furthermore
put g; = pi=m. Then qM=a¥,
while {a%} converges to certain
xeS 1if {9q,} 1s taken adequately
as a subsequence of {{;} . After
that, attending to limiting case, we
get e= éx . Thus we have proved
that 4A'= A4 =A' for all 4¢A' ,
Take any x,¢ A' » Then € which
satisfies x,e =%, will be an idem~
potent. For, if we select y such
that yx, =e , and multiply y with
both sides of the equality ze = %, ,
then we have Yol = y2o whersas

ec=¢ .

Remark, Of course A'is a compact
topological group, and the closure A
of A is a compact one-idempotent
semigroup., Our precise investigation
on compact semigroups generated by one
element is omitted here, for it is to
be published in other paper.

Lemma 2, A compact one-idempotent
semigroup § whose idempotent e is a
right (left) identity is a compact
group,

Lemma 2', If a compact one-
idempotent semigroup S§ satisfies
SexS (e$=S ), then § is a con-
pact group,

Proof of Lemma 2, Suppose that §
has a right identity e . Since x§
for any x€S$ is a compact subsemi-



group, it contains the idempotent €
by Lemma 1. This means that a right
inverse of x exists. Hence § is a
group., We can easily prove § to be
a compact group by the belsw remark,

Remark, Let @ be an abstract
group and a compact space. Whenever
the space is compact, continuity of
the mapping of Gx & into &,

(%4) > %Yy implies that the mapping of
G into itself, x-»x™', is con-
tinuous.

Proof of Lemma 2!, As x=ye
yeS for every x€S§ , we get
xe=(yere = yiee) = ye = x.
The idempotent € is a right identity
of § , and so the proof is reduced to
Lemma 2,

Making use of these lemmas, we ob-
tain the following important theorem
with respect to the greatest group.

Theorem 1, Let § be a compact
one-idempotent semigroup and € be
the idempotent. Then the subset
G = §e satisfies the following
properties.

(1) & is the compact, greatest
group as well as the least
ideal of §, and it holds that

G =eS ,
(2) e commutes with every xé §
(3) § is homomorphic on § .

Proof., (1) Clearly & is a compact
one-idempotent subsemigroup, and so
Ge=G where ee& . DRy Lemma 2',
G 1is a compact group. Since e is
the identity of the group G , we have

Se=G=GeneGceS

Similarly eS & S€; hence G = eS,
Next, let &, be any group contained in
$ . Considering that €€ G, , we
get G,=6Gec Se=G, This shows that
G 1is greatest, Finally we shall
prove G to be a least ideal. Since
$G = S(Se) c Se=gand RS< G , G is
an ideal. Now let @ be any ideal of
$ . As Q is a subsemigroup, e be-
longs to Q + We have G=SecsSAcQ;
therefore @ is least,

.(2) Since e commutes with every
xe of G, we get

2 = x(ee) = (re)e = e(xe)
=(ex)e = e(ex) = (eeJr=€X,
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(3) Let § be the mapping of §
onto & defined as fm=xe.
Then, utilizing (2), we Lave

fo ) m(xe)(ve) = Aiey)e = n(ye)e

= qNee)=(xy) e = $(xu),
It is clear that § is continuous.,

Hence § 1is a homomorphism. Thus the
proof has been campleted,

In particular, if the only one
idempotent is a zero written o0, i.e.,
G =i{e} , we call S a zero-semi-
group, The above theorem becomes
trivial for a zero-semigroup.

2 Topology of difference semi-
group.

Let us provide the condition of
regularity for the topological space
S . Let X be a closed ideal of a
regular semigroup §, $§¥be a differ-
ence semigroup of § modulo X in the
sense.of Rees [5), and 4 be the map-
ping of § on $*. Of course $* has
a zero 0¥,

We shall introduce a topology into
S§* , Neighbourhoods are defined as
V (0%) = $(Y) where Y 1is any open
set containing X ; and, if x*= 460
% 0%, as V(x%) = $(Nw) where N(x) is
any neighbourhood of % in§ . In
this definition the axioms of Haus-
dorff space are all fulfilled, By
the way, the regularity is effective
to the separation axiom. Then, since
4+ 1s easily proved to be continuous
and open, we have

Lemma 3. The topological semigroup
S is homomorphic on the topological
semigroup S¥,

If § 1is a one-idempotent semi-
group, then §* is a zerq-semigroup.
Compactness and regularity are invari-
ant by the continuous mapping ¢ .
Thus we have

Theorem 2, A compact regular one-
idempotent semigroup is homomorphic
on a compact regular zero-semigroup,

3 Compact zero-semigroup,

Let & be an element of a semigroup
$ . If there exists xe$ such that
ax= &, & is called an f -invariant
element, Likewise a an {-invariant



element if ya=a for some
an vk -invariant element if xay=a
for some x, ye¢§ . These are
termed generally as "invariant ele-
ment",

ye S

Theorem 3, If § 1is a compact
zero-semigroup, § contains no
invariant element other than a zero.
Conversely if a campact semigroup §
has that property, § is a zero-
semigroup.

Proof. At first we shall prove
the former half of the theorem. Let
us assume that a compact zero-semi-
group § has an r-invariant element

a%0 . Denote X ={x;zxe¢§ ax=a}
for a fixed a0 , Immediately, we
see, 0€ X . On the other hand, X

is closed because of continuity, and
if xeX , 4e¢X , then a(xy)=cany
=ay=a ; that is, X is a compact
subsemigroup. Consequently X con-
tains an idempotent distinct from
zero. This contradicts with the
definition of a zero-semigroup. The
proof in the case of A _invariance is
similar. When a is an rl -invariant
element, that is, xay= a for some
x,4y¢$ , We may consider the set
X ={x',>x¢;_—_a} for a fixed a%0

Next, we shall prove the converse,
If a compact semigroup has an idem-
potent X different from 0 , x is an
invariant element, conflicting with
the assumption, Hence S is .a zero-
semigroup. Thus the proof of the
theorem has been accomplished,

Lemma 4. Let S be a compact
zero-semigroup, If :_-'.:‘ a4, =0 ,

then iinnﬁnxn"a , and ::‘"'.‘. Nnly =0
for every {xa.% .

Proof., It is sufficient to show
that only one limit point of {anxa}
is 0. Let p be any limit point of
{aaxat » Lee., &"‘.‘, An; Ny = P«
We denote by { one of limit points
of {x""’ b 1'3"’ l"‘:“. 9(,,‘.. = 4',
Then we have

p= .{l\:‘o (B, Xmi)

=(l:'m Any, )( lk.'z_x,.“) =of=o0,

Ryoo
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Therefore 1':;. a, M =0 ; similarly

]
i3 Mlu= 0.

Lemma 5. Let V-»} be any sequence
in the compact zero-semigroup § .
Setting {.‘ = g4, 4, > We have

."':"‘:‘ du=o0,

Proof, Let be any limit point
of {4a} ; 4;“.-)f,as (>0 , We
rewrite 44wy by {4:'t , where

{'= 4y, , for the sake of simplicity.
Moreover set

(,l = "n, =€

B = bum by S0 WDOTS  Com 4y g bysiT

ls2,3, -,

and take a subsequence {c.-‘.) of {¢d
such that e § (=), Then
4y = b0y . Now, as let §
attend Yo e , we have p=pf . How=
ever Theorem 3 makes us to conclude
that ria- 0 .

Theorem 4. If § 1is a compact
zero-semigroup, then

() 8" = o5,

ney

Proof, Clearly §"2 s"’,‘ et 2,00
Since the sets S§"™(w=y,3,-:-) are non-
empty compact subsemigroups, the
sequence of the sets has a non-empty
intersection D which forms a compact
subsemigroup., Let any peéD , that is,

pe S" for all = , then

F- Ay™ Qs - A, Qg Ry ™ " " " ,

and
P = Gy Qg “u-‘" ("= 2,9,

where
4in = QunBusin

s Reg3eum)

o Quy (MRS h".’,"o"),

Now we denote by { v} an in-
creasing sequence of naiural numbers

V'(u)< V.(.-)< - yI(n?< ..

By dint of compactness of the space
we can select so suitably a sequence
of sets | vt of natural numbers that

{. 9;"’ :{v:“f S . 3{9;'" e, y}""' Gend, )
and
Q;ylt-' ~>d; as J>

(1,3, N5 nel, 2, oo ),

‘w.vl.‘"-)"w As jyoo
(n=,2, ---

Then we have

J.



(nel,2, ),

pP=ad., 4, ‘Ml . C«,ttn

where
Cuet ®Q Gy~ 8, (N2, 8, - )

and Cast = O (n> 80) by Lewma §,

leading to p= o by Lemma 4. Thus it
has been proved that D = {e},

Corollary Let § be a compact
zero-semigroup. Every sequence {a.}
where g,e& S" converges to 0 .

Corollary Every sequence {a"}
in § converges uniformly to 0.
In other words, a compact zero-
semigroup is composed of only nil-
potent elements due to 6 .

From Theorem 4 we have directly

Theorem 5, If § is a non-trivial
compact zero-semigroup, then § is not
universal i.e. $*#S . Here we maen
by "non~trivial" that § P{s}.

Proof. Suppose that s'=s , then
it holds §=§'z..-=8%.-, that is,

[ 2.J

N s™=38,

me
But Theorem 4 makes us see that
S=%e}, This is contradictory with
the assumption.

L Examples,

According to Theorem 4, we obtain
two types of compact zero-semigroups
S : one is said to be finitely nil-
potent, i.e.,

S"-HO& (met, 2, 00 ), S'=i°’,
where m is called the null-order or
wn —order of § ;

the other is said to be infinitely
nilpotent i.e.,

)
S'gs.",(ﬂ""-“" ), Q,sn’f",.

If aS=Sa={o}, a is called an
annihilator of $ .

Theorem 6, A compact finitely
nilpotent zero-semigroup $ has at
least one annihilator different from
Zero.

Proof, When m (m&2) is the
m ~order of §, $*' contains an
annihilator distinet from zero since

L giot.
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Now we give some examples of com~
pact zero-semigroup belonging to each
types.
(1) finite zero-semigroup.
A finite zero-semigroup § is
finitely nilpotent and the w -
order of § is not greater than
its d-order. (See (1) with re-
spect to " d -order",)
(2) infinitely nilpotent zero-
semigroup - 1.
Let 1 be the closed interval
(o, =[x; cgxgact]
and & be the set of quaternions
x such that ax¢uga<i for a
constant « , I and @ are
compact zero-semigroups under the
multiplications and the topolo-
gies in ordinary sense,
(3) finitely nilpotent infinite
zero-semigroup.
Let € be the totality of wm-
rowed square matrices, (LU e
whose coefficients are elements
of a campact ring and which have
; =o for (], e, M.
Obviously E is a compact zero-
semigroup with » -order m,

(4) infinitely nilpotent zero-
semigroup - 2,
Let us denote by M the set of
all infinite square matrices,

(45 )iyars, - , Whose coef-

ficients are elements of a com-
pact ring and which have the
form

a;=o jor L), L)t

If we define as the product of
two matrices (a;) and (&4) the
matrix (c¢y) where

oy - fr', aedby ,
and give a topology into M as
usual way, then M is a compact
infinitely nilpotent zero-semi-
group., We notice that M con-
tains a finitely nilpotent sub-
semigroup whose n ~order is
arbitrary.

5 One-idempotent semigroups,

Some results in the compact zero~
semigroup ( §3) are extended to the
case of a compact regular one-idem-
potent semigroup.

Theorem 7. If § 4is a compact
regular one-idempotent semigroup and
G 1is its greatest group, then it



holds that
oD
S":S':‘ mepe, o, ()S'= &,

mey

[
Proof. We denote D = 9‘ s"
Since $™(mey2,-+) are non-empty

compact sets, D is a non-empty com-
pact set. Clearly DS < D and
speD; that is, D is an ideal of
S .+ On the other hand, § is the
least ideal of § ; hence we have
GED .

Let § be the mapping of § on the
difference semigroup S$* of § modulo
G . Then it follows immediately that
4 maps S™to ¢, that is,
(s"=(s¥ and the sequence

§ost>-- >s">8s"™5...
is mapped by § to

*as*"s... 55> s......:

b~ ™
where $(D)= [\ $* for it holds

LA 7]
- g -
that §(Ns~) = N $is™,
nEy ™
Now, suppose D-G# @ , there
exists peD=-§ . Then p 1is mapped
o m
by § to p*e N S* and p*%0°.
mr
Nevertheless, Theorem 4 teaches us
"
that () s* ={0*f. These two con-

flict with each other.
been proved that D=6,

Hence it has

Theorem 8, If a compact regular
one-idempotent semigroup S§ is uni-
versal, § is a compact group.

Proof. By the previous theorem,

0o
§=1S™. If S=S*, then we
mey

have $ =6 , which is a compact group,
(cf. Theorem 1 and Lemma 2)
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