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In our previous paper (0) we con-
sidered a finite one-idempotent semi-
group, i.e., a finite semigroup whose
idempotent is only one, and established
some theories on its structure. How-
ever most of these results are able to
be extended to a compact topological
one-idempotent semigroup (1). The aim of
the present paper is to give some part
of them. We see that if the dis-
cussions here are applied to a finite
case they become simpler than those in
the previous paper.

In f 1 and f 2, we introduce the
concept of greatest group and topology
of difference semigroup respectively.
The propositions on zero-semigroups in
§3 not only play an important part
in the general one-idempotent semi-
group theory ( §5)> but form a main
part of the present paper

0
 In § 4 we

discuss on types of compact zero-
semigroups and give their examples*
On compact enclosed extensions and
compact power semigroups, we shall
discuss more generally in other papers.

1 Greatest group,

We see in this paragraph that a
compact one-idempotent semigroup
generally contains the greatest com-
pact group which is at the same time
the least ideal„

Now a bicompact semigroup was
proved to have at least one idempotent
element (2), but we can prove in
Lemma 1 that this holds even if a
semigroup is compact C3)

Lemma 1. A compact semigroup f
has at least one idempotent.

Proof. Let A be any element of
S

β
 If we set A ** { Λ

n
 j n* i, a, — }

 t

then the derived set A
9
 C*J will be a

group. Take elements 4, c of A',
there exist positive integer sequ-
ences {m\ and I'm;} , where

such that
!,*,-••

"<-
 as

4 -* °* o Then, putting γ « tij -̂ ί ,
it is easy to show that the sequence
t Λ/4 converges to ^c because of

compactness and continuity of semi-
group operation. Therefore 4t^c4
€A'j A* is a commutative subsemi-
group of J , Next, we shall prove
that for 4 « A1 , c * A1 , we can find
x*A' such that 4 * *• £ » Letting
gf* -+ ί , flf-* c as i -* «> , we

choose a subsequence tp^ of {v*ι\ which
satisfies f , < fi < •• </>M < fi < •• ,
o </%.,- *f., < fί- u c* «Λ"). Furthermore
put ft m p. iu* Then α/

{
« α,"'*!

1
' >

while Itf̂ f converges to certain
x*$ if {\ι t is taken adequately
as a subsequence of \\tf

 α
 After

that, attending to limiting case, we
get Csr 4-iL o Thus we have proved
that 4A'» A'4>*A' for all 4-* A

1
 ,

Take any χ«« A
1
 β Then e which

satisfies x
β
c β x, will be an idem-

potent. For, if we select j such
that jjx* » e , and multiply y with
both sides of the equality χ,e » at

β
 ,

then we have «χ,e =» jx
β
 > whereas

ec « e «

Remarkβ Of course A 'is a compact
topological group, and the closure A
of A is a compact one~iderapotent
semigroup. Our precise investigation
on compact semigroups generated by one
element is omitted here, for it is to
be published in other paper.

Lemma 2. A compact one-idempotent
semigroup S whose idempotent e is a
right (left) identity is a compact
group.

Lemma 2
f
. If a compact one-

idempotent semigroup 5 satisfies
Se«S' («$

S
S ), then S is a com-

pact group o

Proof of Lemma 2, Suppose that J*
has a right identity e . Since *S
for any κeS is a compact subsemi-
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group, it contains the idempotent &
by Lemma 1. This means that a right
inverse of x exists. Hence 5 is a
group, We can easily prove J to be
a compact group by the bel w remark

 β

Remark. Let ή be an abstract
group and a compact space. Whenever
the space is compact, continuity of
the mapping of 3 * <τ into $ ,
(χ,«j)-*x.j, implies that the mapping of

φ into itself, x -» at"
1
, is con-

tinuous.

Proof of Lemma 2
 f
 . As * « y β ,

for every *€$ > we get
xe*($e>e » a<ee)*$e* x.

The idempotent c is a right identity
of S , and so the proof is reduced to
Lemma 2

β

Making use of these lemmas, we ob-
tain the following important theorem
with respect to the greatest group ,

Theorem 1. Let 5 be a compact
one- idempotent semigroup and t be
the idempotent o Then the subset
Q s Se satisfies the following
properties*,

(1) % is the compact, greatest
group as well as the least
ideal of 3 , and it holds that

(Sj «cS ,
(2) e commutes with every X* $ »
(3) S is homomorphic on $ .

Proof
 β
 (1) Clearly $ is a compact

one- idempotent subsemigroup, and so
Of e * <τ where e e $ , By Lemma 2 ' ,
C|r is a compact group. Since t is

the identity of the group ̂  , we have
Λ»4»?e«e<ί c eS

Similarly eSc.Se. hence Φ * *
 S
,

Next, let <ϊ» be any group contained in
$ o Considering that * * $ι , we
get <τ, = $,e c: £e β ί . This shows that
<3r is greatest o Finally we shall
prove Cf to be a least ideal . Since
$<τ *$<$«)«: $e«$ and RSc <τ , $ is
an ideal o Now let Q. be any ideal of
S o As <λ is a subsemigroup, e be-
longs to Q . We have Q » Se c S QIC Q
therefore Q is least.

(2) Since e commutes with every
*e of ̂  , we get

» ex.

(3) Let f be the mapping of S
onto $ defined as foo=ιχe»
Then, utilizing (2), we have

It is clear that f is continuous.
Hence f is a homomorphism. Thus the
proof has been completed.

In particular, if the only one
idempotent is a zero written 0 , i.e.,
Q β J0| , we call $ a zero-semi«
group* The above theorem becomes
trivial for a zero-semigroup.

2 Topology of difference semi-
group.

Let us provide the qondition of
regularity for the topological space
S » Let X be a closed ideal of a
regular semigroup $, $*be a differ-
ence semigroup of £ modulo X in the
sense of Rβes 15], and j be the map-
ping of S on $* Of course S* has
a zero 0**

We shall introduce a topology into
S* , Neighbourhoods are defined as
V(0*) β ftV) where Y is any open
set containing X | and, if x* 6̂0
40*, as V<**> mf(tftf) where tfOO is
any neighbourhood of x in S . In
this definition the axioms of Haus-
dorff space are all fulfilled. By
the way, the regularity is effective
to the separation axiom. Then, since
f is easily proved to be continuous
and open, we have

Lemma 3 The topological semigroup
5 is homomorphic on the topological
semigroup §*<>

If S is a one- idempotent semi-
group, then S* is a zero-semigroup,
Compactness and regularity are invari-
ant by the continuous mapping f .
Thus we have

Theorem 2, A compact regular one-
idempotent semigroup is homomorphic
on a compact regular zero-semigroup.

3 Compact zero-semigroup.

Let α, be an element of a semigroup
S . If there exists x$S such that
Λx » α> , Λ is called an r -invariant
element. Likewise α. an < -invariant
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element if 3 * « A. for some jj 6 S >
an rJ -invariant element if XA^ = O.
for some x , 9 f $ These are
termed generally as "invariant ele-
ment".

Theorem 3. If S is a compact
zero-semigroup, £ contains no
invariant element other than a zero,
Conversely if a compact semigroup S
has that property, $ is a zero-
semigroup*

Proof. At first we shall prove
the former half of the theorem. Let
us assume that a compact zero-semi-
group S has an f- in variant element
α*0 . Denote X « {* i *€ $,0.*=? <*f
for a fixed 4Φ0 Immediately, we
see, 0«X * On the other hand, X
is closed because of continuity, and
if then
sz ύt^y » A j that is, X is a compact
subsemigroup. Consequently X con-
tains an iderapotent distinct from
zero. This contradicts with the
definition of a zero-semigroup. The
proof in the case of J- in variance is
similar. When A is an fi -invariant
element, that is, x*«f β A- for some
*» 9 * S *

 Wθ ma
y consider the set

X .{jtj'xnβ A for a fixed **

Next, we shall prove the converse.
If a compact semigroup has an idem-
potent X different from 0 , x is an
invariant element, conflicting with
the assumption. Hence S is a zero-
semigroup. Thus the proof of the
theorem has been accomplished

 β

Lemma 4. Let £ be a compact
zero-semigroup. If f>'* *„ » o ,

then lίm

for every

, and '̂

Proof. It is sufficient to show
that only one limit point of \d**«\
is o o Let p be any limit point of

We denote by ! one of limit points
of {*„,} , i.e., 1,̂  j w < P»•»•> "•« '
Then we have

Therefore H*» α
w
 X

w
 == ° similarly

V| ί«>*

Lemma 5 Let \
ΛΛ
 j be any sequence

in the compact zero-semigroup
Setting <ίι4t. we have

Proof. Let p be any limit point

Of Un\ 5 4*;-* p >
 as
 *'-*•*•

 We

rewrite U»Λ by Ui'f > where
Λ' Λii > °̂r the sake of simplicity.
Moreover set

4,' * <», » c,
f where f£ "" 4-

and take a subsequence \cψ of
such that Ci. •* t ( J -* «> ) . Then
4g' » </ -j <̂  Now* as let j>
attend

 ;
to o* , we have p*Pt » How-

ever Theorem 3 makes us to conclude
that * o ,

Theorem 4« If ί is a compact
zero-semigroup, then

$"-•»•*.
Proof. Clearly ί* ̂  ί** ̂

βί
'
f

Since the sets S*(**ι,*, ^ are non-
empty compact subsβmigroups, the
sequence of the sets has a non-empty
intersection D which forms a compact
subsemigroup « Let any p*D , that is,
p€ S" for all * j then
p

where
>>> "'

Now we denote by { μ.
1
"
1
'} an in-

creasing sequence of natural numbers

By dint of compactness of the space
we can select so suitably a sequence
of sets ,| μ

;
w»^ of natural numbers that

and

Then we have
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where
Cw*

leading to p «. o by Lemma 4* Thus it
has been proved that D

 β
 l^lβ

Corollary Let $ be a compact
zero-semigroup. Every sequence {«*}
where α«* S* converges to 0 .

Corollary Every sequence }α"}
in 5 converges uniformly to 0 .
In other words, a compact zero-
semigroup is composed of only nil-
potent elements due to 6 «

From Theorem 4 we have directly

Theorem 5. If S is a non-trivial
compact zero-semigroup, then S is not
universal i.e. S

X
ΦS , Here we maen

by "non-trivial" that S

Proof* Suppose that $** S , then
it holds S « $*= — s$V , that is,

Π s,

But Theorem 4 makes us see that
S W This is contradictory with
the assumption,

4 Examples ,

According to Theorem 4, we obtain
two types of compact zero-semigroups
S i one is said to be finitely nil-

potent, i»e,,

where *ι is called the null-order or
w -order of S
the other is said to be infinitely
nilpotent i.e.,

$" 3 s-'.c— M,... >, Γ\$
m
*M.

^ ' ' MMhl

If a$r S * = M , α is called an
annihilator of S .

Theorem 6. A compact finitely
nilpotent zero-semigroup 5 has at
least one annihilator different from
zero*

Proof, When ̂  (**2)is the
* -order of S , S

11
*
1
 contains an

annihilator distinct from zero since

Now we give some examples of com-
pact zero-semigroup belonging to each
types.

(1) finite zero-semigroup.
A finite zero-semigroup S is
finitely nilpotent and the vv -
order of S is not greater than
its ίUorder* (See til with re-
spect to " A -order".)

(2) infinitely nilpotent zero-
semigroup - 1.
Let 1 be the closed interval
C o , β e ; j j s r χ } c * x * < < f i 3

and 61 be the set of quaternions
x such that H X K $ *< ( for a

constant «* . I and 0 are
compact zero-semigroups under the
multiplications and the topolo-
gies in ordinary sense.

(3) finitely nilpotent infinite
zero-s emigroup.
Let E be the totality of *-
rowed square matrices, (Aij)^,^-..*
whose coefficients are elements
of a compact ring and which have
A i j » o for i * ί, */J /,*, •••/*•

Obviously ε is a compact zero-
semigroup with * -order •>*» «

(4) infinitely nilpotent zero-
semigroup - 2.
Let us denote by N\ the set of
all infinite square matrices,
(
A
*;. J«M,' ,

 whose coef
-

ficients are elements of a com-
pact ring and which have the
form

df.r o ^f i *J, ί,J»/,f, —

If we define as the product of
two matrices (At;) and <*//) the
matrix \fr

}
) where

c.
v
 » £ α< iv ,

V f»,

and give a topology into M as
usual way, then M is a compact
infinitely nilpotent zero-semi-
group. We notice that M con-
tains a finitely nilpotent sub-
semigroup whose n -order is
arbitrary.

5 One-idempotent semigroups.

Some results in the compact zero**
semigroup ( f3) are extended to the
case of a compact regular onβ-ideππ
potent semigroup.

Theorem 7. If S is a compact
regular one-idempotent semigroup and
Q is its greatest group, then it
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holds that

*«•! ^

Proof. We denote D
 β
 Π S*
<**l

Since S <* ι,a, — ) are non-empty
compact sets, D is a non-empty com-
pact set. Clearly DS e P and
SDcDJ that is, P is an ideal of
5 On the other hand, <% is the
least ideal of S > hence we have
QC D .

Let f be the mapping of S on the
difference semigroup S* of S modulo
Cr Then it follows immediately that

maps $*to
 S
*
w
, that is,

is mapped by £ to

where

that

Π $*** for it holds
•*»»!

)« Π *<*">.•
'

Now, suppose D - ̂ 4 ψ
 f
 there

exists p * D - ή o Then p is mapped

by f to p** Π S*"and p*4 0*,
i»»|

Nevertheless, Theorem 4 teaches us

that Π S**
1
-̂ }' ^hese two con-

flict with each other* Hence it has
been proved that p » $ β

Theorem 8. If a compact regular
one-idempotent semigroup S is uni-
versal, S is a compact group.

Proof. By the previous theorem,

3 * Π Sm If S « S* , then we
**|

have S * Φ , which is a compact group*
(cf . Theorem 1 and Lemma 2)
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