
THE ΊΌPOLOCxY OF SUBHARMONIC FUNCTIONS

By Mitsuru OZAWA

l Introduction*

Let G- be a V-ply connected planar
Jordan region whose boundary is denoted
by B , V being assumed to be a finite
positive integer • Let V - U < * - £ >
be a single-valued function pseudo-
harmonic in Gc and continuous on B *
If \J(*>V has a finite number of
points of relative extremum on B ,
then a relation

holds, where *t is the number of
boundary points affording relative
minima to \J and *- is the sum of the
orders of the saddle points of U on

5
This theorem is a starting point of

the theory introduced by M.Morse-M.H.
Heins [1], in which the more general
results under general assumptions has
stated, but their methods highly de-
pend upon the group-theoretic ones
Soon after Morse fl] has proved this
relation by the most elementary method
being able to consider as an extension
of a previous paper of Morse-Van
Schaack £l], in which they have con-
cerned the so-called non-degenerate
case only.

The object of the present paper is
to extend the above mentioned relation
to the subharmonic functions. We shall
principally be interested to obtain
the result. Therefore we shall begin
with somewhat stronger assumptions
than we need actually, ' In our case
the so-called critical sets are not
always the isolated ones (of course,
not always the non-degenerate ones),
and moreover they may consist of a
critical line "en bloc". Difficulties
will occur in this aspect. Thus we
shall assume the stronger assumptions,
some of which involve the essential
parts of Morse's paper.

2. The basic assumptions.

Let Q and B be the same as in the
Morse's paper. Let n -"(*,#) be a
function defined on Gr , single-valued
and subharmonic in Q , and continuous
on 5" , and not reducing to a constant
in any compact subregion of 5 , where
<? = <τ • 6 , where the subharmonicity
of u means that the mean valued of u
in any small disc are always not less
than the value at the center.

For the sake of simplicity, we shall
confine ourselves to the case where α
does not reduce to a constant on any
subinterval of the boundary & unless
the contrary is explicitly mentioned*

Definition 1. If a point ( *, > )
satisfies UKjp- c , then we call
( x, J ) lies on the level c . J/CO
means the region below c , that is,
the collection of all the points on
Q satisfying u(x.))jC C . Simi-
larly, 0(t) , yco

 f
 yic) mean the

region above c , the set below c ,
the set above C , respectively, which
are defined by the collection of all
the points satisfying * c*, 3) > c ,
uu<3) 5 c , utx.p 2 c on <f ,
respectively.

Definition 2. Branching order of
level at P with respect to a neighbor-
hood IN/C F2.

 L e t
 P be an arbitrary

point of Q and rl
£
(P) be a connected

component of the set common to_a fixed
6-neighborhood of P and to <? • Let
Atf

ε
tP) be a set of the points each

of which can be arc wisely connected to
P along a continuous arc lying on
the level u(p) in K€(P> . That the
level u. (p) at P has the finite branch-
ing order fc>wf<P> with respect to the
neighborhood I^<P> means that the
point-set AN£(P)-P has a finite number
of connected components.* If it is not

t Pthe case, we put (P)

Theorem 1. At each point P of (r ,
lim ί

u
 (?) exists and is either a

finite non-negative integer or an infi-
nite number.
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Proof. A component of A^,(p) - P
is also arcwisely connectible in λ/

f
<P>

as a member of A^(ί>)- P for s > ι'
>0. Thus the monotoneity holds, i.β >
b C P ) l b*

t
,(P> for t>

> o and hence the desired result.

Definition 3. |~ *>*£<?> =
is called the relating branching order
of level at P .

Corollary 1. If U p ) ί <*>
 f

then, there is a small positive number
C such that t^ (P) « *»̂  P> .

Bach connected component of ̂
t
 C P)

AU<«> or of N€(P)Λ
 U < O for a

sufficiently small positive number t
is called the sector below ui?) or
above ucp) relating to £-neighborhood
at P , where c * u(P) .

Definition 4. Canonical neighbor-
hood of an interior point P If
there is a neighborhood *J<P> of P ,
satisfying the following conditions,
then hl(P) is called the canonical
neighborhood of P :

i) Let T map homβomorphically
N(P) to the unit disc TflCPΪ
(1*1 i i , Z» x t i j « ϊ c i # ) such that

° and the boundary curve
- NKP>) of w(P) , the closure of

9
 corresponds to the peripherie

0*1 = 1)

li) If Up) * o , then each con-
nected component of A^(P) - P corres-
ponds to a radius

iii) There is no point lying on the
level at P except the set A^(P>

on ιϊ7p> .

iy) There are a finite number of
extremum joints of u on the boundary
o£ N(p) , where we consider u. as the
function defined on that boundary.

Canonical neighborhood of a bounda-
ry point P

If there is a neighborhood N(P> of
P , satisfying the following condi-
tions, then M(p) is also called the
canonical neighborhood of P :

i) Let T map horaeomorphically
Wip) to the right half of the unit

discTRTFϊ such that TίP) = o and
B/N VFFS corresponds to the di-
ameter (χ»o, -1S_^ ̂  1 ) and
(i?(p)-h/(p>)- B Λ ̂

ί p )
 corresponds to the

peripherie |*| « 1 , x > o .

ii) If h(P) Φ 0 , then each con-
nected component of A^(P> — P corres-
ponds to a radius

iii) and iv) are the same as in the
previous case of inner point, respec-
tively.

Vίβ are now in a position to explain
our fundamental assumptions.

F.A.I. There is no point on 5
such that b( P) = βo „

F.A.II. There always exists a ca-
nonical neighborhood K/<P>
of each P € Q . For every

*>o) is also a canonical
neighborhood of P , and
for every P f B , T O zl< r,
o<r<|, χ>o) is also a ca-
nonical neighborhood of
P •

F A.III. For any point ?€&, P
cannot be a cluster point
of the sequence \ Pn} ,
such that P«,€ Q- and

F.A.IV. For any point Pe 5 , P
cannot be a cluster point
of the sequence { Pn \ ,
such that Pn fe B and
KPn> ̂  1

From F.A.II. and the Heine-Borelfs
covering theorem we have

Corollary 2. There are a finite
number of relative extremum points of
u on B , when u is considered as a
continuous function defined on B ,
and

Corollary 3 There are a finite
number of subintervals of each proper
boundary of each sector in t4CB) , on
which u(P) is monotone and continu-
ous, where the proper boundary of a
sector means the set common to the
boundary of hl(P) and to the sector.

3. Critical points.



We shall now define many sorts of
critical points*

Definition 5. Saddle point.

If the number *
sectors below *(P>

£
CP> of the
relating to

at P is not less than 2, then
*ίtff<P) ""I

 i s
 called t̂ he order of

the saddle point P relating to
M

c
(f).

As a remark with respect to the
definition of the sector below *lP) ,
we shall only concern that it is always
arcwisely connectible to the vertex P
along a continuous arc belonging to
that sector below u<P>

 β

In general we have the following
theorem with regard to the quantity

Theorem 2.

°V/
t
 * P)

At each point P of (τ ,
exists and is either

a finite non-negative integer or an
infinite number.

Proof can be done in a similar
manner as in Theorem l

β
 But under

our F.A. there does not occur that
£ ^

 Tf4 (
pj

 m
 oo . (See. Lemma 2,

No. 5)

Corollary 4. If *>

then there is a small positive number
€ such that σ\, (

£-•0

Definition 6. Cp)-i

- i is called the order of the saddle
point P , if 2

Definition 7 If u<P)<
(or ucP>>ιuα>) holds for any point
Q, belonging to tft<P> and being
different from P , then P is called
a strictly relative minimum point (or
maximum point). If utP)* ucQ,) ( or
uiP) ̂  u.(€l)) holds for any point Q,
belonging to Nt(?) and being differ-
ent from F , and there is a point β,
for each t such that *<P> = »*(fi) ,
then P is called a non-strictly rela-
tive minimum (or maximum) point.

Definition 8 If any point of a
one-dimensional connected continuum
V is a non-strictly relative minimum

point, then V is called a minimum
locus

Definition 9. If there is at least
one point P

o
 , named a connecting

point relating 2fV > satisfying the
following conditions, then the minimum
locus Vo is called an open minimum
locus

(i) P. « Λ ,

(ii) P
o
 is arcwisely connectible

to every point of V
o
 by a subarc of

If there is no connecting point on
a given minimum locus, then this locus
is called a closed minimum locus.

Theorem 3 On a minimum locus >•
(and relating connecting point P

β
 ),

u(P) remains constant

Proof. If P is an inner point of
Ϋ , then ULQ.) * α ( P ) , where

Q. € Ίfo and belongs to a canonical
neighborhood of P Thus by Heine-
Borel's covering theorem tt(Q,)»
constant at any point of Vo
Since P

9
 is a cluster point of a

sequence { P
Λ
 j , P

Λ
 6 y

β f
 the re-

lation u<p
#
) . lL u ( p j s

constant remains true.

Definition 10. If there is at
least one critical point, that is,
either a relative extremum point
(strictly or non-strictly) or an
interior point having fc(P) 5̂  £ or
a boundary point having b(p) φ 1 ,
on the level lying on c , then c is
called a critical value• If it is not
the case, that is, there are only the
ordinary points on the level lying on
C , then c is called an ordinary
value.

4. Considerations in the small.

Next we shall determine the local
aspects of the level line around a
point P .

A) Case of an inner point P .
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Since the sectors at P are finite
in number by F.A.I, it is sufficient
to examine the local aspects of the
level line in each sector. Moreover
we shall be able to choose a canonical
neighborhood hKP> satisfying the
following condition by F A II and III:

In I>/(P> there is no point Q,
with 1»(&)Φ Z except at most at P .

Let us denote the sector in question
by SCp) and its proper boundary by
PB(P) and other boundary by B(P> .

i) If 1><P) = 0 , then p is a
strictly relative minimum point in
view of the subharmonicity of u

 y

thus <r(p) s o , and β(p) is an
empty seto SCP> is a sector above

Let R-£ ( P) be a domain such that
(α)-u(p>

#
< ε

o
 and ε

o
£u<T)-"<P> ,

T€ PB<P> > and p and Q, are mutual-
ly arcwisely connectible on Rg^ίP)

 β

Let the boundary of R
β
,<P> βe de-

noted by Γf
#
 Then Γ"*

Cβ
 is a simple

closed curve and f~{
# A
 pβ(P) is

empty. And, on Γ\* , u 10,)= utp) + ?
o
 .

Let t vary from 0 to i
a
 , then

R.|4P) monotonically expands from a
point P to a domain Rf

o
CP) > and

Γ% consists always of a simple
closed curve. Strictly speaking, we
must prove the following fact:

By Lemma 10 which will be explained
in the sequel, there is only a finite
number of critical values. Hence we
may choose such a canonical neighbor-
hood N<P> that there is no critical
value except at P . If there are two
disjoint connected components on which
u(Q)< tt<P) 4 € o , then there is
at leaόt one critical point other than
P , which leads to

7
 a contradiction.

Thus there is only one connected com-
ponent, satisfying u(φ) <c u(P)
• 8

O
 , in Nip) .

ii) If Up) - 1 , then P is a

non-strictly relative minimum point

in view of the subharmonicity of VL

thus fr'ΐp) = 0 , and B(P) is only

one simple arc starting from P to a

boundary point R, of ΛKP> . S(P) is

a sector above u(P) .

- "<P>) , where £„(* R,) is the

relative minimum point on Pβ(P>
 y

and P and Q are mutually arcwisely
connectible on &*

O
(P) . Let the

boundary of ^VfP) belonging to SCP)
be denoted by iε

o
 , being also a

simple arc and ending at two boundary
points T, , T

%
 on which uiT^)

= u(P)+£
o
 and^u^ is monotone and con-

tinuous on RjT^

iii) If t(P) ̂ % , then S<P) is
either a sector below u(p> or above
tt(P) , and J3(P) consists of two
simple arcs PR, , pR.̂  R., , R

a

is a sector above u.tf>),
and P^* are similarly

If Sj
then R^
defined.

If .S/<P> is a sector below u.CP),
then Rig CP> and Γ/ are defined in
the following manner:

is a domain on which u{Qϋ
-e and any point fteflf(P)

is arcwisely connectible to P along
a curve belonging to R.|CP)

 9
 where

-2 >w(a
Λ
>- \Aί?)

 9
 Q

n
 being

any relative maximum point on PB(P)
Γ^" is a boundary arc belonging to

Let be a domain such that
ε

#
 and i

 0
 < V*

In each case R€<P) is a simply
connected domain bounded by f̂ ** , by
two radii^R, , PR* and by two
subarcs R/f, , £Γ?a ©

n
 which

tt is monotone. R.^(P) increases
iRonotonically and cdhtinuously from
A^P) * 5jTp) , that is, two

radii PR., , PR.
2
 , when 2 in-

creases monotonically and continuously
from O o Γ"Y** is a simple arc on
which U(Q.)= u(f>) + t or tt(Q,)
ΪΪ uίp) - ε and b(έSl) =Z for each

ε .
B) Case of a boundary point P .

i) If tcp)= 0 , then P is a

strictly relative maximum or minimum

point

ii) If t<P) £ 1 , it is sufficient
to consider the circumstances at a
boundary sector.

We shall be able to choose a ca-
nonical neighborhood hi IP) satisfying
the following condition by F.Λ.II, III
and IV:
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m 5 ^ NίP)
 there is

no point Q, with hίGDφ 2> , and on
B Λ N

(
P> there is no point Q, with

t (β,) ̂  i Since the definitions
of Kf(P) and Γf are similar as in
A), SO we may omit off the discussions.

Definition 11.

lindrical

C lSf(p)
£

ί P > i s
 called a cy-

-neighborhood of P , if
1 , If H F ) » O , then

R€C'P> is called so.

Lemma 1. For any point of $ ,
CNίP)f is a simply connected do-
main increasing from A

N
IP) with t ,

if £ is a sufficiently small positive
number. The same conclusion holds for
Rf(P) of i -th sector Sj , and
[*"** is a simple arc^and b(Q,)=2
for every points d e P

f
* for each

sufficiently small positive number I .

.We shall often make use of these
R*ίP) and Γt each denoting i—th
sectorial £ -neighborhood of P and
its proper boundary, respectively.
Moreover we denote PR., and PR* on
which u<Q.)

s
 *CP) by the equally

level boundaries of R£ ίP) , and
R-* T̂  and R* Ti by the monotonic
boundaries of R|><P) , where S^ is
not a boundary sector. If Sj is a
boundary sector, then there is one
equally level boundary PR., and two
monotonic boundaries R,"Π and PTa o
Let V/ίP)= Rf(P) + JT? two
monotonic boundaries, and we call it
i -th adding sectorial f -closure of

p.

5. Relation between
Up) and o-(p) .

Lemma 2» Let P be a non extremum
point.

If then

If ?€• B , then
je(<rcp)~l) ύ tip) .

Proof. We may prove this by choos-
ing a cylindrical £ -neighborhood
CN/(P)

£
 of P • By the subhar-

monicity of u , two sectors below
tup) have no common point except
only a common vertex P If P e Gr ,
then each sector below u(p) has two
distinct boundaries in CM(P)

t

Therefore the number of the connected
components of A ^ ί P ) ~ P is at
least JEσ-ίp) . If P i B , then
each boundary sector below tup) has
a boundary in C N( P)e and each in-
terior sector below w-tp) has two dis-
tinct boundaries in C M P )

£
 •

Therefore we have Z (<rtp)±2)+ I
ύ U p ) .

Since VL is subharmonic, there is
no strictly relative maximum point in
Q- and no non-strictly relative maxi-
mum point on Q

 9

Lemma 3. If 1<P> - 1 , then P is
either an ordinary boundary point or a
boundary non-strictly relative minimum
point or an inner non-strictly rela-
tive minimum point.

Proof. If P is not a relative
minimum point, then there is a point
Q. such that u(p) ^ u (Q) in
CN(p)

e
 Thus there is at least

one sector below U(p)
 >
 that is,

σ-(P) £ 1 .

If P *
UP)

 β
 1

then z <r< p)
which is absurd.

If P 6 B , then Z <r(?) i
*= 3 , that.is, crcp) ~ ί . Then
there is at least one sector above
tup) , for, if it is not the case, we
have two possibilities; that is, P
is a strictly maximum point, or a
subarc of B ending P lies on the
level u(P) in Cfs/<P)€ . These are
both contradictory.
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Lemma 4. If P is an ordinary
inner point, then U p ) « % and
= 1 , and, if P is an ordinary
boundary point, then U p ) = 1 and
0"(p> » 1 , and vice versa.

Proof of the above Lemma is easy

6. Considerations in the large.

Lemma 5 Each closed minimum locus
can be divided into a finite number of
simple arcs*

Proof If a closed minimum locus
cannot be divided into a finite number
of simple arcs, then there is an infi-
nite number of points with t><P*) Z 3̂  .
These points cluster at a point on Q-,
which is impossible by F.A.III and IV.

Definition 12 Euler number of a
closed minimum locus*

A closed minimum locus can be re-
garded as a one-dimensional closed
complex in the sense of the combi-
natorial topology. We shall now de-
fine the Euler number of this locus
by a number a.

o
 - a.

t
 , where 1L

{

({so,l) are the numbers of the i -
dimensional simplices.

Lemma 6. The closed minimum loci
are finite in number and each of them
is of finite Euler number*

Proof, Each closed minimum locus
has either at least a point t(P)« 1
or at least a point t( P) £ 3 or
b(P> * Z for every point of that
locus If there is an infinite number
of closed minimum loci, then there are
an infinite number of either points
P« with KR.)« I or £ 3 , or
looping arcs, i.e., simple closed
curves in the ordinary sense. If
I P

n
} contains an infinite subse-

quence f P«
v
} such that b<P.O• * 1

or Z 3 and P^ίQ , then this is
absurd by P.A.III. Moreover if j P

n
)

contains an infinite subsequence
\ P»Λ such that fe(P

ny
) Z 3 and

P»v« & , this is absurd by F A.IV.
If I P

Λ
 \ contains an infinite subse-

quence I Pt»v) such that fc<P«
y
) * i

and Pn
v
 ̂  6 , then this is absurd by

Corollary 3> since each ?
ny
 is a

relative minimum point on 6 ,

Each looping arc Ht can correspond
to a boundary component of 6 , and
the different looping arcs can corres-
pond to the different boundary com-
ponents of B by a suitable choice,
since u is a subharmonic continuous
function* The finiteness of the loop-
ing arcs is concluded by the finite-
ness of the connectivity of <τ

The second half of this Lemma
follows by the above Lemma 5

Lemma 7 Strictly relative minimum
or maximum points of u are finite in
number*

Lemma 8* At each connecting point
P

o
 relating to an open minimum locus

Ϋo , u<p
β
) = the level of Yo and

(Γ(p
o
) z 1 Moreover b(P

0
) s 3

for Po e <q- and UPo) 5 % for P
β
 e B «

Proof. If ^ P ) = 0
 9
 then P

o
 is

a relative minimum point and arcwiseljr
connectible to Y

o
 . Thus P

o
 * V

o
 ,

which is absurd. Thus <r(PJ 1 1 .
And moreover there are two sectors
above u {p

e
) in C Nίp

o
)
 t
 by the ex-

istence of y
β
 Hence we have l>tp

0
)

> * f or P £ Q , and t (p
β
) *Z

for f>
p
 € B •

Lemma 9 Bach open minimum locus
can be divided into a finite number of
simple arcs and the open minimum loci
are finite in number.

Proof* The first half of the Lemma
is easy

Each open minimum locus has at
least one relating connecting point
PM β

 Thus there are an infinite
number of connecting points \?

n
 ) ,

if the open minimum loci are infinite
in number. If | Pn| has an infinite
subsequence | P

n(
,) all points of

which coincide with a point P
o
 ,

then t(P
0
)= βo , which contradicts

F.A.I. Therefore there is an infinite
subsequence j P

W|/
) all points of

which are different. On the other
hand, P

M(
, satisfies either bίp

ny
)

έ3 or ^ £ , according < to P
Mv
ς <?•

or B . Each case contains a contra-
diction by F.A III or IV, respectively.

Definition 13. Let Π > called a
relating curve to a given open minimum
locus Y

o
 , be a curve obtained by
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adding all the relating connecting
points to a given open minimum locus

Obviously Γ^ is a one-flimensional
closed complex*

Definition 14. Euler number
of an open minimum locus y© •

(Euler number of the re-
lating curve Π )

- (the number of the re-
lating connecting points
to y

0
 ).

Lemma 10 There are a finite
number of connected components of the
critical points on Q ,

Lemma 11 There are a finite
number of critical values of u. .

These Lemmas are evident by F.A.II,
III and IV and Lemmas 6, 7 and 9 and
the theorem 3

7. Maximal continuations of
a level curve.

By the finiteness of the critical
values of u. we may put that there is
no critical value on the closed inter-
val [c-t , c + O except only at a
value c which is either a critical
value or an ordinary value,

A connected component L,(O can be
covered by a finite number of canoni-
cal neighborhoods M ( P

t
 ) , < = 1 ,

•. , n , where the sequence { P^ } con-
tains all the critical points such
that U P > 3 3 if P <& <τ , \><?)*Z
if P * & and the points being b(P) * 1 ,
and P

v
 6 L f O . P< may be not all

different.

If Mίc) satisfies the following
conditions, then we call it/a maximal
arrivable level component of L(c) or
a maximal continuation.

i) M ( o C L(c) and
closed set on L (O ,

i
3
 a

ii) Let 1 R,l be a subset of \?i)
belonging to M ( O . And \ Pi,} can
be ordered such that {Pi,) and
t Piv* 1

 a r θ
 mutually connectlble

along a simple continuous arc Z ,

belonging to a set common to a con-
nected component D of V(n and to
the sum set N(P

iv
)

 w
W(,Pivι) ,

and on that arc Z ucR)< c.n
 ?

where D is independent of the choice
of the index and t* is an arbitrary
small positive number and £*< 6

 #

iii) The subarc P^ΓP<
V
^ of M(c)

is simple and connected, and it be-
longs to

iv) Any subarc of Ltc> containing
does not satisfy these three

conditions.

We may conventionally suppose

Let L (c) be a maximal continu-
ation, and {fs/(Pi)| be a finite
number of canonical neighborhoods
covering L CO and satisfying the
above mentioned conditions ii) and
iii) We denote further by KΓΓR1
the part of U[Pj) belonging to D ,
that is, D

Λ
 K/ ( P

£
) , Corresponding

to each utpo we construct the
sectorial €

β
 -neighborhood R

fβ
(P^)

satisfying the condition that the two
monotonic boundaries of R

f o
 ( P^)

are contained in the former and latter
sectorial £

o
 -closures, respectively>

We put Π
o
<Pt> *Ti)Tfiϊ ^ d

T
f
(t) € Γ

f
/PtH>,

and twô moripjbpnic boundaries

% *.

and we call it a rectangular-like or
ring-like domain. On RD(f)

t
,
 w
« can

introduce a triangulation: Thearcs
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x
 ana T

X
K ) RalTΓ U -

u ) constitute all the edges of ^
Here we have to remark that the no- °
tations of the above listed ones are
suitably changed for i * 1 and * •
The set ΊtDcc)

Cβ
 ~."L,u> ±

a
 denoted by

f
β
 -field of L<c> i £ f ^ ( L ( )

When RD«>ι
β
 is triangulated, we

must consider all the vertices and
edges belonging to L<o with their
orders, or, more precisely, with their
incidence relations (in the sense of
the combinatorial topology) to the
other edges and triangles, and, if an
edge occurs two times in the different
orders, then we shall consider that
these ordered edges are different and
are separated mutually into two diffext-
ent edges having the same incidence
relations for the edges and triangles
belonging to fcDco€o - LtO as* that
of t p original edge, respectively,
tod we call this triangulated L u >
and R P(c> eo the ordered Ltc> and the
ordered RD<o

 £β 9
 respectively*

Then £, -field <ξjf€ (U«) itself is
considered as an ordered triangulated
*o -field

An example of the ordered L(o
the ordered R o t o , .

and

β Fίj, 3.

«•• shows a level curve lying on c ,
—•— shows an ordered maximal continu-

ation. ^
25552 s h o w s an *• -field f\irfe(L<<>) .
.... shows a level curve lying on

The Euler number of <Ff
o
(L

( c )
) is

equal to zero. In fact, the Euler

number of ̂ ^ ( L l " ) is equal to (the
Euler number of ordered R.Dcc)

to
 )~

(the Euler number of ordered l_Λ
c
> ),

and we can easily calculate this by
the above triangulation. Thus we have

Lemma kχ Any i
o
 -field ^e

β
(Lι«)

of a maxJunal continuation L(c) is° of
Euler number zero.

We shall next prove that the maximal
continuations lying on the level c
are finite in number for any value c «

Let c be an ordinary value, then
each connected component is a simple
arc. And there are only two possi-
bilities, that is, one is the case of
a looping simple arc (simple closed
curve) and the other is that of a
simple curve ending at two different
boundary points Moreover o~ι p)» 1
and b(P)

 e
 Z hold for any point

P€(J- s and <r(P)=i and U p ) * I
hold for boundary points P . Thus
each connected component lying on c
is a maximal continuation.

a) If y is a looping simple arc,
then V bounds a domain D o belonging
to Q .

If u.(Q) > c % where Q, £ L-v and
Q is a neighboring point of V , then
there is a boundary component of 13 in
D v If u(Q)<c 9 where QL € D^
and Q. is a neighboring point of V ,
then there is either a minimum point
of u or a boundary component of B in
D"V "" V These facts due to the
subharmonicity of u •

Thus a looping simple arc V , ly-
ing on an ordinary value, corresponds
to either a minimum point or a bounda-
ry component of 6 Therefore the
looping simple arcs lying on the same
ordinary value are finite in number.

b) If there are an infinite number
of non-looping simple arcs lying on
the level c , then there is a bounda-
ry component of B on which there ex-
ist an infinite number of points'ly-
ing on C . Then I Pn} has an infi-
nite subsequence ) Pw,j_ lying on B^
such that the subarc pn^ pny^ of

no point lying on c On
there is at least either

a maximum point or a minimum point,
which leads to a contradiction. For
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there are only a finite number of
extremum points on 5 ,

Next let C be a critical value of

Let L(O be an ordered maximal
continuation lying on c . If we con-
sider the level lines lying on c+e

c
 ,

that is, the proper boundaries of
8

β
 -field of all L ( O , then there

are a finite number of the level lines
lying on c + i

 o
 The number of the

maximal continuations lying on c is
less than or equal to the number of
the level lines lying on c + ε

o 0

And each of the isolated points lying
on c is also considered as a maximal
continuation, but this case is evident.
Thus we have

Lemma A2 There are a finite
number of maximal continuations lying
on any value of u on <J' •

80 Lemmas concerning the vari-
ations of the Euler numbers»

Let E ( S ) be the Euler number of a

closed set £ . Λ'β put E,(
c
)-E(ϋ

ί e

)
2
«>= E((Lf(o)
f-E-ίe-O.

and

If C is an ordinary value of u. ,
then U(

c
)« (U(c)) *

Proof
β
 Each connected component of

the levels lying on c is a simple
curve and t̂ vo possibilities can occur,
one is the case of a simple closed
curve and the other is that of a curve
ending to two different boundary
points 0

Moreover cr<p) = t for any point P
with α(p)« c , Thus for any point
P with u(p)«c there is only oae
sector below c , 'Therefore P is a
cluster point of P^ , uίP* >< c .
Thus (J (O C (yco) . On the other
hand \J (o ^ (yco) is evident for(y)
every c , either ordinary or criti-
cal. Thus we have

Lemma P. If c is an ordinary
value of u , then E,<c>« E

2
<*>

Lemma C. If c is an ordinary
value of n and 1 is a sufficiently
small positive number, then EC,(

C
>

Corollary 5. If there is no criti-
cal value on a closed interval Γ

α
*Vl >

then EΓi<c) » a constant for &, * c
έ \> .

By the definition of y < O and
(yu>) , y<

c
>- (y^°) consists of

some number of open minimum loci, of
closed minimum loci and of the iso-
lated minimum points lying on the
level c These are finite in number.

Let C-iU) and 0-i<*> be the
numbers of the closed minimum loci and
the open minimum loci whose Euler
number equal to -I , respectively^ and
both lie on the level c . Let C ( O
be the sum of the number of the closed
minimum loci whose Euler number are
equal to 1 and the number of the iso-
lated minimum point lying on the level
c .

Then we have

Lemma D»

t. o t o

If we construct a closed covering
domain C((yto) ) of (yίo) by
separating the cr(p) sectors below
u(p) at each saddle point P , then
the every level lying on c is simple
in C((U(<>) ) Here we remark that
the method of the separation is the
following manner: Two different
sectors below uiP) , P being a ....

 Λ

saddle point of u , are not mutually
connectible in a canonical neighbor-
hood M<P> of P

Thus we have the following lemma in
the similar manner as in Lemma A^

Lemma E. E ( C ( Π J M } ) = Ejc- ε)
for a sufficiently small positive I

Let Λ)(
C
> be the sum of the orders

of all saddle points lying on c .

Lemma F

Proof. For each saddle point the
?5uler number decreases with the order
of that saddle point. For a point
P with either UP>~ 0 , o-(p)si
(boundary maximum point) or b(p)»£ ,

1 , no change occurs. For
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minimum loci and minimum points and
such a connecting point that <r<p)-l,
we need not pay our attentions.

Lemma Go For a sufficiently small
positive number t and for any c ,

Proof. By the finiteness of the
maximal continuations lying on the
level c and their relating £ -fields
and the Lemma V^, this is evident.

9 The first main theorem.

Theorem A» Let α satisfy F.A.I,
II, III arid IV and be subharmonic,
then we have a relation

+ θ -JS ,

, Q
2
~ Σ2Σ2

Z -

where

(-i)C-

and S

Proof. There are a finite number
of the critical values of u. , de-
noted by c

t
 , , (:,„, according to

their orders, and we suppose that
there is no other critical value. Let
* * <

u
 * K hold on <k , then E^ί")

as 0 and E,(M) = ϋ-v . By the
Lemmas mentioned above we can calcu-
late all the jumps of the Euler numbers
E

t
( c ) at all the critical values c< .

Therefore we have the Theorem A.

Theorem B. Under the same assump-
tions as in Theorem A, then we have
an inequality

where Q.

Proof. The theorem is deduced by
the subharmonicity of α . One may
refer to the proofs of Lemma 6 and
Lemma A2 More precisely, if V has
the Euler number -u (* £ o) and is
a closed minimum locus, then there
correspond to at least *n 1-1 different
boundary components. And the differ-
ent closed minimum loci correspond to
the different collections of the
corresponding boundary components.

10« Supplementary note.

1. In the case where u can reduce
to a constant on any subinterval of
the boundary curve , we modify our
assumptions as follows:

F.A.I, II, III are unaltered.

F.A.IV. On B , there are a finite
number of maximal intervals on
which u is constant, where the
word "maximal'

1
 means that there

is no interval containing the
interval and satisfying the
constancy of u . These intervals
are denoted by Γ, , , I^
For any point p * 5 - jg^ I* >

P cannot be a cluster point of
a sequence | Pίij, such that P^
6 b and bCP*} 4= I . For any
end point P of Γ̂_ , p cannot
be a cluster point of a sequence
\ P^) , such that P* € 6, { 1^
and b<Ptι)τ* 1 . For any point
P£ I}, , P cannot be a cluster
point of a sequence j E*] , such
that P^€ Ij and k ( R J # £

Under these fundamental assump-
tions, we have the same results,
formally, and we can proceed to our
discussions with some unessential
modifications. The concept of the
"level index" due to Uorsβ-Heins [1]
or Morse [ 2 ] is contained in our
definition of the Euler number of the
open minimum locus.

11. Another application
and examples.

Corollary 6. C
t
 - 5 ^

Proof. Since C
a
 $ 0 and

we have the desired result.
θ

Corollary 7
then S * 0 .

If = 1 and C, = 1

i) Let u = |f(2)|
2
 , where j"C*> is

ajregular analytic function of x on
<J- . In this case there is no non-
isolated differential critical point
on <? , and moreover we can transfer
the Morse-Heins

1
 theory by introducing

the poles of u suitably and taking
the logarithm of t*. . The introducing
method of the poles of α will be ex-
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plained in No. 14

ii) The case where Δn-Pu and
either p i o o r ^ O , definitely

>

on (J

iii) The case where Δu = const.

on

There are many examples other than
those listed above.

12. Topology of superharmonic:
functions,,

Let -v be subharmonic and continu-
ous and satisfy the P.A.I

>
 II, III and

IV. vVe shall now directly examine the
topology of superharmonic function v
without passing through that of sub-
harmonic function -V . Here we
should explain some needed modifi-
cations of several definitions*

i) Saddle points: Let WίP) be a
canonical neighborhood of P Let
v(QJ< vcp) , Q, S N(P) , * P ,

then we construct a component, called
an extended sector below vcp) , each
point of which is arcwisely con-
nectible with & by a continuous arc
belonging to M(P>- P , and on which
if(fc)S v(P) If the number
f

w
(p) of the extended sectors below

v(p) is not infinite, then there
exists a limit of T^ (P) when A/ de-
creases to a point P . If Tip)
- &** y p ) i 2 , then we say that

T(P)-1 is the order of saddle point
of v- or P is a saddle point of order
TCP) - 1 .

ii) Maximum locus of V : The
maximum locus of v is the minimum
locus of -or .

iii) Open or closed maximum locus.
If a maximum locus V

o
 of v has

either a connecting point P
o
 when

Vo is considered as a minimum locus
of -\r or a boundary point, then V<>
is called an open maximum locus of v .
If it is not the case, then Ί/

9
 is

called a closed max^mnm locus of v
 P

The definitions of the critical
points, critical values, ordinary
points and ordinary values are the
same as in the subharmonic case. We

have already proved the finiteness of
the critical values of - v

 %
 and hence

we have simultaneously the finiteness
of the critical values of V •

iv) The Euler number of a closed
maximum locus V

Vve shall now define that the Euler
number E ( # ) of a closed maximum locus
V is equal to the number of a closed
minimum locus Ί? oΐ -v .

v) The Euler number of an open
maximum locus % .

Let TZ be a relating curve of
y

0
 obtained by adding all the re-

lating connecting points and the re-
lating boundary points of V

o
 VYe

then define the Euler number ErV
0
>

of ^
0
 in the following manner:

E<ϊo)=- E ? ( Π ) - (the number of all
the relating connecting
points and the relating
boundary points of "tf

0
 )•

Then we have the second main
theorem:

Theorem F. Let \r be superharmonic
iand continuous on
p

continuous on
B > and satisfy the F.A.I, II, III

and IV. Then we have a relation

C... • C

»M °M ~
where C

o n
 is the number of the iso-

lated boundary minimum points, C,
M

is the number of the closed maximum
loci having the Euler number 1, C

a M

ia the sum of the Euler numbers of the
closed maximum loci having the Euler
number Ik 0 is the sum of the
Euler numbers of the open maximum loci
and S ^ is ^

n e s υ m o f t h e o r d β r s
 °f

the extended saddle points

Let E(yίf)) be the number of Ϋ of
the function f • Let M and *". be
the maximum locus and minimum locus,
respectively, where the word "locus

11

contain the isolated point* Let C
and 0 denote the closed and open
locus, respectively. Let indices 1
and 2 indicate the first and the
second kinds, respectively, there the
first kind or the second kind means
the locus whose Euler number is 1 or
is less than or equal to 0, respective-
ly.
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Let EK<v)),

E, tv) - Σ E (c M,(
 v )
) , E» w - Σ ) E(c M

Z
M),

O
z
(tr)

Let ^cb be the total number of the
relating boundary points of such a
locus that belongs to the set of

Hίv)^o,hU)^ C*t(-v) , and
be the total number of the re-

lating boundary points of such a locus
that belongs to the set of O

z
M(v)

Λ Oa/*n(-v) and does not belong to a set
Of relating connecting points of the
given maximum locus of v •

Then we have the following four
relations:

Z-v

3)

4)

where S{ (j-) and S^ίf) are the sum of
orders of the inner saddle points and
that of the boundary saddle points of
ί , respectively. Then it follows
that

5) S<ίv).

Therefore we have a curious boundary
relation, that is,

Iheorem β» Under the same hy-
potheses as in Theorem A, we have a
relation

M
w
(u)-/m

b
(tt) « S^(-u) -S^ίu),

where M
b
(u) and ̂ ( w ) denote the

numbers of the maximum and minimum
boundary points of υ- , respectively.

13 Proof of the Theorem F.

Let V(o , V(o , Vco and V(c)
be the sets of points satisfying the
conditions v < c , v -k c , v > c
and v 2 c , respectively.

The set V(c) - (Vco) consists of
a finite number of the isolated minimum
boundary points. Thus we have

Lemma A'. E(Y«»-E ((7^))- O θ ,
where C

o
,*(

c
> is the number of the

isolated minimum boundary points lying
on the level c .

kβ^ C P U ) be the compact covering
domain of (̂ (t>) which is constructed
by separating the respective extended
saddle points with their orders. Here
we remark that the method of the sepa-
ration is the following manner:

Two different extended sectors
below v<f)

 f
 Ϋ being a saddle point

of v , are not mutually connectible
in a canonical neighborhood |\KP> of
P .

Then we have

Lemma B
1
.

^ S(o

where S^
c
) is the sum of orders of

the extended saddle points lying on
C •

Covering domain of the second kind
KD(c) is defined in the following
manner:

In the first place we construct all
the relating maximal continuations of
the proper boundaries of CD(c)

 f
 by

considering the function - v . More-
over we separate all the components of
V (c)

 Λ
 C D(c) along the relating

maximal continuations. The union of
all the components mentioned above is
called the covering domain of the
second kind and is denoted by KD(c)

 β

Evidently we have

Lemma C
1
. E(tCD(c))= E?(V(c-€)),

Next we shall calculate the Euler
numbers of the closed or open maximum
loci of IT .
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i) In case of the closed maximum
locus 14 > all the relating maximal
continuations of Vc are the looping
simple closed curves

β
 The Euler

number of the sum sets of all the
relating maximal continuations is then
equal to zero. Let ff (i = i . . •••,
u ) and p*- ( j*l ,

 β
.. , * 0 be

all the vertices and the edges belong-
ing to V

c
 according to the triangu-

lation already mentioned, respective-
ly. Then we have

since

This shows that
following number:

is equal to the

(
t h e

 multiplicities of the

vertices fc* — i )|

(the multiplicities of

the edges f>,
J
M - 1 )}]

in all the relating maximal continu-
ations of V

t
 ,

ii) In case of the open maximum
locus y

o
 , each relating maximal con-

tinuation of y
o
 is either a looping

simple closed curve or a non-looping
simple curve ending at two boundary
points

All the open subarcs of the re-
lating maximal continuations, at any
point J? of which there is no other
maximal continuation in the sufficient-
ly small canonical neighborhood N^P)
of P , are not our present problems
Thus our attentions may be paid to the
maximal connected simple subarcs of
the maximal continuations, at any
point P of which there is another
maximal continuation in N(p).

Then we have

where Γ7 is a relating curve of >Ό
and n , *n. are the numbers of the
vertices and edges of Γ

o
 > respective-

ly, and Ά
C
 , tι

b
 are the numbers of

the relating connecting points and the
relating boundary points of Y

o
 , re-

spectively
0
 On the other hand we have

t- t

where V is ̂ y vertex belonging to
the inner part of V

o
 , ̂ c and ̂ t

the sums of the branching orders of
the relating connecting points and the
relating boundary points of Yo with
respect to V

o
 , respectively The

saltus of the Euler numbers caused by
a V<> is equal to

However, by the above arguments,
this saltus is equal to the following:

n-*n-
i
tt

c
-<n

t
 *» ££ (Yo) .

Therefore we have the following
Lemma:

Lemma D
f
 *

E(KDCO) +• C
M
(c)

where C
M
(c) and O

M

( C
) are the sums

of the Euler numbers of all the closed
and all the open maximum loci of v
lying on the level c „

For any ordinary value c of v ,
we have

Lemma E
f
«

E(V(c-e>)« E(V(O)

We are now able to obtain the
Theorem F by the above Lemmas A

1
 -

E
f
, immediately*

Each closed minimum locus of - T is
either a closed maximum locus of V ,
or an open maximum locus of IT con*-
taining no connecting point but having
at least one boundary point• Thus we
have the relation (3):
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A relation (4) can be similarly
obtainedo

14 Polar linear subrnanifolds

We shall now introduce the poles
of it .

Definition 15 if either ίL u(z)

= + oo or w u(a)=-P9 holds defi-

nitely for all the approaching paths
to fc

β
 > then we call **

%
 a pole of

u either of the first kind or of the
second kind, respectively*

Definition lό
β
 Polar linear sub-

manifolds of the first kind e£(u.=+oo)
and of the second kind

Let o£(« = +o°) be a one-dimensional
connected continuum on which u * -too

 9

and the F.A.I, II, III and IV hold on
£ (M = + oo)

 9
 then we call this

(u * t oo) a polar linear submanif old
of the first kind.

We also define a polar linear sub-
manifold of the second kind c^fu--**)
in a similar manner.

Now we should postulate a new
fundamental assumption:

F.A V There are only a finite
number of polar linear
submanifolds on Q .

Definition 17 Suler number of a
polar linear subraanifold of the second
kind: E (<£(«*«-**)

o£(u=-oo) plays the same role as

that of the closed minimum locus of
u . So we shall define that E(oC
(M--••)) is equal to a.

β
 - 2t, , where

•a.
β
 and 1 , denote the numbers of the

vertices and edges on <£ (u» -
6 0
)

Definition lβ. Euler number of a
polar linear submanifold of the first
kinds B(<£(«^co)) .

aC ( M
 &
 t «χ>) plays the same role as

that of the maximum locus of -u. in
the Theorem F

o
 If ό£(u*

t
oo) has

% « ( 31 ) relating boundary points,
then we suppose that ES («£{»**>))
is equal to 3ι

β
 - zt, - *ι* ̂ Z) , where

2L
Λ
 and -at, denote the numbers of the

vertices and the edges on <£(u* + oo)
 β

Then we have the following theorem,.

Theorem A'

2.-V

where , ( u)

and L
2
(u)

a

Σ

Similarly we can easily calculate
the variations of the Suler numbers by
considering the superharmonic function
V = - u. « Then we have

Theorem F
!
.

Z-V

where Eίccf-u **">)) is the Euler
number of the polar linear submanifold
<£(-u=+*>) of v of the first kind,
which is similarly defined as in the
Definition 18, and C (<£(-" =-*>)) is
that of the polar linear submanifold
o£(-u*-oo) of v of the second kind,
which is similarly defined as in the
Definition 17, and

By the definitions, we have

and

where ^-oo and '̂ •-•β denote the
numbers of the boundary poles of U. of
the second kind and of the first kind,
respectively.

Thus we have

Theorem G
!

β
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If we suppose that the number of
the connected components of the closed
polar linear submanifolds of the first
kind is L

c
 , where the word "closed"

means that there is no relating
boundary point on that submanifold,
then we have the following inequality:

Theorem B
1
.

15. A family of open minimum
loci.

In Theorem B, we have an estimation
of the numbers of closed minimum loci,
but this is not impartiality for the
treatment of open minimum loci. Three
numbers in the sequel are devoted to
maintain impartiality for both types
of minimum locio

Definition 19. Arrivability of two
open minimum loci.

Let Vi (i ι.2,) be two distinct
open minimum loci. If we can select
at least a relating connecting point
Pi of each Vi satisfying the
following conditions, then we call
that #1 and "ί^ are mutually ar-
rivable and denote this relation by

1) Both P
t
 and Ϋ

z
 lie on the

boundary Rj£\
component ζjΓ

(i)
(c) of U(

c
> , where

of the same connected

U
( i )

(
C is the common level of

Vi and

2) P
t
 and P^ are arcwisely

connectible along a subarc γ (it may
reduce to a point or need not_be a
simple curve) of R.*

ι>
 > and γ con-

tains P
t
 and ΐ

z
 as a starting and

final points, respectively.

3) If Y is simple, then we put
Ύ - Y β Otherwise,^we construct a
simple curve Y from Y by the sepa-
ration of the double points of Y ,
that is, by considering that some
number of different points eventually
coincide and constitute a multiple
point with some orders of Y

4) Y can be homotopically dβfor-
mable to a continuous simple curve
Z. defined by the following condi-
tions:

a) Let N k P ^ and hJ(P
λ
) be two

distinct canonical neighborhoods of
Pi 'and Pa, , respectively. For each
V j, there is a subarc Γ"i , witii t)ie
ends f\ and λ̂{ , of #t belonging,to
N ( Pi) , and moreover satisfying that
5., and Q

z
 are arcwisely connectible

along a simple Jordan
 %
curve X b©long~

ing to a component U ^ ( c ) of Vie)
except only at two points 3,,, and Q,

z

Let Γ^ and f\ be sensed by the order
P, , Q,

Γ
 and p

z
 , Q,^ , respective-

ly.

b) Let Z be ΐ\ X I ^
1
 , where

Γ^"
1
 is the same arc, inversely

sensed, as J^.

For an open minimum locus there
holds Vj<-*yi • In fact, we may only
choose P

t
 s P

x
 , &, 2 Q,^ and X Ξ Q,. ,

but this is trivial.

Definition 20.
that is,

Self-arrivabiiity.
(but non-trivial)

shows a connecting path.
shows an X

 #
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If we can select the relating con-
necting points P

t
 and P

z
 of 7/χ

satisfying the conditions of Defi-
nition 19, then we call that Vj satis-
fies the self-arrivability condition.

A curve Y defined in Definitions
19 and 20 is called a connecting path
between minimum loci. Some examples
will clarify these Definitions.

Definition 21. Familiarity re-
lation of two open minimum loci Y

t

and Y* . Notation Y
χ
 ^ K^ .

If there is a finite chain Vj
( j» Γ , 2. > ...., n-l , τι), where
tfj. is an open minimum locus for each
J. and that there holds successively

the relations V
t
<-* H

x
 , V

z
«~+ If 3 ,

• •••> Λ»-ι *~* Vn , then we say that
y

χ
 and V

Λ
 are familiar.

Lemma 12. At each point P on Y
ϋf two open minimum loci except at two
etld points, there hold <rCp) ̂  1
and t>(p) ̂  Z , in which the in-
equalities appear only at a finite
number of points on Ϋ

 β

Proof. If it is not the case, then
<Γ( P) » 0 . Thus P must be a rela-
tive maximum boundary point, and hence
P is a strictly relative maximum
boundary point, that is. &cp) = 0 .
On the other hand, P e Y implies
that tip) 2 1 , which is absurd.
Thus <r(p)^t . If <r<p>a2 ,
then l>(p>2-+ f o r P ^ Q and t(p)
^ Z for P 6 B . By F A.III and IV,
these points are finite in number.

If Pe Q- and <r-(P) a t then

If P e β and (rep) ^i , then
P is an end point of_Y . For, if
P is not an_end of X , then -£<P)
£ A . On Y , u is constant, thus
Y does not contain a subintβrval of
B .

 Λ
By r(p)« i , there is only

one sector S-<P) below u(f>) in _
ClsKP)e One component Γ\ of Y
is a boundary of S-(P> , and the
other component Γ ^ of ¥ exists in
Q

 rs
CK/CP>c • Any point Q of Π

^Gr^CW(p)« except at P has U&>
ss 2 and <r(Q)-l

 β
 Thus S-(P)

has Γ\ as the boundary. In local
at P , Y consists of Γ\ , P ,
Q with this order. But in this
case Y φβ not able to deform into a

continuous curve Z homotopically,
which is a contradiction. Thus, if
P β B and € γ , then σ (p) &z
except at two end points of Y .
Thus at this point P , t>(P) Z Z
and f is a saddle point.

The familiarity relation ίSt satis-
fies the equivalence relations, that

Definition 22. A family of the
open minimum loci,

A class classified by the above
familiarity relation is called a
family. We suppose that a family,
as a point set, consists of all the
open minimum loci, any two of which
are familiar.

Definition 23.
family.

Range set of a

Union of a family (considered as a
point set) and all the possible re-
lating connecting paths (including all
the relating connecting points) are

x called the range set of a given family
(considered as a class).

Here we must remark that the range
set of a family has no multiple point
except at most at the relating con-
necting points and at the finite
number of multiple points on the open
minimum loci.

Lemma 13. The range set of a
family can be divided into a finite
number of simple arcs and is a closed
complex of one-dimension.

Definition 24.
family.

Ruler number of a

Euler number of a family (con-
sidered as a point set) is defined by
the following number: (Euler number
of a range set of the given family)

- (sum of Euler numbers of the
connected unions of all the
possible connecting paths).

The connected unions of all the
possible connecting paths are defined
as the connected collections of all
the connecting paths, of which any two
successive paths have a common con-
necting point. We call this connected



union a hedge.

Lemma 14. The different families
are finite in number and each family
is of finite Euler number

16, Restatement of the first
main Theorem A.

Let R(
c
) be the number of the range

sets of a family lying on c $n4
having- the Euler number 1. Let
fc^U) be the number of the range
sets of a family lying on c and
having the Euler number -i Let
lycc) be the number of the connected
unions (hedges) lying on c and having
the Euler number j. Evidently *- is
either 1 or 0, since any connected
union (hedge) is simple

#
 And we put

Ί2

Lemma 15 Let c& be a family con-
sisting of the open minimum loci Ύ

i
 ,

..•., Tf* • Then

2_j E ( n) χ
n β
 Buiβr number of a

family £5^ by the second
definition: g ^

Proof. Let have a,* inner
vertices, a,* edges and «t* connecting
points, then

Thus

By the definition of the connecting
path each connecting path is a simple
curve. Hence we have

where %
6
 is the number of the vertices

on the connecting paths and ^ is the
number of the edges on the connecting
paths*

By the Lemma 15, we have R + R,
-T, = θ . Thus we have

 κ

Theorem A".

17.

^ - v.

Causality for occurrence
of a boundary component

Bach ordered maximal continuation
lying on a level c is a simple arc,
being either of looping one or of nor*~
looping one. Every looping simple
ordered maximal continuation is
classified into two types. Let
be a looping simple ordered maximal
continuation lying on c, ^^(L(c>)
and Γϊ(L(c>) are relating ordered
I -field and its proper boundary,

respectively, where ε is a suf-
ficiently small positive number.

Γ^ (L(
c
>) is also a looping simple

curve and bounds a domain D^ (L(o)
 #

If DtίL(o) contains L(O in its
interior, then we say that L(cy be-
longs to the divergent type. If it
is not the case, then we say that
U(c) belongs to the convergent type.

Next we shall define a figure of
boundary type.

If $ satisfies the following
conditions, then we call ̂  the
boundary type.

i) On $.
is connected.

c holds and

ii) <3J and a finite number of
boundary components bound a number of
connected domains D

{
 (3Cr)

iii) J£.Dfe<&f- D(<£) contains a
finite number of boundary components
B . , B

u
 , any two of which are

liarcwisely connectible along a part of
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iv) For every t , all the re-
lating maximal continuations, if
exist, end always at the boundary
points, and the relating ί '

e
 (proper

boundary of i -field) end always at
the different boundary points, and
every F

e
 is contained in

has the same causality

as

v) eft- is a minimal one among all
the linear connected graphs satisfying
i) - iv), that is,

holds if ί£r
t
 satisfies i) - iv).

Now we should classify all the re-
lating maximal continuations ending to
the boundary points but constituting
a simple closed curve in total. We
now construct a simple closed curve
from all the relating Pt by connect-
ing the pairs of end points along the
parts of boundary curve contained in
each N(P) , where P is a boundary
point on Lie) . If a simple closed
curve thus constructed bounds a domain
Dg(Lco) containing L(O in its in-
terior, then we say that L(c) belongs
to the divergent type. If it is not
the case, then Lcc) belongs to the
boundary type.

A figure of any type is a causali-
ty of the occurrence of a sort of
critical point or of a boundary com-
ponent, in view of the subharmonicity
of α . Exact causality for the
occurrence of a boundary component
arises from the occurrence of the
figure of boundary type or of con-
vergent type.

If c is a critical value of it ,
and L(O is a looping simple maximal
continuation relating to a range set
R(c) of Jiiler number 0, and the
number of hedges is 1, and further
this hedge is of Euler number 0, then
there is a slight disturbance in the
flows of the level lines but no ef-
ficiency for the causality in [c-ε,
c «• ε ] . If t is an ordinary value
of n , then each level curve lying on
c is a simple curve, either looping
or non-looping. If L(e) is a looping
level curve, then the relating
IJlUo) and Π

ε
( U o χ are also looping

level curves and SjJVί Lc«)
 a n d

Q<£Lit)) have no critical point or a
boundary component* Hence [̂  (L(o) ,

Next we shall calculate the number
of different causalities for the
occurrence of a boundary component
which relates to the closed minimum
loci and the range sets of the
families.

Let \> , I , and t
o
 be three

numbers defined as follows:

t is equal to the number of the
figures of boundary type in a given
connected level, I the number of the
looping simple maximal continuation of
convergent type, and t

0
 the number of

the hedges of Euler number 0 in the
same figure.

Let V
c
 be a closed minimum locus

of u with the Euler number -*L , then
the relations \>+L « ^ + t and t

0

= 0 remain true. Therefore there
must exist at least ΠM 1 boundary
components.

Lemma 16. In any connected col-
lection of level curves, there is at
most one maximal continuation of
divergent type.

Proof. If there are two such
maximal continuations L

r
 (o , L

z
(c)

of divergent type lying on C , then
there are two relating bounded domains
t>ε<-U<

c)
) , D

ε
( L

λ
c c > ) con-

taining L,(c> , t-a.ee) , respective-
ly. Then either D € C L,ιo) D Dt

 (L
2
(o)

or DgCL^c))^ D
t
(L

λ
(o)» <f> (empty

set) remains true. But LJ, CC> cannot*
be connected with L

x
(c) along a

curve, on which u a c . Both cases
contradict the connectibility of the
original figure.

The outest hedge of Euler number 0
is the hedge bounding a domain which
contains all the points of the given
range set.

Let R-a be a range set of a family
having one looping maximal continu-
ation of divergent type. On R.^,
there is no outest hedge.

Let R K b β a range set of a family
having the outest hedge and let R

c

be a range set which does not belong
to *

dr
, R

κ
 .



Lemma 17
a relation

In an R ^ , there holds From this we have

where -i is the Euler number of the
given range set

Proof. In the first place we shall
consider that Rw has no figure of
boundary type. Conventionally, we
consider that the given range set is
a closed minimum locus, having no
figure of boundary type, then there
are t>l looping simple maximal
continuations of convergent type and
1 looping simple maximal continuation
of divergent type. Since there are
"t*— t inner hedges of Euler number
0 and 1 outest hedge of Euler number
0, we have i + l — ( t

β
- l ) con-

vergent maximal continuations.

In the second place if R
h
 has

b figures of boundary type, then
any figure of boundary type can be
took place by a looping maximal con-
tinuation of convergent type. There-
fore we have the desired result.

Lemma 18 In an R
c
 or an R.4.,

there holds a relation

t + 1 + t
β
 ~ i t i .

Proof. Proof is similar as in the
above Lemma.

For an R^ of Euler number 0, we
shall exclude this c^se for our calcu-
lation of the causalities.

Lemma 19 The Σ>(t • I) causalities
thus calculated for the occurrence of
the boundary component are all differ-
ent.

Proof. Evident.

Let M
u
,-t,t

0
 be the number of the

range sets' of R.
tt
 ( u « a

>
^ , c )

type, of Euler number -{ and having
t

0
 hedges of Euler number 0. Thus

we have an inequality:

1
 t

o
=O

i-H

t
o
»o

and hence

* *~
ι

Thus we have the third main theorem

Theorem C.

S T
β
 • v - 1.

By this theorem C we have

Theorem D#

18. Applications and a
concluded remark.

Analogues of minimax principle due
to Whyburn CI]

Theorem E. Let u. be a subharmonic
function which attains a constant
relative maximum on each component of
B 1 the constants may differ for
different components. If a has at
least two different minimum loci 4ja <J,
then there is at least a saddle point
or an open minimum locus in G

Proof. By Theorem D, we have

By the assumptions of this theorem we
have

C
t
 * C, R

3
 2 Z,
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which lead to the fact S^ Z 1 or
T

o
 * 1 or T

t
2 l . Moreover

Ί) £ 1 implies that there is at
least an open minimum locus in Q-.

Corollary 8. If Q is a simply
connected domain and there is no hedge
of Euler number 0, then R-

3
 = C

3
 = o .

Proof, By Theorem C, we have

os

s v -i

and by the assumptions, we have v = 1
and tp

o
 = o , thus R^ ̂  C

3
 - O

Let the flows of the ίevel lines be
defined by Fig. 5, the arrows showing
the directions of the increasing
levels* What facts can we conclude
by means of Fig* 5?

In* harmonic case, we have
, but in our case we have

θ Rj
h

either S * 1 or θ
 β
 ~1 and Rj= C

3

zsc> Qt ^ Because we have by the
first main theorem A

1 « C , + C * *• θ ~ S .

By the assumption Cj = 2. , we have

but by the last corollary, C
3
 = R

3
 =.

*&•*, « 0 , thus θ » - l or ^ = 1
remain true.

This fact shows that the similar
causality does not imply the same
conclusion, and moreover we cannot
distinguish these by our given datas.

(*) Received June 15, 1953.
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