ON THE CAUCHY'S PRODUCT SERIES THEOREM
ON EULER'S SUMMABILITY

By Hisao HARA

Cauchy's, Martens's and Abel's theorem on the Cauchy's product series are well
known. Prof. K. Knoppl) have extended Abel's and Martens's theorem by Euler's method of summation, but not Cauchy's. In this paper I extend Cauchy's theorem.

Theorem. If $\sum_{n=0}^{\infty} a_{n}=A \quad(|E, p|)^{2)}$;

$$
\sum_{m=0}^{\infty} b_{n}=B(|E, P|)
$$

then $\sum_{n=0}^{s} C_{n}=C(|E, P|)$ and $A B=C$,
where ${ }^{n=0} C_{n}$ is the Cauchy's product series
of $\sum_{n=0}^{n} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$.
To prove this theorem, we shall use
two lemmas as follows:
Lemma 1. If $\sum_{n=0}^{\infty} a_{n}=A(|E, P|)$, then
and conversely.

$$
\sum_{n=1}^{\infty} a_{n}=A-a_{0} \quad(|E, P|)
$$

Proof. Let us put $\sum_{n=1}^{\infty} a_{n} u^{n}=\sum_{n=0}^{\infty} b_{n}^{(p)} v^{n+1}$ where $u=\frac{\nabla}{q+1-q v} \quad q=2^{p}-1$, then we have $\sum_{n=0}^{\infty} a_{n}{ }^{(P)} \nabla^{n} 1=a^{0} \frac{v}{q+1-q v}$
$+\frac{\nabla}{q+1-q \nabla} \sum_{n=0}^{\infty} b_{n}{ }^{(p)} \nabla^{n+1}$.

Multiplying both sides of (1) by $q+1$ - $q v$, we express by power series of v as follows:
$\sum_{n=0}^{\infty}\left\{(q+1) a_{n}^{(p)}-q a_{n}^{(p)}-1\right\} \nabla^{n+1}=$

$$
a_{0} \nabla+\sum_{N=0}^{\infty} b_{n}^{(p)} \nabla^{n+2}
$$

Where we put $a_{-1}^{(p)}=0$. Comparing coefficients of both sides, we have

$$
\begin{aligned}
(q+1) a_{0}^{(p)} & =a_{0} \\
b_{n}^{(p)} & =(q+1) a_{n+1}^{(p)}-q a_{n}^{(p)}
\end{aligned}
$$

$$
(n \geq 0) \quad(2)
$$

Similarly, multiplying both sides of (1) by $q+1$, and expressing by power series of v. we have
$(q+1) a_{n}^{(p)}=a_{0}\left(\frac{q}{q+1}\right)^{n}+\sum_{v=0}^{n-1} b_{\nu}^{(p)}\left(\frac{q-1}{q+1}\right)^{n-1-v}$
Now, by (2), we have

$$
\left|b_{n}^{(p)}\right| \leqq(q+1)\left|a_{n}^{(p)}+1\right|+q\left|a_{n}^{(p)}\right|
$$

$$
\text { Whence } \sum_{n=0}^{n}\left|b_{n}^{(p)}\right| \leqq(q+1) \sum_{n=0}^{n}\left|a_{n+1}^{(p)}\right|+q \cdot \sum_{n=0}^{n}\left|a_{n}^{(p)}\right|
$$

And $\sum_{n=0}^{\infty}\left|a_{n}^{(P)}\right|$ is convergent, since $\sum_{n=0}^{\infty} a_{n}=A(|B, P|)$.
Therefore $\sum_{n=0}^{\infty}\left|b_{n}^{(P)}\right|$ is convergent.
On the other hand, by (2), we have
$\sum_{\nu=0}^{n} b_{v}^{(p)}=\sum_{\nu=0}^{n} a_{v}^{(p)}+(q+1) a_{n+1}^{(p)}-a_{0}$.

Conversely, since $\sum_{n=1}^{\infty} a_{n}=A-\infty_{0}(|E, F|)$.
We have $b_{n}^{(p)} 0$ as $n \rightarrow \infty$. Applying Kojima-
Schur's theorem to (3) we have $a_{n}^{(p)} \rightarrow 0$ as $n \rightarrow$
∞. Hence, by (4) and

$$
\sum_{n=0}^{\infty} b_{n}^{(P)}=A-a_{0}(|E, D|) \text {, we have }
$$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n}^{(p)} \rightarrow A, \quad \text { i.e. } \sum_{\substack{1 \\
\text { Now, we show that }}}^{\sum_{n=0}^{\infty} \sum_{n=0}^{\infty} a_{n}=A(E, p) .} \text { is absolutely } \\
& \text { summable }(\mathbb{E}, p) .
\end{aligned}
$$

By (3), we have

$$
\begin{aligned}
(q+1)\left|a_{n}^{(p)}\right| \leqq & \left|a_{0}\right|\left(\frac{q}{q+1}\right)^{n} \\
& +\sum_{v=0}^{n-1}\left|b_{v}^{(p)}\right|\left(\frac{q}{q+1}\right)^{n-1-v}
\end{aligned}
$$

Whence $(q+1) \sum_{v=0}^{n}\left|a_{v}^{(p)}\right| \leqq\left|a_{0}\right| \sum_{v=0}^{n}\left(\frac{q}{q+1}\right)^{v}$ $+\sum_{\mu=1}^{n} \sum_{v=0}^{\mu-1}\left|b_{v}^{(p)}\right|\left(\frac{q}{q+1}\right)^{\mu-1-v}$
Changing the order of summation in the second term of the right side, we have

$$
\begin{gathered}
\sum_{\mu=1}^{n} \sum_{v=0}^{\mu-1}\left|b_{v}^{(p)}\right|\left(\frac{a}{q+1}\right)^{n-1-v}=\sum_{\nu=0}^{n-1}\left(\frac{a}{q+1}\right)^{n-1-\nu} \\
\left.\times\left\langle b_{0}^{(p)}\right|+\left|b_{1}^{(p)}\right| \ldots+\left|b_{v}^{(p)}\right|\right)^{3)},
\end{gathered}
$$

whence

$$
\begin{gathered}
(q+1) \sum_{v=0}^{n}\left|a_{\nu}^{(p)}\right| \leqslant\left|a_{0}\right| \sum_{\nu=0}^{n}\left(\frac{q}{q+1}\right)^{\nu}+\sum_{v=0}^{n-1}\left(\frac{q}{q+1}\right)^{n-1-v} \\
\\
\times\left(\left|b_{0}^{(p)}\right|+\left|b_{1}^{(p)}\right|+\ldots t\left|b_{v}^{(p)}\right|\right) .
\end{gathered}
$$

Sinc $\sum_{n=1}^{\infty} a_{n}^{\prime}=A-a_{0}(|B, p|)$, i.e. $\sum_{n=0}^{\infty}$ $\left|b_{n}^{l p}\right|$ is convergent, we see that the secal
term of the right hand is convergent by Ko jima-Schur's theorem. And $\sum_{n=0}^{\infty}\left(\frac{q}{q+1}\right)$ is also convergent.
Ther efore $\sum_{m=0}^{\infty}\left|a_{n}^{(p)}\right|$ is convergent, i.e. $a_{n}=\underset{A}{A}(|\boldsymbol{T}, p|)$.
Thus lemma 1 have been proved completely.

Lerma 24). Let $\sum_{n=0}^{\infty} c_{n} b_{e_{0}}$ the Caugchy's product series of two series $\sum_{n=0}^{\infty} a_{n}$, $\sum_{n=0}^{\infty} b_{n}$. And put o $n=C_{n-1} \quad(n=1,2, \ldots),{ }^{n=0} \quad \gamma_{0}$ $=0$. Then we have

$$
\begin{aligned}
& \sigma_{n}^{(p)}=\varepsilon_{0}^{(p)} b_{n-1}^{(p)}+a_{1}^{(p)} b_{n-2}^{(p)}+\ldots \ldots \\
&+a_{n-1}^{(P) \quad b_{0}^{(p)}} \\
&(n=1,2, \ldots \ldots) .
\end{aligned}
$$

Proof of theorem. Since

$$
\sum_{n=0}^{\infty} a_{n}=A \quad(|E, p|) .
$$

$\sum_{n=0}^{\infty} b_{n}=B(|E, p|)$ by the hypothesis, $\sum_{n=0}^{\infty} a_{n}^{(p)}$ and $\sum_{i=0}^{\infty} b_{n}^{(P)}$ are absolutely convergent. Hence, since by lemma 2 $\sum_{n}^{2} f_{m}^{(p)}$ is the Cauchy's product series of $\sum_{n=1}^{\infty} \sum_{n=0}^{\infty} a_{n}^{(P)}$ and $\sum_{n=0}^{\infty} b_{n}^{(P)} \quad \sum_{n=1}^{\infty} f_{n}^{(r)}$ is absolutely convergent and $\sum_{n=1}^{n=1} f_{n}^{(p)}=A B$ by applying Cauchy's theorem as to the product series. Therefore, from $\sigma_{0}^{(P)}=0$, $\sum_{n=1}^{(p)}$ is absolutely convergent, i.e. $\sum_{m=0}^{\infty} n_{n}^{n=0}=0+c_{0}$ $+c_{1} \ldots=A B(|E, p|)$.

Hence, by lemma $1, \sum_{n=0}^{\infty} C_{n}$ is also absolutely summable $\left(\sum_{i, p}^{n=0}\right), i, e \cdot \sum_{n=0}^{\infty} C_{n}=$ $C(|E ; p|)$ and $C=A B$.

Thus the theorem have been proved completely.

1) K. Knopp, Uber das Eulersche Summierungsverfahren, Math. Zeits., 18(1923).
2) When $\sum_{i=0}^{\infty} a_{n}^{(p)}$ converges absolutely with sum A, where $\sum_{n=0}^{\infty} a_{n}^{(r)}$ are Euler's transformation of $\overrightarrow{j e m}_{k=0}^{a} a_{n}$, after Prof. K. Knopp, we say that $\sum_{i=1}^{n=0} a_{n}$ is absolutely summable (E, p), and we write $\sum_{n=0}^{\infty} a_{n}$ $=A(E, p \mid)$.
3) Apply the transformation : $u=\mu-1-v$, $v=\nu$ to the left hand, then we have the result simply.
4) S. Sasaki, On the Cauchy productseries. Tôhoku. Math. J., 43(1937).
(*) Received May 27. 1953.
