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l Introduction.

1)In a previous paper1' one of the present
authors has dealt with mixed boundary *alue
problems in potential theory in some details.
Let now the basic domain be, in particular,
the unit circle, laid on the β-plane, and i ts
circumference be divided into tvrc> sets of
arcs juxtaposing alternately. The problem is
then to determine a function harmonic and
bounded in the unit circle in such ε* manner
that the boundary values of the function it-
self and of i ts normal derivative coincide
with the preaβsigned functions alon^ the
arcs of each set, respectively. Namely, the
problem may be formulated in the form j

4«.-t i being identical with ^ +Zπc and
denoting the differentiation

l ** H h
d/a^^/a^P g
along the inward normal at -e*"* Here, the
prescribed boundary functions tl fy) and
Y^Cff) are supposed, for instance, continuous
and bounded over their respective intervals
of definition.

The existence and the uniqueness of the
solution can readily be established. More-
over, an integral formula for the solution
of the problem has been given concerning any
simply-connected basic dom&in bounded by a
smooth contour. In our case of thje unit
circle, the result may be related as fol-
lows. Introduce the function Φ(ζ>z)
mapping Kl< i onto the exterior of the
unit circle cut along radial s l i t s starting
orthogonally at points on the unit circum-
ference in such a manner that the images of
the arcs ^ < arf $ < fy, K|«l C^i, •••, ^)
l i e on the unit circumference, fil l ing i t
altogether, and further those of the arcs
$ < arg 5 < α. i+1, iζML (j=l,. •,»*,) ^re rεdiε.1
s l i t s , and finally the function is nor-
malized at ζ = x such as (ζ-£)Φ(%
for *>-*&. The mapping function may also
be characterized as the one which maps the
fl»L-ply connected domain obtained by cutting
the whole plane along m. circular s l i t s
4 < * Ϊ S < « J H , KI-i(J-ly υ*0°nto the whole
plane cut along wu radiε.1 s l i t s centred at

the origin in sucn α manner thtt the point
z>~ Z and its inverse point ζ « i / £
correspond to the point at infinity &nd the
origin, respectively, and further the nor-
malization at the assigned point ζ = X
as steted above is satisfied. The function
thus defined satisfies evidently the func-
tional equations

Φ(i/ξ, *) =i/Φ(%$ and φ(i/ξ, i/z)—ZxΦ(l,Zl
The mixed boundary value problem is then, as
previously shown, solved by the integral
formula

V
^

In the simplest cεse, where there are
merely two arcs complementary etch other on
the circumference alon£ which the values of
the function itsel f and of its normtl deri-
vative arB prescribed, the mapping function
and hence also the kernels container! in the
integral representation can be expressed
concretely by means of elementary functions.
Namely, the solution of the problem

in

far

is given by the formula
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In the present Note we shall again
deal with the mixed boundary value problem
formulated above from another point of view.
We shall first rederive an integral formula
for the solution in the case of a single
pair of arcs and then show that it is indeed
equivalent to the one formerly obtained,
namely to the one mentioned above. We shall
further proceed to show that our present
method of attack can also be extended to
general case of several pairs of boundary
feres. In fact, a concrete illustration will
really be given in case of two pairs of arcs
by deriving an explicit formula for the so-
lution by means of ell iptic functions. Fi-
nally the extension to general case of se-
veral arcs will also be discussed.

2. Rederivation of the formula in the sim-
plest case.

The solution αCz) of the simplest problem
may be regarded as the superposition of two
function u.α>66) and u.U)(z) . i . e . * t t ) « A Λ
which are harmonic in the unit circle
and satisfy the boundary conditions

< CL+21C.

The problem of determining na(x) oτtά%)ia the
special case of the original problem
where the boundary function V(<$) or
respectively, vanishes out identically.

In order now to obtain an expression for
U-(ί)(z) , we map the unit circle IX|<1 onto the
upper semicircle Wr|<i, Jw>0 in such a
manner that the points z=» e**- and Λ—«**
correspond to a^r^-j-iand w«=-Irrespectively.
Such a mapping function is given by

υf-t 1
^ - e

ithe square roots V̂ —-e*'*' and -/z — e
denoting the branch which attains the values
ίe1*-/** a n a ^eL ΰ > / 2 , respectively, at x * 0 j
in particular, the points ss β eif*.+ #)A f̂td
Z =~ e«.c*.+« )yα ^.^^ correspond to ΛAΓ«* -U Aiid
α^=0 , respectively, but this fact is here
not so essential.

Denoting by υ
of the point z « e
defining equation

}^ (0 the im&ge

-i(i-«J/*. -

the relations of boundary correspo-ndence

sin

r-O.

By this mapping 5S=Z W) , the function
(&) is transformed into a function

αV«flMh&rmonic in the upper semi-
circle 1̂ 1 <1, J-w>0 and satisfying the
boundary conditions

-for

=o, ,vκi.

Hence, in view of the inversion principle,
the function VL(i)*(w) is prolongable
harmonically beyond the diameter into the
lower semicircle by means of the defining
equation

v denoting, as usual, the point conju£ate
tow. Applying the Boisson integral fortuula
to the function 4Lω*(*r) thus prolonged, we

t

To obtain the formula for VL(i)(z), i t remains
only to transform the variable point w and
the integration variable Ϋ into the orig-
inal ones, X and <p . Since the kernel
contained in the above integrand becomes

we obtain the desired expression

In order next to obtain a formula
expressing aa>(;c) we map the unit circle
\%\<1 onto the lower semicircle |*w|< i ,
Jw < 0 in such £ manner that the points



Z = e ^ ana Z - t ^ ^ e ^ ^ ) correspond to
"W -̂ί and w — + i f respectively. Such a
mapping function is given by

the square roots Vz—-e*-*- and ψz— -e
designating again the same branch HS above,
namely the one which attains the values i-t,1

and L4}*/%* at 7. = 0 > in particular,
while not so essential, the points ^--^ir*.*
and £ = ^i fo-^/λ n0τ(V correspond to Λ*Γ=Γ —. ^
and /tλΓ=i 0, respectively.

Denoting by iιr=-e^ O:<ψ<jε7c) the
image of the point Z^t,1? (£<<{><A,+ZIC), we get,
from the defining equation,

the relations of boundary correspondence

Returning to the original variables, the
kernel contained in the integrand becomes

and consequently we obtain the desired
expression

stn •

of which the latter relation between the
differentials i s , however, really explicitly
unnecessary in the following lines.

By this mapping Z=£fA&r) , the function
iί̂ Oc) is transformed into a function Λ B W
harmonic in the lower semicircle lw|<l, J*r<o
and satisfying the boundary conditions

•for

Hence, the function vS^C^) is prolongable
harπonicblly beyond the diameter into the
upper semicircle by means of the defining
equation

Applying the integral formula on Neumann
problem concerning the unit circle to the
function thus prolonged, we get, in view of

—tt-if ft*

Thus, we finally reach the integral
formula for the folution of the original
mixed boundary problem, stating

Uψ

It would here again_be emphasized that the
square roots {%Z^J^- and /%-£$ contained
in the last formula designate the branch
attainin£ the values Λ.ex<tA and L€.L*/Zf ,
respectively, at the origin,

3 . Identification with the formula pre-
viously obtained.

It will now be confirmed that the for-
mula derived just above i s , as a matter of
course, quite equivalent to the one obtained
in the previous paper,gamely to the one res-
tated at the beginning part of the present
Note. For that purpose, we shall here show
that the previous formula can indeed be
brought to the present one by actual calcula-
tion.

Let &<Cj><& . We then get



, 1 / L

whence follows

Let 4r<<j < a. + ZTC . We then get

the square roots V?^?** "iβ iί?^ί in the
laat Θxpression fies.ίgnt ting the branches
which re iuoe to-i.e- t 4-/ 1 aaa - •e.i*/2- ,
respectively, for Ϊ = 0 » whence follows

Ey substituting those expressions now cal-
culated into the previous formula we reach
readily our present formula at the end of
the last section.

We are now in position to state an
important remark. In the previous paper,
we have derived the formula somewhat heu-
ristically in the first place, by supposing
a suitable continuity property of the bound-
ary functions. It has therefore been nec-
essary to assure the range of validity of
the formula, i e , to discuss the precise
boundary behaviors of the function VL(Z)
defined by the formula, when conversely the
boundαry functions have been preassigned.

Our present method of deriving the
formula save us, on the contrary, this
rather troublesome stage*. In fact, as
readily observed, both integrals contained
in our final formula have been obtained
merely by transferring those for the ordi-
nary Dirichlet and Neumann problems con-
cerning the unit circle by means of the
respective elementary transformations, and
the boundary behaviors of these solutions
are really classical and established, as
well-known, satisfactorily.

It remains, therefore, only to in-
vestigate the boundary distortion of the
elementary transformations. Ebr 0L«f<-β- •
the correspondence between z ^ e * ^ a n ^
'ur= e/'Ψ' yields the relation

Cos

In order now to be able to consider
the Ibisson integral posessing the boundary
function U*ίγ)sUW o f t h β transformed
Dirichlet problem, i t must be supposed that
U*(f) i s intfafirable with respect to *γ
over its rauge of definition 0 < ψ < TC .
Hence, the original boundary fuuction U(<$)
must then be subject to the condition thbt



y also is integrable with respect to ψ
over 0 < γ < TC . In view of the above re-
lθtion for <Lγ/dL(f , the last condition is
equivalent to the integrability of

/ t - y ) with respect to y over
f » the condition which has been ex-

plicitly stated also in the previous paper.
That the condition is also sufficient to
discuss the problem in question is a matter
of course.

On the other hand, the boundary function
V*CNr) of the transformed Neumann problem
satisfies the relation

V«iH<f.

Consequently, it must only be supposed that
V (cj>) is integr&ble with respect to <f

over 4<

4». Preliminaries in case of two pairs of
arcs.

We now proceed to consider the next step,
i e to deal with the mixed boundary value
problem in case where there are two pairs of
the arcs, filling up the whole circumference
of the unit circle, along which the values of
a function itself and of its normal deriva-
tive are alternately prescribed.

Let a given mixed boundary value problem
be formulated in the form i

fσyr 4
ι<Cf<0c;L/

denoting the differentiation εlong
the inv/crd normal at a boundary point z
•sz(tc) of Ί) . Moreover, the boundary
curve of D may, for instance, eventually
possess the angulεr points εt the images of
•e^S e**S ei<L*- and -e/ **-.

As readily seen from the remark stated
εtt the end of the preceeding section the
boundary functions JJt and L£. are to be
supposed thfeit the products JJt \diί\/d.(f
and Uz. \άx\/A <f are integrable with
respect to Cf over rtx<9<^ and ftz<

<jp<^i ,
repectively, in order that the integral
formula concerning the domain J) is available,
vfhile ]/l and \£ are merely to be supposed
as integrεble with respect to 9* over
4ι«f < *-j_ and ^ι«^<\+ifκ respectively.
Under these conditions the transformed func-
tion it(i) is regarded εs the solution of
the mixed boundary value problem with the
corresponding boundary conditions, provided,
for instance, the boundedness of the solution
is assured.

Based on the reason mentioned just above,
we may take, for convenience sake, any suit-
able basic domain inateε-d of the unit circle.
Now, the unit circle can be mapped onto a
rectangle in such a manner that any four
assigned points on the circumference corre-
spond to the vertices of the rectangle. The
ratio of the length of two adjacent sades of
the image-rectangle is then uniquely deter-
mined, namely it is a conformal invariant
called the modulus of the rectangle.

A function mapping the unit circle
onto a rectangle in a stated manner is, as
well-known, explicitly expressible in terms
of elliptic functions. Pbr instance, let
^i, eΛ. ε n ά -e3 with €l>-ei>«-3 be
any triple of real numbers satisfying the
conditions

denoting here again the differr
entiation along the inward normal at £** .

In general, if the unit circle I2|< 1
is transformed by a schlicht conformal
mapping fc» z(z) onto a smoothly bounded
domain D » then the solution ttflε) of the
problem just formulated is transformed into
a function <άf£) s. tL(tc(zV
harmonic in £ and satisfying the boundary
conditions

i t

15-

of which the last equation on enharmonic
ratios is expressible also in the form

It is noticed that there remains one more
freedom of choice. The unit circle \z\<{
is mapped by the linear function ^ =
defined by the equation



onto the lower half of the ^-plane in
such a manner that the points e**i, £<•**, e*
and -e/"**- on \z\^ 1 correspond to

and on
respectively* We put, as usual,

The quantities t\ *'* ft, K, ωt end~<c<υ5 are
then a l l real and positive. Now, the lower
half-plane 3\ < 0 is mapped by

Z*- L

i e by

λ - f(->
onto the rectangle

the primitive periods of Weierstrassian
J> -function being, of course, taken as Zιύι

and 2.U),

We may further avail a multiplicative
freedom on the triple (-e t, « ^ e 3 ) .
If each i s multiplied by a common positive
number suitably chosen, then the primitive
periods of the el l ipt ic function can be
normalized suoh as

The number % with 0<^<l representing a
class according to oonformal invariance is
determined by the equation

which i s equivalent to

It will be readily shown that tile mapp-
ing function %=&(*.) here established
possesses a branch-point of the first order
at every point on (ίcMi which corresponds
to a vertex of the image-rectangle Hence,

the distortion factor \iz./άz\ , taken along
the circumference j£| — 1 , becomes infinite,
as Z approaches any one of these branch-
points, with the order equal to the recip-
rocal of the square root of the distance
between Z and the respective branch-point.
Accordingly, the integrability with respect
to f of UGVίfcSR)** well as of Tf
over α, < φ< 4̂  and α.A «p< 4. together with
that of V[f<P) and of T£cφ) over-^1<^<Λ4t

and̂ •ςcp.cΛj ux must be supposed, in order
that the transformed problem can be solved
by means of an integral formula. This
supposition is equivalent to the fact that
boundary functions of the transformed problem
are all integrable with respect to the new
arc-length parameter over their respective
ranges of definition, namely, over respective
βides of the rectangle.

5 Formula for the solution in case of
rectangle.

According to the preliminary remarks
stated precisely in the preceeding section,
we will choose, for the sake of convenience,
a rectangle as a basic domain, let i t be
laid on the Z -plane for brevity
sake, we again wright merely Z instead of

Let the basic rectangle be defined by

%l<^51<0, 0<Jz<πc.

Our main task to be now performed is then
formulated as follows:
To determine an explicit formula expressing
the solution of the mixed boundary value
problem

=0 in 0<Jz<%}

ίβr 0<t<X,

f(s)

Ten
denoting again the differentiation along

the inward normal. The boundary functions M.(t)f

NCt), P(s) and (i(s) are al l supposed to be
integrable over their respective intervals*

Quite as i t the simplest case, the
solution of the present problem is obtainable
by superposing two functions tLα)fO
and <Λfc) which solve respectively the reduced
problems with boundary conditions

0 J



0<t<τr

-aαflVs)
= 0,

9V = o,

hif <: s < 0.
In order now to obtain an expression

for vS (z) , we consider the function mapp-
ing the basic rectangle onto the upper semi-
annulus %<M<i^ Jw>0 in such a manner
that the vertices £.= 0, net, larf-tiri and lfi
correspond to w =. L, —i, - f and Q f

respectively. It is given by

Returning to the original variable, we
obtain the desired expression

In order next to obtain an expression
, we map the basic rectanglefor

onto the lower semiannulus e*
< 0Denoting by υ / « e i r and **/"- ?eiVY<Kψ<'*0 ^ ^ < ϋ i n s . u c h a m n n e r t h a t t h β vertices

the images of the points t^lt and Z~lΰ4+it (θ<t<n) ^β0» Ki, kt" l"τS l iS
n<1 % 1 ^ correspond to

respectively, we get, for either correβpon ' w 1, β ^ W , - ί 7 * ! and -1 , respectively,
dβnce, the same relation ^ β mapping function is given by

By this mapping z~za}w) the function
u.α)e*O is transformed into a function
u.(ϋ*M~4iω(z(vM) harmonic in the upper sβmi-
annulus \<\w\<{, J^jyO and satisfying the
boundary conditions

•— e

Denoting by w~*J* and
the images of the points cz.**s and ^
« s α%CJ£t<s<0). respectively, we get, for
either correspondence, the same relation

%%

Hencet in view of the inversion principle,
the functionU^fw) is prolongable harmo-
nically beyond the boundary se&menta lying
on the real axis into the lower semiannulus
by means of the defining equation

Applying the V'illat integral formula to
the function i/Lω*(ur) thus prolonged,
we get

By this mapping z-Z?"(«r);ϊhe function
.) i s transformed into a function tf.(*'

)) harmonic in the lower semiannulus
e ^ t ^ l w K 1/ J^< 0 aαδ satisfying the
boundary conditions

—

J Mίf)(ζ(άfv
0

the notations from the Weiβrβtrasβian theory
of elliptic functions referring to thoβe
with primitive periods

Hence, the funotion u.w*Γv) is prolongable
harmonically beyond the boundary segments
lying on the real axis into the upper
semiannulus by means of the defining
equation

An integral formula^for solving the
Neumann problem concerning the basic annulus
tηe/1&< M < i applied to the function \ί(t*
thus prolonged, then implies
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the notations from the Meierstrassian theory
of e l l ip t ic functions, markeά by A , now
referring to those with primitive periods

tan additive constant contained in the
general integral representation vanishes
here in view of the antisymmetry character
of the boundary functions. Returning to
J he original variable, we obtain the desired
expression

V
<JLS

)

)}.s(E<s)+Q.<s)Us

The sigma-funotiona depending on the
primitive periods zάL and i ώ s can
further be replaced by those depending on
jico, •= 2TC and z<0 3=-2ilc^,. In fact, in
view of the identit ies

the above expression becomes

Thus, we finally reach the integral
forcaula for the solution of the original
mixed boundary value problem, stating

+/ M (i) C? ft

- fkω a} (
n

f s(ffs)tαcs))ίts)
1?ί

- f

f
hi

A remark would be stated now again on
the converse problem concerning the boundary
behaviors of a function defined by the inte-
gral representation.

Based on the same reason as stated
beforehand concerning the simplest case, i t
is insured that the formula solves really
the proposed mixed boundary value problem.
More precisely s tated, given any four func-
tions M(t), N(t ) , PCs) and GlCs) lntegrablβ
over respective intervals as boundary func-
tions, then the function oUfc) defined
by the last integral representation is har-
monic throughout the basic rectangle Ig-^ftz
< 0, 0 < J ^ < τ c and satisfies the boundary

conditions in consideration almost everywhere,
λbreover, the boundary condition is surely
satisfied at every continuity point of the
respective boundary function.



€• General case.

The method illustrated above by the
simpler cases, where only one or two pairs
of arcs bearing alternatively the values
of the function itself and of its normal
derivative are existent, can be readily
generalized to case where several pairs
of arcs existP Namely, the mixed boun-
dary value problem in general case concerning
the unit circle is reducible to the problem
of establishing conformal mapping of a
domain bounded by circular slits lying on
the unit circumference onto domains of some
canonical types and to the Dirichlet and
Neumann problems concerning such canonical
domains. However, the results will, of
course, not so concrete as in the simpler
oases discussed above in details, since
the mapping problem cannot be solved, in
general, within the elementary or elliptic
functions.

Let a given mixed boundary value problem
be formulated in the forms

&*H.+Ibeing supposed identical with &t+2.x and
t

denoting the differentiation along inward
normal. According to a circumstance similar
to the one remarked at the end of §4, i t is
supposed here also that the functions

are al l integrable over their respective
intervals of definition.

We first notice that the original problem
is decomposed into two special ones, namely,
those of determining the functions u.α)(fc) and
tĉ Yz) harmonic in|JC|<i and satisfying the
boundary conditions

Λ*)=o

The solution V-(Z) of the original problem
i s , of course, given by the sum of the
solutions of these problems, i. e , VL(Z)
= u.(£i(tϊ + tLwCx).

We begin with the mapping problem.
The unit circle \Z\< 1 can be mapped onto
a subdomain of the upper half of the unit
circle, laid on the vJ -plane, which is
bounded by the upper half of the unit circum-
ference, /m.— i mutually disjoint upper
semi-circumference centered at some points
on the real axis and ΎTU segements on the
real axis, in such a manner that *"- arcs
A: ( j^i,*", ""-) on | z | = Ί correspond
to*the circular part of the image-boundary
and the other Ύn~ arcs β, (j=*i ..-,**)*on
1*1 = 1 to i ts rectilinear part.

In fact, i t is well-known that the
»υ-ply connected domain consisting of the

whole plane cut along the circular s l i t s
Ay Q e V " > " Ό considered as a point set,
can be mapped conformally and schlicht onto
a domain bounded by whole circumferences of
an disjoint circles. It may further be
supposed that one among those circumferences,
e g , the image of AJL say, coincides
with the unit circumference &nd the remaining
ones are al l l i e in i ts interior.

Let a mapping function be w*W ^ a&d
its inverse be z=β£ f l ) Cw) . After fixing
a s l i t corresponding to / w | = l , namely
A.L, i* contains s t i l l three real

parameters according to the arbitrariness in
a linear transformation of the unit circle
onto itself, two emon£ which are to be
determined by the conditions that the end
points -e*'*'1 and £Λ̂ * of the s l i t
in consideration correspond to IAΓ— + 1 and
ur-*—l, respectively. Then there remains

only one real parameter λ with —i < λ < i
according to a linear transformation

On the other hana, the function ΊJα>α/£)
possesses the same mapping character as
W(ί\z)9 and hence a functional equation of the
form

must hold identically. If Z l ies on
(j=i, ,'wO » then, in view of l/£ = %,
the equation implies

Therefore, we have
A = 0 Further, the function
being analytic, the equation
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must remain valid throughout the domain of
definition. Thus, it is concluded, that
the image-domain is symmetric with respect
to the real axis and moreover that the
ba3ic domain |£ | < 1 is mapped by ytS-vrω(£)
in the manner required.

ay interchanging the roles of the sets
{ A^ } and { β. } the boundary corre-

spondence of the mapping is replaced in a
manner that w. arcs β; ^ « i ; . ., **.)
correspond to the circular part'of the image
boundary while the other ercsA Ci«=l ••• *>«.)
to its rectilinear part. ; ' ' '
Let us denote such a mapping function by
uf «* W α ) ( x ) and its inverse by z-Z^w

The existence of the mapping function
having been thus established, the reduction
of the mixed boundary problem to Dirichlet
as well as Neumann ones is done merely by
transformations of the variable.

Let the arcs AJ (j. — t, ", *m.) lying
on \%\ «s i correspond, by w α )

to the semi-circumference defined by

av <Lw

respectively. In order to determine the
solution <AJ1)(IL) , i t is only necessary
to solve the associated Dirichlet problem
forua^)5lLC1^il>Cvf)iconsidered as a function
harmonic in the duplicated nm.-ply connected
domain after prolongation by means of the
defining equation u.a*Our)~ ί ^ ) h
boundary conditions being

-hr r- W-r Jwr>0

q

Let next the ea cβ Bj Cj l, •••<«.) lying
on It I = 1 oorreepond, by 'ur-»i*ftt)c«)
to the aeoi-ciroumfarenoe defined by

respectively. In order then to determine the
solution ΊL α > («.) , it is only necessary
to solve the associated Neumann problem for tt
suαY*(1)(v/Λconsidered as a function harmonic
in the duplicated ott-ply connected domain
after prolongation by means of the defining
aquation u.α3ίμr)=ϊ-tcα)*ίv7)» the boundary con-
ditions being

These Dirichlet as well as Neumann
problems will be solved in explicit forms,
provided the Green function and the Neumann
function, (J'tV, t»r) andN*(W, «r) say, of the
respective domains are known explicitly.
In fact, as well known, the solutions are
then given by

where V ^ denotes the. differentiation.along
the inward normal at W, s{^ denotes the arc-
length parameter, and the integrals extend
over the whole boundaries of the respective
domains; an additive constant contained in
the general integral representation for a
folution of Neumann problem must vanish here
in view of the antisymmetry character of the
boundary functions.

Returning to the original variable, the
functions

and

solve the associated mixed boundary value
problems and hence the solution of the
original mixed boundary value problem i s
finally given by

However, i t would be noteworthy to
pay attention to the fact that both
functions u(L)(z) and u.a)(x) can also be
characterized in another equivalent but
more direct manner. In fact, the fdrmer
function «.ω(z) may be regarded as the
solution of the Dirichlet problem in the
whole fc-plane cut along (both banks of)
-m. circular s l i t s Ajty-Vv$the boundary

conditions being

Q
while the latter function tcCλ)(^ may be
regarded as the solution of the Neumann
problem in the whole Z -plane cut along
(both banks of) ou circular s l i t s B (j~
the boundary conditions being *



for f j < cp < αj

where 2/ay denotes the inward normal with
respect to the ore-ply connected s l i t domain
in consideration; an arbitrary additive
constant is determined by an imposed condition
that the solution ttwc*; remaining constant
along the unit-circumference outside β>(i=*ί,
• ••,11*.) must vanish, ^

where tc*(wθ denotes the so lut ion of the
pίroblera with the boundary conditions

Thus, the so lut ions of the assoc iated
problems w i l l immediately be found, provided
the Green function and the Neumann function
of the respect ive circular s l i t domains are
knontu Let them be Q(Z,%) and N(Z,*>) »
r e s p e c t i v e l y . The so lut ions are then given
by

I t i s a matter of course that the so lut ion
itCx) « iλ}l)cZ)+u.w(z) thus establ ished i s

ident ica l with the one obtained in the
previous paper which has been res tated at
the introduction o f the present paper.

In conclusion, a supplementary remark
souId be added. In f a c t , i t may be noticed
that the problem can eventually be reduced
to a lower case i f the boundary condit ions
are of some particular type* Tor instance,
we consider a problem with the 1-ply symme-
t r i c boundary conditions

I t w i l l readi ly be shown that the solut ion
i s given by
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