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The concept oΓ primal ideals,
introduced by L. Fυchs (3) for com-
mutative rings and generalized by
C« W. Curtis (2) to integral codular
lattice ordered semigroups with as-
cending chain condition, shall be
extended in this paper to modular
lattices with maximum condition by
our method in (4)

Let L be a modular lattice with
ascending chain condition and Θ
be a set of lattice congruences on
L sucn that any meet of a finite
number of congruences in Θ is also
in Θ o We denote by a ( θ ) the
greatest element congruent to an ele-
ment a by a congruence Q on L

o

The set of elements x satisfying
x( 0 ) * 1 is denoted by X( 0 )

 β
 An

elβirent q is said to be primary (with
respect to Θ ) if q e X ( θ ) or
q s q( θ ) for every Θ in Θ .
An element a is called to be primal
(with respect to © ) if a( θ

t
 Λ 0I )

ss a impl'ies a( θι ) = a or a( θ
t
 ) « a

for 0, and 0
X
 in @

Theorem l.l* Any primary element
is primal.

Proof. Let q be a primary element»
q( θ ) *• q and q( θ

%
 ) > q imply

q( β, ) * 1, q( βi ) * 1 and 1 ^ q,
that is, q( β, Λ fii ) « 1 ^ q

β

Theorem 1 2, Any meet-irreducible
element is primal«

Proof. If an elerent a is not
primal then a( θ, ̂  θ% ) - a,
a( θ, ) > a and a( V

t
 ) ̂  a for some

$, . θ
x
 in θ . Since a ( #, ) *\

a( 0χ ) « a( A Λ Q
%
 ) «=• a, a is meet-

reducible
 β

In a meet of elements of L, if
we can not replace any component by
a element greater than it, we call
the meet to be reduced. An irreάun-
dant meet of primal elements is said
to be shortest if any meet of two or
rrore components is not primal© Re-
duced and shortest meets are normal.

Theorem 1.3. Let a ~ a, Λ a
2
 Λ •••

Λ a
H
 be a reduced meet. Then a(^ )

a if and only if a
c
( 0 )

i ~ 1,2,...,n.
for

Proof. If a^( θ ) «. a; for i =
1,2,..., n then a( θ ) £ a; and hence
a( $ ) s*a. Conversely, suppose a( 0 )=
a Now a,(ί ) Λ a

4
(f ) Λ , M n

a,,( 0 ) > a( θ ) and the left hand side
is congruent to a by θ . Hence
a s a,( θ ) * R

x
{ θ ) A ... Λ aΛ 6̂  ).

From the reducibility, a ^ β ) ~ a;
for i =r 1,2,... ,n.

Theorer 1 4 Let a ss a, Λ a
Λ
 Λ

.». n a» be a reduced meet of primal
elements aj, Then a is primal if
and only if a;( & ) = a implies
a( 0 ) sr a for any $ in ® and some
integer i independent to θ .

Proof. By the theorem ]
 β
3

0

a( 0 ) ~ a ensures that a;( θ ) » a
for i β 1,2,...,n. If the condition
is satisfied then a is primal by the
definition. If it is not satisfied
then there are 0; such that a;( & )
ss a

:
 and a ( 0; ) > a for i a 1,2,

...,n. a £ a( a, Λ 0
Z
Λ... Λ 0

N
 ) £

a( θι ) * a
c
( e

(
 ) * a

i t
 Hence a( θ, *

0- r\ ••• π β
n
 ) ts a. If a were

primal then a( 0; ) ~ a for sorce i
which 5.s a contradiction.

Theoreir; 1.5. Any eDement is ex-
pressible as a normal meet of a
finite number of primal elements.

Proof. First, if we represent
the element as an irredundant meet
of meet-irreducible elements, it is
necessarily reduced. Next, by the
Theorem 1.4*, grouping its suitable
components we obtain a shortest meet,
it is easy to see the reducibility
of this meet. (Only here we use the
modularity of L

β
)

For any element a, the set of tf
in © satisfying a($ ) « a is a M-
closed subset of 0 which denoted
by M(a). It is well known that the
set of a31 ίί-closed subsets in θ
forms a distributive lattice, by set-
inclusion, to which we refer as M(Θ ).
The definition shows that an element
a is primal if and only if M a ) is
meet-irreducible in M( & ). If a «
a, Λ a

2
Λ . . . n a

R
i s a norma] meet

of primal a^, then, by the theorem



1.3., &(a) = M(a,) Λίί(a,)Λ . .
β
 n

M(a
R
) which is a irredundant meet

of meet-irreducible elements in
K[θ ) by the theorem 1.4. Prom the
well known theorem for distributive
lattices we obtain immediately

Theorem 1.6. If both a,
 Λ
 a

a
 r\

«c Λ &n
 a
 »̂

 Λ
 b*. f\ . Λ b

 Λ
 are

normal meets of primal components,
then m ** n and, after a suitable
change of indices, &i( θ ) « a; if
and only if b

L
 ( 0 ) - b

v
 for i * l ,

2,...,n.

Example 1. Let I be an integral
irodular lattice ordered semigroup
with ascending chain condition* A
subset k is called to be k-system
if it satisfies the condition that
(1) k is nonempty, (2) k is J-closed
and (3) k. is multiplicatively closed.
To every k-system k, we can make
correspond a lattice congruence
β (k) of L when we define that a and
b are congruent by d(k) if a

H
b π

b"*a is in k. Then k is a class con-
taining 1 for 0(k). (See (4);
Now, we adopt the set of θ (k) for
all k-systerns k in L as our &
It is easy to see that any intersec-
tion of k-systθms is again a k-sys-
tem and corresponds to the congruence
which is the intersection of congru-
ences corresponding to each k-systerns.
For any element a, the totality of

such elements that ax" a forms
clearly a k-system to which corres-
ponding congruence in © is denoted
by k(a).

Theorem 2.1. a( θ ) = a if and
only if S έ k(a), for 0 in Θ

Proof. Let θ * k(a). (a( θ ) f'a
is congruent to 1 by 0 , hence by
k(a), which shows a((a( β )) a) = a
Since (a( 6 ))((a( θ ) Γ'a) ̂  a, we get
a( 9 ) £ a((a( θ ) Γ'af' = a and hence
a s a( $ ). Conversely, if θ φ k(a)
then there is an element x such that
x is congruent to 1 by θ but not by
k(a). We have ax*

1
 •> a Since

(ax"
f
 )x ̂  a we get (ax'T'a £ x which

proves that (ax~'Γ
f
a is congruent to

1 by θ . Clearly, a-'(ax*
1
) - 1

is also congruent to 1 by 4 Thus
ax"

1
 is congruent to a by $

Therefore a( θ ) ψ a.

Theorem 2.2. An element is primal
if and only if it is primal in the
sense of Curtis (2)

o

Proof* Curtis (2) has defined
the primal ness of an -element a by
the condition that the k-system to
which k(a) corresponds be a dual

prime ideal of L in the sense of lat-

tice theory. Now, let a be primal

in our sense. Assume that a(xoy)"L:

a
β
 The J-closure of all the powers

of x is a k-system to which corres-

ponding congruence denoted by &,

Similarly &x for y. If t is con-

gruent to 1 by $
t
 rv θ

t
 , then

x" ^ t and y*
1
 -£ t for some n and

(P
1y

m, and so (xυy
1

t which showsy
that at-

1
 as a. Hence θ, Λ & £ k(a).

Therefore, say, θ, £ k(a) or ax"
1
^

a* Thus a is primal in the sense
of Curtis. Conversely, if a is not
primal in our sense, then θι φ k(a),
&
x
 £ k(a) and $

t
 r»e^k(a) for some

d, and θ% in Θ Let x be con-
gruent to 1 by θ, and not so by
k(a). Similarly y for θ

x
 and k(a).

Then x w y is congruent to 1 by
θι r\ 0

a
 and hence k(a). Thus, a

is not primal in the sense of Curtis.

Exarple 2
#
 Let I be a modular

lattice of finite length, and Θ
be the totality of lattice congruen-
ces on L. It is well known that Θ
is a Boolean algebra isomorphic to
the lattice of all subsets of the
set P of prime quotients ignoring
the productivity. The prime quotient
b/a is said to be belonging to a.
By k(a) we denote the element of Θ
corresponding to the complement of
the subset in P corresponding to all
the prime quotients belonging to a.
Then a β a(θ ) if and only if β ±
k(a). An element a is primal if and
only if all the prime quotients be-
longing to a are protective* Thus,
our theorems in §1 yield the well
known results that, in irredundant
representations by meet-irreducible
elements, the prime quotients be-
longing to components are uniquely
determined. We remark finally that
an element is primary if and only
if all prime quotients in a chain
connecting it to 1 are projective,
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