ON PRIMAI. ELEMENTS IN A MODULAR LATTICE

By Yuzo UTUMI

The concept of primal ideals,
introduced by L., Fuchs (3) for com-
mutative rings and generalized by
C. W, Curtis (2) to integral nodular
lattice ordered semigroups with as-
cending chain condition, shall be
extended in this paper to modular
lattices with maximum condition by
our method in (4).

§ 10

Let I. be a modular lattice with
ascending chain condition and
be a set cof lattice congruences on
L sucn that any meet of a finite
number of congruences in ® 1is also
in ©® , We denote by a (6) the
greatest element congruent to an ele-
ment a by a congruence 6 on L.
The set of elements x satisfying
x(©) =1 1is denoted by x( 6). An
elerent q is said to be primary (with
respect to ® ) iIf q € % (6 ) or
g=2q(8) for every 6 in O .,
An elerment a is called to be primal
(with respect to @ ) il a( 6~ 6y)
= a implies a( 6, ) = aor a( 6, ) = a
for ¢ and 6, in @ .

Theorem 1.l. Any primary element
is primal.

Proof. Let q be a primary element.
q( &) > q and q( 6, ) > q imply
a( 8 ) =1, q( 82) =1 and 1> q,
that 1s, q( 6, ~n 6, ) =1 > q.

Theorem 1.2, Any meet-irreducible
element is primal.

Proof, If an elerent a is not
primal then a( 6, A~ 6, ) = a,
a( 6, ) > a and a( ¢, ) > a for some

3 6 in ® . Since a ( 4 )
a( 6’s.$= al 6, n 6, ) =a, a is reet-
reducible.

In a meet of elements of I, if
we can not replace any component by
a element greater than it, we call
the meet to be reduced. An irredun-
dant meet of primal elements 1is said
to be shortest if any meet of two or
more components is not primal. Re-
duced and shortest meets are normal.

Theorem 1.3. Let a =a, n a,nNn ...
n a, be a reduced meet, Then a(¥ )

a il and only if a(p)=a, for
i=1,2,...,n.

Proof, If a,(0) « a; for i =
1,2,..., n then a( # ) ¢ a; and hence
a( § ) =a. Conversely, suppose a( ¥ )=
a. Now 8, (6 ) nas(f)Aecc n
a.(®) 2 a(¢ ) and the ler't hand sice
is congruent to a by 6 . Hence
a=a,%9) ~na,(8)n ... nasd).
From the reducibility, a;(§ ) = a;
for i = 1,2,...,n.

Theorer 1.4, Let a =a, n a, n
+0o0o n 84 be a reduced meet of primal
elements a;. Then a is primal if
and only if a;( 86 ) = a implies
a(9) =a for any ¢ in ® and some
integer 1 independent to 8 .

Proof. By the theorem 1,3,

a( @) = a ensures that a;(6 ) = a
for i=1,2,...,n. If the condition
1s satisfied then a is primal by the
definition. If it is not satisfied
then there are @: such that a;( 6; )
=a; and a ( §; ) > a for 1 = 1,2,
eeoyNo a < af 0, n 620000 AN Oa )é
a(6:) £ a;( g ) = a;. Hence a(6, n
0, A s+ n 6y ) = a. If a were
prImal then a( @: ) = a for sore i
wnich is a contradiction.

Theorem l.5. Any element is ex-
pressible as a normal meet of a
finite number of primal elements.

Prool, First, it we represent
the element as an irredundant meet
of' meet~irreducible elements, it is
necessarily reduced. Next, by the
Theorem 1.4.,, grouping its suitable
components we obtain a shortest meet.
It is easy to see the reducibility
of this meet. (Only here we use the
modularity of L.)

For any element a, the set of ¢
in @& satisfying a(# ) = a is a M-
closed subset of ® which denoted
by M(a). It is well known that the
set of all M-closed subsets in @
forms a distributive lattice, by set-
inclusion, to which we refer as M(® ).
The definition shows that an element
a is primal il and only if M(a) is
meet-irreducible in M(®). If a =
a, n 8, N «oe n 8, 13 a normal meet
of primal a;, then, by the theorem



1.3., k(a) = b(a,) n Mlasg) A ccc N
{(a,) which is a irredundant meet
of meet-irreducible elerents in
M(® ) by the theorem 1.4, Irom the
well known theorem for distributive
lattices we obtaln imrediately

Theorem 1.6, If both a, A agn
veo NB8p=Db A bsn ¢.0 A b, are
normal meets of primal components,
then m = n and, after a suitable
change of indices, a (6 ) = a; if
and only if bi{(# ) = b, for i =1,
2,-..,!’1.
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Example 1, Let I be an integral
rodular lattlce ordered semigroup
with ascending chain condition. A
subset k is called to be k-system
if 1t satisfies the condition that
(1) k is not. empty, (2) k 1s J-closed
and (3) k. is multiplicatively closed.
To every k-system k, we can make
correspond a lattice congruence
0 (k) of L when we defline that a and
b are congruent by #(k) if a”b n
b™a is in k. Then k is a class con-
taining 1 for 8(k). (See (4))

Now, we adopt the set of 6 (k) for
all k-systems k in I as our @® .

It is easy to see that any intersec-
tion of k-systems 1Is again a k-sys-
tem and corresponds to the congruence
which is the intersection of congru-
ences corresponding to each k-systems,
For any element a, the totality of
such elements that ax™ = a forms
clearly a k-system to which corres-
ponding congruence in @ 1is denoted
by k(a).

Theorem 2,1, a(8) = a 1f and
only if # < k(a), for 6 in ® .

Proof. Let O < k(a). (a(0))'a
is congruent to 1 by 0, hence by
k(a), which shows a((a( 6)) a)” = a,
Since (a( 9 ))((a( 8))'a) £ a, we get
a( 9 ) « a((a( 8))"a) = a and hence
a=a(0). Conversely, if 6 4 k(a)
then there 1s an element x such that
x 1s congruent to 1 by 8 but not by
k{(a). We have ax™ > a, Since
(ax™ )x £ a we get (ax™)'a & x which
proves that (ax™)'a is congruent to
1 by € . Clearly, a~'(ax”') =1
1s also congruent to L by ¢ ., Thus
ax™ 1is congruent to a by ¢ .
Therefore a( 6 ) + a.

Theorem 2,2, An element is primal
if and only if it is primal in the
sense of Curtis (2).

Proof. <Curtis (2) has defined
the primalness of an element a by
the condition that the k-system to
which k{a) corresponds be a dual
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prime ideal of I. in the sense of lat-
tice theory. Now, let a be primal

in our sense. Assume that a(xuy) =
a, The J-closure of all the powers
of x is a k-system to which corres-
ponding congruence denoted by 4, .

Similarly 62 for y. If t is con-
gruent to 1 by 6 ~ ¢ , then
x" <« t and y" = t for some n and
m, and so (xuy)"™' < t which shows
that at-' = a. Hence 6 N 6 < k(a).
Therefore, say, 6 < k(a) or ax"=
a, Thus a is primal in the sense
of Curtis. Conversely, if a is not
primal in our sense, then 6. % k(a),
# % k(a) and ¢, ~n=k(a) for some
6, and 6, in ® ., Let x be con-
gruent to 1 by 6, and not so by
k(a), Sirilarly y for 6, and k(a).
Then x v y is congruent to 1 by
8, ~ 8, and hence k(a). Thus, a
is not primal in the sense of Curtis,.

Exarple 2, let I be a modular
lattice of finite length, and @
be the totality ol lattice congruen-
ces on .. It is well known that &
is a Boolean algebra isomorphic to
the lattice of all subsets of the
set P of prime quotients ignoring
the projectivity. The prime quotient
b/a is said to be belonging tc a.
By k(a) we denote the element of &
corresponding to the complement of
the subset in P corresponding to all
the prime quotients belonging to a.
Then a = a(§ ) if and only if ¢ =
k(a). An element a is primal if and
only ii all the prime quotients be-
longing to a are projective. Thus,
our theorems in §1 yield the well
known results that, in irredundant
representations by meet-irreducible
elements, the prime quotients be-
longing to components are uniquely

-determined. We remark finally that

an element is primary if and only
if all prime quotients in a chain
connecting it to 1 are projective,
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