By Sitiro HANAI

1. Let S be a complete lattice and $\mathbf{\Phi}$ be the set of all T-closure operators $\mathbf{9}$ defined on S, that is, each element a of S is mapped by $\mathbf{9}$ on an element $\mathbf{a}^{\mathbf{9}}$ of S such that $\mathbf{a} \subset \mathbf{a}^{\mathbf{9}}$, $(\mathbf{a} \cup \mathbf{c})^{\mathbf{9}} = \mathbf{a}^{\mathbf{9}} \cup \mathbf{c}^{\mathbf{9}}$, $(\mathbf{a}^{\mathbf{9}})^{\mathbf{9}} = \mathbf{a}^{\mathbf{9}}$, $\mathbf{o}^{\mathbf{9}} = \mathbf{o}$, where \mathbf{o} is the zero element of S. Let \mathbf{f} , $\mathbf{\psi}$ be two elements of $\mathbf{\Phi}$. When $\mathbf{a}^{\mathbf{9}} \subset \mathbf{a}^{\mathbf{4}}$ for any element \mathbf{a} of S, we define $\mathbf{\psi} < \mathbf{g}$. Then it is known that $\mathbf{\Phi}$ is a complete lattice by this partial order $<^{1}$. When $(\mathbf{a}^{\mathbf{9}})^{\mathbf{7}} = (\mathbf{a}^{\mathbf{7}})^{\mathbf{9}}$ for any element \mathbf{a} of S, we say that \mathbf{g} and $\mathbf{\psi}$ are commutative. Denoting $(\mathbf{a}^{\mathbf{9}})^{\mathbf{7}}$ by $\mathbf{a}^{\mathbf{9}\mathbf{7}}$, we say $\mathbf{9}\mathbf{\psi}$ the product of \mathbf{q} and $\mathbf{\psi}$.

In this note, we will obtain the condition that f and Ψ should be commutative, and as an application, we will next investigate what properties a maximal subset Ψ of ϕ has, of which any two elements are commutative.

2. In the first place, we will consider the condition for commutability, by the partial order of Φ .

$$\frac{\text{Theorem } 1}{9\Psi = \Psi \cap \Psi} \text{, then }$$

<u>Proof.</u> If $a^{q} = a$, *a* is said to be \overline{g} -closed. Let C_{g} , C_{ψ} be the set of all \overline{g} -closed elements and ψ -closed elements respectively. Then C_{g} and C_{ψ} are both complete sublattices over S with respect to meet², and $\overline{g} \wedge \psi$ is a T-closure operator determined by $C_{g} \wedge C_{\psi}^{3}$.

Let a be any element of S, then

$$a^{\mathbf{p}\Psi} = \bigcap_{\mathbf{x}} \left(\mathbf{x} \in C_{\Psi}; \mathbf{x} > a^{\mathbf{y}} \right) = \bigcap_{\mathbf{x}} \left(\mathbf{x} \in C_{\Psi}; \mathbf{x} > a^{\mathbf{y}} \cup a^{\Psi} \right).$$

Similarly

$$a^{\psi\varphi} = \bigcap_{\mathbf{x}} \left(\mathbf{x} \in C_{\varphi} \; ; \; \mathbf{x} \supset a^{\varphi} \cup a^{\psi} \right).$$

Since, by hypothesis $a^{9^{+}} = a^{4^{-}} \mathfrak{P}^{-}$ and C_{9} , C_{4} are both complete sublattices over S with respect to meet,

$$a^{\varphi\psi} = a^{\psi g} = \bigcap_{\mathbf{x}} \left(\mathbf{x} \in C_{\varphi \cap} C_{\psi} ; \mathbf{x} \supset a^{\varphi} \cup a^{\psi} \right).$$

On the other hand,

$$a^{g_{n}\psi} = \bigcap_{\chi} (x \in C_{\psi \cap} C_{\psi}; x \supset a)$$

 $= \bigcap_{\chi} (x \in C_{\psi \cap} C_{\psi}; x \supset a^{g_{U}} a^{\psi}).$

Hence $q \psi = \psi q$. Q.E.D.

<u>Remark.</u> It is easy to see by giving an example that the converse of this theorem does not always hold. But the following corollary is easily verified.

Corollary. When $\mathcal{G}\psi < \psi \mathcal{G}$, then $\mathcal{G}\psi = \psi \mathcal{G}$ if and only if $\mathcal{G}\psi = \mathcal{G}, \psi$. In the next place, we will consider the condition for commutability, by the product of elerents of $\boldsymbol{\Phi}$.

Theorem 2. $9\Psi = \Psi 9$ if and only if $9\Psi 9 = 9\Psi$ and $\Psi 9\Psi = \Psi 9$.

<u>Proof.</u> As the necessity is obvious, we will prove the sufficiency. Since $a^{g \neq g} = a^{g \neq g}$ for any element a of S, $a^{g \neq \xi} \in C_g$.

On the other hand, $a^{\psi g} = \Omega(x \in C_{g}; x \supset a^{\psi})$, hence $a^{\psi g} \subset a^{g \psi}$.

Similarly, from $a^{\psi g \psi} = a^{\psi g}$, we get $a^{g \psi} \subset a^{\psi g}$. G.E.D.

Corollary. $9\Psi = \Psi 9$ if and only if 9Ψ and $\Psi 9$ are both T-closure operators.

<u>Proof.</u> As the necessity follows from Theorer 1, we will prove the sufficiency. By the assumption that $\psi \psi$ is a T-closure operator, we have

$$(a^{\varphi\psi})^{\varphi\psi} = \bigcap_{x} \left(x \in C_{\psi} ; x \supset a^{\varphi\psi\varphi} \right) = a^{\varphi\psi}.$$

Then a⁹⁴ 7 a⁹⁴⁹

On the other hand, $a^{\varphi\psi} \subset a^{\varphi\psi\varphi}$ hence $\varphi\psi = \varphi\psi\varphi$.

Similarly $\forall g = \forall g \psi$. Therefore, by Theorem 2, $g \psi = \psi \varphi$. Q.E.D.

In the above reasonings, we considered from the point of view of the partial order and the product of elements of $\mathbf{\Phi}$. We will next consider according to the relation be-

tween C_{φ} and C_{ψ} . Let C_{i}^{*} , C_{ψ}^{*} be the sets of elements of C_{φ}^{*} , C_{ψ}^{*} which do not belong to $C_{\varphi}^{*} \cap C_{\psi}^{*}$ respectively, then we have the following theorem.

Theorem 3. $\mathcal{P}\Psi = \mathcal{\Psi}\mathcal{G}$ if and only if any element a of $C_{\mathcal{G}}$ and any element \mathcal{G} of $C_{\mathcal{G}}$ are not comparable, except the case when there exists at least one element of $C_{\mathcal{G}} \cap C_{\mathcal{G}}$ between a and \mathcal{G} .

<u>Froof.</u> Necessity. Suppose, if $pos_{31}ble$, that there exist $a \in C_{g}$, $b \in C_{\psi}$ such that $a \in b$ and no element of $C_{g} \cap C_{\psi}$ is between a and b. Then

 $(a^{\varphi})^{\psi} = a^{\psi} = \bigcap (\pi \in C_{\psi}; \pi \supset a) \subset \boldsymbol{\varepsilon}.$

Denoting $(a^{\varphi})^{\psi}$ by c , then $c \neq a$.

On the other hand, since $\xi > c$, then $c \in C_{p,n} \subset V$. Hence $(a^{\psi})^{q} = c^{q} > c$ and $c^{q} + c$. Therefore $a^{\psi}g > a^{g\psi}$ and $a^{\psi}g + a^{g\psi}$.

Sufficiency. Let A be the set of all elements of $C_{\phi} \land C_{\psi}$ which contains all elements of C_{ϕ}^{*} and C_{ψ}^{*} . Then $A \neq \theta$ follows from $A \Rightarrow I$, where I is the unit element of S. Let B denote the set of all elements of $C_{\phi} \land C_{\psi}$ which are contained in all elements of C_{ϕ}^{*} and C_{ψ}^{*} . Then $B \neq \theta$ follows from the fact that $B \Rightarrow \circ$. And let C be the set of all elements of $C_{\phi}^{*} \land C_{\psi}$ which do not belong to A and B.

Let a_o be any element of S. When we denote by + or - the cases according to whether a_o is contained in some element of B (or C, C', C', C',) or not, it is obvious that there arise the following seven cases to be considered. In the following, we will prove $a_o^{ev} = a_o^{ev}$. In the cases (i), (iii), (iv), (vii), we can easily see that $a_o^{ev} = a_o^{ev}$, so we will prove the other cases.

	В	С	C 🍦	C₩
(i)	-		-	
(11)	-	-	<u>+</u>	-+
(iii)		-	+	+
(iv)	-	+	-	
(v)	Ξ	‡	±	+
(vi)		+	+	+
(vii)	₽	Ŧ	‡	* +

<u>Case (ii)</u>. As we can consider the latter case similarly, we will prove only the above case. Let $a_{\alpha} \in C_{\beta}$ such that $a_{\alpha} > a_{\alpha}$, then $\bigcap a_{\alpha} \in C'_{\alpha}$. Hence $a_{\alpha}^{\gamma t} = \bigcap a_{\alpha} \in C'_{\alpha}$. Therefore $a_{\alpha}^{\gamma t} = \bigcap (x \in A; x > \Box \cap a_{\alpha})$. On the other hand, $a_{\alpha}^{\psi} = \bigcap (x \in A; x > a_{\alpha})$. Since any element of a contains any element of C_{α}^{ψ} and C_{α}^{ψ} , $a_{\alpha}^{\psi} > \bigcap a_{\alpha}^{\varphi}$. Hence $a_{\alpha}^{\psi} > a_{\alpha}^{\varphi \psi}$. Therefore $a_{\alpha}^{\varphi \psi} = a_{\alpha}^{\psi}$. From $a_{\alpha}^{\psi} \in A$, it follows that $a_{\alpha}^{\varphi \theta} = a_{\alpha}^{\psi}$. Therefore $a_{\alpha}^{\varphi \psi} = a_{\alpha}^{\psi \theta}$.

Case (v). We will only consider the above case. Let $a_{\chi} \in C_{\varphi}$ such that $a_{\chi} \supset a_{\varphi}$, then $\bigcap a_{\chi} \in C_{\varphi}$. Then there arise the following two cases: (1) $\bigcap a_{\chi} \in C$, (2) $\bigcap a_{\chi} \in C_{\varphi}$.

Case (1). Let $c_y \in C$ such that $c_y \supset a_0$, then $\bigcap c_y \in C$. Hence $a_0^{\alpha} = (\bigcap a_{\alpha})_{\cap} (\bigcap c_y) \in C$. Therefore

 $a_{3}^{\Psi\Psi} = a_{3}^{\Psi}$ On the other hand, since $a_{3}^{\Psi} = (\bigcap a_{4})_{\cap} (\bigcap c_{3})_{,} a_{3}^{\Psi\Psi} = (\bigcap a_{4})_{\cap} (\bigcap c_{3})_{,}$ Thus $a_{3}^{\Psi\Psi} = a_{3}^{\Psi\Psi}$.

Case (2). Since $\mathbf{a}_{\bullet}^{\bullet} - (\Omega_{\bullet}) \cap (\bigcap c_{J})$, $\mathbf{a}_{\bullet}^{\bullet \Psi} = \bigcap (x \in C_{\psi}; x \supset a_{\bullet}^{\circ}) - \bigcap (x \in C_{\psi}; x \supset (\bigcap a_{J}) \cap (\bigcap c_{J}))$. Then, in any case between $(\bigcap a_{J}) \cap (\bigcap c_{J}) \in C_{\Psi} \cap C_{\Psi}$ and $(\bigcap a_{J}) \cap (\bigcap c_{J}) \in C_{\Psi} \cap C_{\Psi}$ and $(\bigcap a_{J}) \cap (\bigcap c_{J}) \in C_{\Psi} \cap C_{\Psi}$ and $(\bigcap a_{J}) \cap (\bigcap c_{J}) \in C_{\Psi} \cap C_{\Psi}$ is the least element of C_{Ψ} containing $(\bigcap a_{H}) \cap (\bigcap c_{J})$. Hence $a_{\bullet}^{\circ \Psi} = \bigcap c_{\chi}$. On the other hand, $a_{\bullet}^{\circ \Psi} = \bigcap c_{\chi}$ follows from $a_{\bullet}^{\vee} = \bigcap c_{\chi}$.

<u>Case (vi)</u>. In this case, it is sufficient to consider the following two cases: (\ll) There exists $c_{\varphi} \in C$ such that $(a_{\Delta} > C_{\varphi} > a_{\circ} , (\beta)$ There exists no element of C between $(a_{\Delta} \ and \ a_{\circ} \ and \ between \ bet$

Case (\boldsymbol{x}). In this case, $\boldsymbol{\alpha}_{s}^{\boldsymbol{y}} = (\boldsymbol{\beta}_{s}\boldsymbol{\zeta}_{s}),$ $\boldsymbol{\alpha}_{s}^{\boldsymbol{\psi}} = (\boldsymbol{\beta}_{s}\boldsymbol{\zeta}_{s}), (\boldsymbol{\beta}_{s}\boldsymbol{\beta}_{s}),$ hence $\boldsymbol{\alpha}_{s}^{\boldsymbol{\psi}}$ $\approx \bigcap_{z} (\boldsymbol{x} \in \boldsymbol{\zeta}_{v}; \boldsymbol{x} \supset \boldsymbol{\beta}_{s}) = \bigcap_{z} (\boldsymbol{\zeta}_{s}, \boldsymbol{\alpha}_{s}^{\boldsymbol{\psi}} = \bigcap_{z} (\boldsymbol{x} \in \boldsymbol{\zeta}_{s}; \boldsymbol{x} \supset (\boldsymbol{\beta}_{s}^{\boldsymbol{\varphi}}), (\boldsymbol{\beta}_{s}^{\boldsymbol{\beta}})).$ Suppose that $\boldsymbol{\alpha}_{s}^{\boldsymbol{\psi}} = \bigcap_{z} (\boldsymbol{\zeta}_{s}, \boldsymbol{\alpha}_{s}^{\boldsymbol{\varphi}} + \bigcap_{z} \boldsymbol{\zeta}_{s}, \boldsymbol{\alpha}_{s}^{\boldsymbol{\varphi}} + \bigcap_{z} \boldsymbol{\zeta}_{s}, \boldsymbol{\alpha}_{s}^{\boldsymbol{\varphi}} + \bigcap_{z} \boldsymbol{\zeta}_{s},$ This contradicts $\boldsymbol{\alpha}_{s}^{\boldsymbol{\psi}} = \bigcap_{z} \boldsymbol{\zeta}_{s},$ Hence $\boldsymbol{\alpha}_{s}^{\boldsymbol{\psi}} = \bigcap_{z} \boldsymbol{\zeta}_{s}$

Case (β). Since $a_{s}^{*} = (\bigcap a_{s})_{n} (\bigcap c_{y})_{n}$ $a_{s}^{*} = \bigcap (x \in (C_{y}; x) \cap (\bigcap a_{s})_{n} (\bigcap c_{y}))_{n}$ where $c_{s} > a_{s}$, $c_{y} \in C$. Then $(\bigcap a_{s})_{n} (\bigcap c_{y}) \in C_{s}$ by the hypothesis. On the other hand, since any element of C_{s}^{*} is not comparable with any element of C_{s}^{*} , no element of C_{s}^{*} is between $\bigcap c_{y}$ and $(\bigcap a_{s})_{n}$ $(\bigcap c_{y})_{s}$. Hence $a_{s}^{*} = \bigcap c_{s}^{*}$. Similarly $a_{s}^{*} = \bigcap c_{y}^{*}$. $Q_{s} \in D_{s}$.

As an application of Theorem 3, we will prove the following theorem concerning the set Ψ .

 $\frac{\text{Theorem}}{\text{sublattice over } \Phi} \stackrel{\text{Is a complete}}{\stackrel{\text{with respect to}}{\stackrel{\text{meet.}}{\stackrel{\text{meet.}}{\stackrel{\text{respect to}}{\stackrel{\text{meet.}}{\stackrel{\text{respect to}}{\stackrel{\text{respect to}}{\stackrel{\text{meet.}}{\stackrel{\text{respect to}}{\stackrel{\text{meet.}}{\stackrel{\text{respect to}}{\stackrel{\text{respect to}}{\stackrel{\text{r$

Proof. As $\overline{\Psi}^{\bullet}$ contains the unit element I and the zero element \circ element I and the zero element o of \mathbf{E} , it is sufficient to prove that if X is any subset of Ψ , $\bigwedge_{\mathbf{Y}} \mathbf{e} \Psi$. Let \mathbf{Y} be any ele-ment of Ψ such that $\mathbf{Y} \in X$. Let $\mathbf{K}_{\mathbf{y}} = \mathbf{C}_{\mathbf{y}} \cdot \mathbf{C}_{\mathbf{y}}$, then it is easy to see that $(\bigwedge_{\mathbf{e}} \mathbf{C}_{\mathbf{y}}) \cdot \mathbf{C}_{\mathbf{y}} = \bigwedge_{\mathbf{e}} \mathbf{K}_{\mathbf{y}} \mathbf{x}$. Let I be the set $\bigcap_{\mathbf{e}} \mathbf{C}_{\mathbf{y}} - \bigcap_{\mathbf{e}} \mathbf{K}_{\mathbf{y}} \mathbf{x}$, that is, the set of all elements which belong to $\bigcap_{\mathbf{e}} \mathbf{C}_{\mathbf{y}}$, but not to $\bigcap_{\mathbf{e}} \mathbf{K}_{\mathbf{y}} \mathbf{x}$, then $\mathbf{L} = \bigcap_{\mathbf{e}} \mathbf{X}_{\mathbf{y}} \mathbf{x}$, where $\mathbf{C}_{\mathbf{y}}$ denotes the set $\mathbf{C}_{\mathbf{y}} - \mathbf{K}_{\mathbf{y}}$.

On the other hand, since 3 is com-mutative with any $9 \in \chi$, by Theorem 3 any element of C₁ is not comparable with any element of C₁ , with the same exception as Theorem 3, where C₁ denotes the act C = 3where C_{ig} denotes the set $C_i - K_{gg}$. Then any element of L is not compara-

Then any element of L is not compara-ble with any element of the set $C_y - \int_{Y} K_{\varphi y}$, with the same exception as Theorem 3. As $\varphi \chi$? is determined by $\int_{Y} C_g$, by Theorem 3, \int_{Y} is a T-closure operator and is commutative with 3.

When $y \in \chi$, then $y > \varphi_{\chi}$? It is easy to verify that y and φ_{χ} ? are commutative, so we omit the proof of this case.

On the other hand, since Ψ is a maximal subset of Φ , therefore fexq ∈ Ψ

Q.E.D.

- *) This-note owes to the problem suggested by Prof. K.Morita of Tokyo Bunrika Daigaku.
- 1) G.Birkhoff; On the combination of topologies, Fund. Math.
- 26 (1936), pp.156-165.
 2) O.Ore; Galois connexions, Trans. Amer. Math. Soc. 55 (1944), pp.493-512. According to 0. Ore, a subset T of a complete lattice S is called "a complete sublattice over 3 with respect to meet" when T is a complete lattice such that when a > b for two elements of T, then a > b in S and T contains the unit element and the zero element of S, and moreover the meet operation in T coincides with the meet operation in S both for finite or infinite sets.
- 3) M.Nakamura; Closure in general
- 3) M. Nakamura; Closure in general lattices, Proc. Imp. Acad. Tokyo, 17 (1941), pp.5-6.
 4) If Cl₂ (or Cl₄) is void, then Cq C Cq (or Cq Cq). In this case it is easy to see this case it is easy to see that $\varphi \psi = \psi \varphi$. 5) G.Birkhoff; Lattice Theory
- (1940), p.17, Theorem 2. 2.

Shizuoka University.

(*) Received Nov. 1, 1952.