STRUCTURE OF HOMOGENEOUS CHAINS

By Tadashi OHKUMA

In the previous paper [3], the
author determined the structure of
discrete homogeneous chains. Con-
tinulng his study, he will show the
structure of general. homogeneous
chains to some extent, in the present
paper,

In the structure theory of homo-
geneous chalns, simple homogeneous
chains, which will be defined later,
seem to be fundamental, and some
attempt of the representation of ge-
neral homogeneous chajins, as lexico-
graphic product of simple homogeneous
chains is suggested at the end of this
paper.

As to definitions and notations,
the same as used in [1] and in the
author's previous paper, [3] are
employed. But, for convenience, a
short note of these definitions and
the results gained from these defi-
nitions, which are used in the author's
previous paper, are stated again in §1.

In the study of the structure
of homogenéous chains, the homogeneous
intervals play an important rdle,
and §1 is devoted to the investiga-
tion of the homogeneous intervals
in a homogeneous chain,

In §2, homogeneous chains, which
have very special type, namely, homo-
geneous chains with unique autoror-
phisms, are studied,

In §3 the structure of simple
homogeneous chains, especially that
of conditionally complete homogeneous
chains, which belongs to thls cate-
gory, are determined to some extent.

Those are homogeneous chains with
very special type, but a general ho-
mogeneous chain is embedded in a lexi-
cographic product of these sirmple
homogeneous chains. The fact is shown
in the last section, §4, of this
paper,

§1. _Homogeneous intervals.

The terms used without definitions,
such as a partially ordered set,
(abbr, a poset), a chain (or a total-
1y ordered set), and an ordinal num-
ber (or a well-ordered set), ought
to be referred to [l].

(1.1) Detinition l. It a chain
X has a transitive automorphism

group, we call X homogeneous.,

Definition 2. A subchain I of a
chain X is called an interval of X.
if and only if,

a, be I

and a ¢c (b

implies c e I,

The whole chain X and a subchain
which conslsts of only one element
of X are intervals. The other inter-
vals are called proper.

Especially, for any pair of ele-
ments a, b of X, the set of elements
between (properly) a and b is an
interval of X, which we cal) an open
interval (a, b). The set of upper
bounds and the set of lower bounds
of an element a of X, excluding the
element a, are also called (unbounaed)
open intervals, and are denoted by
(a,-) and (-, a) respectively.

When two elements a and b are adjoined
to the open interval (a, b), we call

it a closed interval [a, b]l. [a, bh)
denotes the interval (d, b)with adjoined

a only. (a, bl, [a, =), and (-, a]
are similarly defined.
(1.2) We detine the f'ollowing two

kinds of orders in a family of inter-
vals of a chain X,

P.l) We say that Y, contains Y,,
if and only if Y, is a subset of Y,,
and denote the fact by Y, € ¥,, (Or,
we may say that Y, is greater than
Y, in the meaning of F.l).)

P.2) We say that Y2 is Jess than
Y, (or Y, is greater than Yz) 1 and
only if a ¢ b for any pair of a ¢ Y,,
and b ¢ Y, , and denote the fact by
Y.< Y, (Or, precisely, we say that
Y: is greater than Y., in the meaning
of P,2).) Especially the subset of
X, which consists of only one element
X € X is an interval of X, II x is
less than any element of the other
interval Y of X, the fact is denoted
by x < Y. The sign x > Y is similarly
defined,

Y, and Y, are comparable if and
only if either they are disjoint or
they coincide entirely with each
other.



The adequacy of those orderings
and the condition of comparability
can be easily verified.

(1.3) Definition 3. When an
interval Y ol a homogeneous chain
X is itsell a homogeneous chain, then
we call Y a homogeneous interval.

Jet Y be an interval (not neces-
sarily homogeneous) of a homogeneous
chain X. We denote the automorphism
group of X by ¢x . The set of all
automorphisms of X such that

Pr={geqx, p0=x for omg xAY}

is called the characteristic group

of the interval Y. 9y 1is isomorphic
to the automorphism group of the

chain Y (ef. [8])s If Y is a homoge~
neous interval of X, then @Y is
transitive within Y. We shall call

an automorphism P e Py , an auto-
morphism of Y, simply.

(1.4) It is well known that the
automorphisr group of a chain X be-
comes a lattice ordered group. (cf.
[1], pp. 214-217) We shall see some
detail of this facte.

For a pair of two automorphisms
P , ¥y of X, if

P (x) < "f (x) for any x € X
then 9 is sald to be less than ¥ .

Let ¢ and ¥ be two automorphi-
srs {(not necessarily comparable) of
X, then by the above ordering, the
join and meet of % and ¥ can be
éeiined as following

PV ¥ (x)=max (¢ (x), ¥ (x))
PAY(x)=min ( ¢ (x), F(x)).

Zspecially, for the identical map-
ping O, the automorphism ¢ >~ O,
such that

$~ 0 (x)=max ( ¢ (%), x)

is denoted by 9% , which is called
the positive part of ¢

If % (x) 2 x for any x € X, then
$ is called positive. If %P (x) » x
lor any x € Y, Y being an interval
of X, then % 1is called positive in
Yo If 9P (x)? x%x tor an x € X, we
Shall say that ¢ 18 positive at X.

The negative part $ = % ~ 0 o an
automorphfsm P e Ix , and the
negativity of an autormorphism ¢
are similarly defined.

(1.5) Lerma 1. Let ¢ be an
automorphism of a homogeneous chain
X. For instance, ¢ 1is assumed to
be positive at a ¢ X. Set
97 (a) = an, 8nd Y, = [8n, ans+ss ) for
n=0,21, 2, «¢sos Then ¥Y=Ua¥,
is a homogeneous interval cf X, and

¢ 1is positive in ¥, When ¢ 1s
negative at a, the result is all the
same,

Remark., If we take a displacement
6 of X such that

6(y)= 9 (y) foryeyY
6(z)= 2 for z § Y
then we get a new automorphism ©
of X, and 6™(a) = ¢9™a), so the
set

U,l 6"(a), 6" (a))

entirely coincides to Y. Hence we
may take 6 1in the place of 9 in
the following consideration.

Proof of the lemma,

We denote by Y* the unicn of the
interval Y and its lower bounds,.

Y* is not homogeneous in general.
First we shall see that for any y,
8m ¢ Y < 8m+;, there exists an
automorpnism 7T of Y*, which maps
a, onto y.

If y = a. for some n, this state-~
ment is obvious. Let ye (8n, 8ne )o
Take an automorphism ¥ of X such
that ¥ (ax) = y, then

¥ (an) < &, = 6 (a.) and the fol-
lowing three cases are possible,

1) ¥ (am) = 6 (am) for some m > n
i1) ¥ (am) < 6 (am) for any m> n
1i1) % (am) > 6 (am) for some m > n.

Case 1) Take the automorphism
of X such that,

T (2z)

Y (z) for z & am
T (2) = 6 (z) for 2z > am

then T (a») = y, and obviously T is
an autororphism of the interval Y*,

Case ii) We shall prove that
¥ (ax) <-6°(an) for any 1 > O.
When i = 1, ¥ (8.) = F ¢ @me =0(an).

Now, let the statement be proved for an
1, then

’)L;'l(a-‘n) < ‘)Le;(a.n) = ')L(a-m.fﬁ)



<O (ames) = 6"”(&«»»)

Hence, the inductioh is accomplished,
and so every 7¥‘ (aa) is contained
in Y* for any 1 > O.

. ot
Set 2 = U;[ ¥ (ax), 77 (aa)),
1i=0,+1, £t2, ..., then Z C Y*,
and i1f we take the displacement T
of X such that

T (z)

¥ (z) for z €2
= 2z otherwise,

then obviously T is an automorphism
of Y*, since Z € Y*, and T (&a) = Y.

case 1ii) Let m be the tirst
integer greater than n such that

¥ (an) > 6 (am)

that is, ¥ (ag) < 6 (ay) for n € £<n.
Take a displacement T of X such that

T(x)=Y (x) for x < @ m-;
T(x)= ¥ A 0(x) for a,_,<x< an

T (x) 6 (x) for x » a_.

i

Since ')Lf\ [} (am-l ) = ‘)‘ (afm.-l ) and
¥~ 06 (ax) =6 (a,, T 1s an auto-
morphism of Y*, and T(a,) = Yy

Second, we shall sce that for any
X,¥ € Yf there exists an automorphism
T of Y* such that T (x) = y.

Take an automorphism T, of Y*
such that 7T, (a,) = x, and another
such that 1, (a.) = y, and set
T=T,0™" 7" , then T (x) = y, and
since T, , 7., and 6 , are auto-
morpnisms of Y*, so is T also,

Finally, we shall see that for
any X,y € Y, there exists an automor-
phism 7€ of Y, which maps x to y.

1f v! denotes the union of the
interval Y and its upper bounds, it
is all the same as the above that
there exists an automorphism 7, of
Yt, which maps x to y. Take an auto-
morphism 7, of Y* which maps x to
Y, and set

T (z) = Mg(z) for z & X

T (2) = Ty(z) for z > x.
Then obviously 7 is an autororphlsm
of X, and T (z) = 2z for any z § Y
and T (x) = y.

Hence the proof ot the first part

of the lemma is established, and the
second part is obvious,

2. A homogeneous chain with
unique automorphisms.

(2.1) Definition 4. If for some
pair of elements x,y of a homogeneous
chain X, the automorphism which maps
x to y is unique, we call X a homo-
geneous chain with unique automorphi-
sms, or sometimes we say that the
automorphisms of X are unique, or X

has unjque autcmorphlisrs,

If jor a pair of elements x, y
of a homogeneous chain X, the auto-
morphism ¢ which maps x to y is
unique, then the autororphism which
does not displace x is unique, that
1s, such an automorphism is only the
identical mapping.

Indeed, if there exlsts some
automorphism ¥ which does not dis-
place x and ¥ (a) =b # a for some
a € X, then 9% (x)= ¢?(x) = y, and

?¥(a) = 2 (b) # # (a) since a # b,
Hence the autormorphism which maps
x to y is not unique.

Conversely, it is similarly veri-
ied that if the automorphism which
does not displace x 1s only the iden-
tical mapping, then the automorphism
which maps x to some y is also unique,

If there exlsts a non-identical
autororphism ¢ which does not dis-
place x, take an autcrorphism ¥
wnich maps x to y, then the autoror-
phism. ¥ ¢ ¥~' does not displace y,
and is not identical. Hence we can
conclude that ii r'or some pair of
elements x,y ¢ X, the automorphism
which maps x to y is unique, then
for any pair of elements of X, the
automorphism which maps one to the
other is unique.

(2.2) Theorem ], A homogeneous
chain X has unlque automorphisms if
and only if there exlists no proper
homogeneous interval in X.

Prcof. If X has a proper homoge-
neous interval Y then the non-identi-
cal autormorphism of Y does not dis~
place any element outside of Y, so
the automorphisms of X are not unique,

Conversely if there exists a non-
identical automorphism ¢ of X which
does not displace some element x of
X, then the set UZ_. (™), §"@)
for some a such that ¢ (a) + a, is
a horogeneous interyal by lermma 1,
which is proper since it does not
contain x.

(2.3) Tn a homogeneous chain X
with unique automorphisms, if, for
a pair of autororphisms ¢ and ¥ ,



and for some x € X, 9 (x)< ¥ (x),
then for any element y of X,

9 (y) < ¥ (3.

Indeed, ¥ (y) can not be equal
to ¥ (y). If 9(y)> ¥ (y) for some
¥y ¢ X, then the autororphism &= 2~¥
1s equal to ¢ at x, but not equal
to ¢ at y, hence the automorphism
which maps x to ¢ (x) 1s not unique.

(2.,4) We fix some element a of
X, and consider the correspondence
between the automorphisms of X and
the elements of X such that ¢ ¢« ¥(a).
Then thls correspondence 1s one-to-~
one, and isotone 1f we regard the
automorphism group of X as a lattice
group in the meaning of (l.4).

It is easy to see that the lattice
group ¥x of automorphisms of X
is totally ordered and Archimedean,
hence the group is isomorphic to a
subgroup of the lattlce ordered addi-
tive group of real numbers (cf. (1]
p.226). Since the lattice group of
automorphisms of X corresponds one-
to-one and order-preservingly to the
chain X, we can state,

Theorem 2., A homogeneous chain
with unique automorphisms is isomor-
phic to a subchain of real numbers.
More exactly, a homogeneous chain
with unique automorphisms is isomor-
phic to the ordered set made of a
subgroup of the additive group of
real numbers.

It is naturally surmised that a
homogeneous chain with unique auto-
morphisms is isororphic to the chain
of integers.  But the author could
nct ascertain this expectation. It
is easy to see that the only discrete
homogeneous chain with unlique auto-
morphisms is that of integers. The
author thinks that the following
problem is an interesting one.

Problem 1. Is there any homoge-
neous chaln with unique autororphisms
which is dense-in-itself?

3. Simple homogeneous chains,

(3.1) Now we shall investigate
some other special type of homogene-
ous chains. Simple homogeneous cha-
ins, defined later, have also a spe-
cial type, yet they seem to make
themselves a structural foundation
of general homogeneous chains, and
moreover, many important chains,
such as the chain of integers, the
chain of rational numbers, that of
real numbers, and general condition-
ally complete homogeneous chains,
are contained in this category.

Definition 5.,. A regular interval
Z oI a homogeneous cﬁain X 18 an
interval of X which has the following
property,

For any pair of elerments x, y in
Z and for any autororphisr ¢ of X,

P(x) € Z implies ¢(y) ¢ Z.

Gxample., Iet a chain X be the
ordered set of real numbers from
which the integers are taken away,
then as easily seen, the set (0, 1)
1s a regular interval.,

Let a chain X be discrete, then
the interval of X, such that between
two elements of it, only a finite
number of elerents exist, is a regu-
lar interval,

For any homogeneous chain, the
whole chain and the interval which
consists of only one element are
regular intervals,

Definition 6. A homogeneous chain
X is called simple, if and only if
it contains ro proper regular interval.

Exarmples. The chaln of integers,
the chain of rational numbers, and
the chain of real numbers are sim-
ple as easily seen.

A horogeneous chain with unique
autororphisrs is simple, since it
contains no proper horogensous in-
terval. (4 regular jinterval is al-
ways & homogeneous jinterval, as seen
later.)

A conditionally complete homoge-
neous chain is sirple. Indeed, any
proper interval Y of a conditlonally
complete homogeneous chain X has
either its upper limit or its lower
1imit. For instance, assume that Y
has 1its upper limit u, then for any
pair of elerents a,b ¢ Y, a< b, a
positive autororphisr which maps b
to u, maps a into Y. (Obviously,

u can not be contained in Y.) Hence
Y is not a regular interval.

(3.2) Let Y be a proper interwval
(not necessarily homogeneous) of
a homogeneous chain X. We define
an equivalence relation between the
elements of X in the following way.
We S&y x ~ y (x,y € X) if and only
ii for any automorphism ¢ of X

9 (x) € Y implies 9 (y) €'Y
and ¢ (y) € Y implies ®(x) € Y.

Obviously this relation satisfies
the axjoms of equivalency.



If x~y, x<y, and ? (x) ¢ Y,
then ¢ (y) & Y by definition. If
further % (y) > Y, then there exi-
sts an automorphism ¥ of X, which
maps P (x) into Y. Then the posi-
tive automorphism ¥* maps ¢ (x)
into Y, and maps ¢ (y) out of Y, and
then 7*¢ (x) ¢ ¥, and ¥* 9 (y) > Y.
This contradicts the assumption that
X~ y» On the other hand, if x > y,
and ¢ (x) < Y, then it is obvious
that ¢ (y) < Y. Hence if x~ y, and

?(x) < Y, then 9(y) < Y. Similarly
if x ~y, and ?(x) > Y, then
?(y) > Y.

We shall see that a class by the
classification induced by the above
equivalence relation is a regular
interval.

First, the class Z is an interval
of X.

Indeed, if x ~y, and x < u <
then ¢ (x) € Y implies % (y) e Y,
and ¢ (x) < ¢ (u) < ¢ (y), and so

?(u)e Y. Hence ¢ (x) e Y implies
¢ (u) e Y,

Conversely, if ®(x) < Y, then
?(y) < ¥, and if ¢ (x) > Y then
¢(y) > ¥, and since ¢ (x)<%(u)< %(y),
¢(u)< Yor %(u) > Y Trespective-
ly. Hence #(x) § Y implies
¢ (u)§ Y. Hence x ~u, and u € Z,

Second, the interval Z is regular,

Indeed if x,y € Z and P (x) ¢ Z,
?(y) & Z for an automorphisrm ¢ of
X, then ¢ (x) is not equivalent
to 9(y), so there exists an automor-
phism 9 of X, which maps one of

% (x) and ? (y) into Y, and the
other out of Y. Then the automorphism
¥ % maps one of x and y into ¥,
and maps the other out of Y. But
this contradicts the assumption that
X ~ Yo

(3.3) We shall consider the case
that a homogeneous chain X is simple
and its automorphisms are not unique.

Since, the autonorphisms of X are
not unique, there exists a proper
homogeneous interval Y in X. (Theo-
rem 1) Since X is simple, for any
pair or elements of X, cne is not
equivalent to the other with respect
to the equivalence relation concerning
to the interval Y. (3.2) (Otherwise,
each of the equivalent classes is a
proper regular interval.) In other
words, for any pair of elements
x, y ¢ X, (except the case x = y.)
there exists an autororphism §$ of
X, such that

either ¢ (x) 3 Yand P(y) ¢ Y
P(x) e Yand ¢(y)& Y.

We consider the following three
cases.

or

Case 1) For any pair oi elerents
X,y in Y, there exists an automor-
phism $ of X such that # (x) € Y
and ¢ (y) X\ Y, and exists another
autororphism of X such that

Y(x) & Y and ¥(y) ¢ Y.

Case 11) For some pair of ele-
ments x,y € ¥, x < y, and for any
automorphism ¢ of X, ¢ (y) ¢ ¥
implies ¢ (x) ¢ Y,

Case 1ii) For some pair of ele-
ments x,y € Y, such that x< y, and
for any automorphism ¢ of X,

b1 (x{é Y implies ¢(y) e Y.

Y has either upper or lower bounds,
since Y is a proper interval. When
Y is lower unbounded, the case is
ii). When Y is upper unbounded, the
case is i1ii). Even when Y is both
upper and lower bounded, we have no
reason to exclude the case ii) and
ii1), for the present.

In the case 1), there exists an
autor orphism ¥ of X such that
¥F(x) € ¥, and P (y) > ¥, since X
is simple. We shall see that for any
element u,v € Y, u < v, there exists
an automorphism 6 of X such that
© (u)€e Yand 6(v) > Y,

First we can see that if W (x)< Y,

for an automorpkism 7 of X then

T (y) < Y. Indeed, if T(y) > Y,
then there exists an automorphism

T of X, which maps 7T (y) into Y,
then the autororphism 7T~ 7T , where
T~ 1is the negative part of T ,
maps ¥y into Y and rmaps x out of Y,
This contradicts the condition of
case 11).

Take an automorphism X of X,
which maps u to x, and set w = X (v).

If w ) y, then
YX(v)= ¥ (w) > ¥ (y) > Y, and
¥x (u) = ¥ (x) ¢ Y. Hence the auto-
morphism ‘6 = ¥X is suitable for
our purpose,

If w < y, then we shall see that
for any automorphism T of X,
T(u) 4 Y implies T (v) & Y.
Indeed, if for an automorphism
X, T(u) > Y, then T (v) > Y, since
T(u) < T (v)e If T(u)< Y, then
T x'(x) < Y, hence T X7(y) < Y,
and then T X' (w)< T Xx'(y), and so
T(v) < Y. Hence, if w < y, then
T(u) § Y implies T (v) 8 Y for any

T of



T ¢ ?x « In other words, if

T(v) e Y, then T (u)e Y. Hence,
there must be an automorphism © of
X, such that @ (u) € -Y, and 6 (v) & Y.

(3.4) By above consideration,
we can assert that, in case 1) and
ii), for any pair of x, y € Y, there
exists an automorphisr & e gx ,
which maps the Jless element into Y
and the greater element into the
upper bounds of Y, In case 1ii), by
similar consideration, for any pair
of elements u, v € Y, there exists
an autormorphism which maps the greater
element into ¥, and the less element
into the lower bounds of Y.

Now we shall see that every bounded
open interval in Y is isomorphic to
another one in Y. For instance, we
assume that it is the case 1) or ii),
The case 111) can be similarly treated.

First of all, for any three ele-
ments x,y and z in Y, Y being a homo-
gensous proper interval of a homo-
geneous chain X, if x < y < 2z, then
the interval (x, z) is isomorphic to
the interval (y, z).

Indeed, there exists an automor-
phism % of X, which maps 2z into
the upper bhounds of Y and maps y and
X into Y (we assume that the case
is i1) or iii)). + Then, since Y is
a horogeneous interval of X, there
exjists an autororphism ¥ of Y,
(which fixes any element outside of
Y), which maps 9 (x) onto ®(y).
Hence the automorphism 6 = ¢~y ¢
maps the interval (x, z) onto the
interval (v,z). This shows that the
interval (x, z) is isormorphis to the
interval (y, z)o.

Second, we shall prove that an
open interval (x, y) in Y 1is isomor-
paic to another one (u, v).

Indeed, since the interval Y is
horogeneous, there exists an autoror-
phism % of Y, which maps v onto
Yo Then x < ¢ (u) < y = #(v), or

P(u) < x < y= ¢ (v)s In both
case, the open interval ( $(u), % (v))
is isomorphic to the open interval
(x, y). Hence (u, v) is isomorphic
to (x, y), and the statement is pro-
ved.

(3.5) We have just proved that
every bounded open interval in a
proper homogeneous interval Y of a
simple homogeneous chain X, whose
automorphisms are not unique, is iso-
morphlc to one another. In other
words, those bounded open intervals
in Y is isomorphic to a definite
chain T.

The chain T has following proper-
ties;

T1) Any (bounded or unbounded)
open interval in T is isomorphic to
T itself,

T2) If by T', the chain 1 @ T,
where 1 is an &djoined element, and
® is the ordinal sum (ef. [1] p.9),
is denoted, then

T=T7& 7"
T3) T is homogeneous.

Tl) and T2) are obvious, We shall
verify T3)

Since, for any x, and y in T,
the open intervals (-, x), (-, ¥),
(x, =), and (y, =) are isomorphie
to T, there exist an isomorphism ¢
tron. (-, x) to (-, y), and an isomor-
phism ¥ from (x, =) to (y, -).
Then the mapping 6 , such that

6(z)= 9 (z), for z e (-, x)
6(x)= y
e(z) = ¥ (z), for z € (x,~-)

is an automorphism of T, which maps
x to y.

T4) Every interval U of T, which
has neither the greatest element nor
the least element in U, 1s a homoge~
neous interval of T,

Indeed, for any pair of elements
x,y of U, there exist two elements
u,v € U, such that u < x,y < v,

But since the interval (u,v) is ho-
mogeneous ((T3)), there exists an

automorphism of the interval (u, v),
which maps x to y and this automor-
phism is also an automorphism of U.

TS5) Let P be the regular ordi-
nal number (cf. [2] pp.130-135) which
is cofinal to the chain T, and let

&~ be the dual of a regular ordinal
number, which is co-initial tq~the
chain T; then obviously (P2 , & ) is
the element-character (cf. [2] pp.
134-137) of T, and following identi-
ties hold,

T=T@(po T)
T=&0 7'

and T )y e ot

]

(& @ P

where @ and © denote the ordinal
sur and ordinal product, Trespec-
tively. The proof of T5) is easy.



Definition 7. We call the chaih
T, which has the property Tl), a

totally homogeneous chain.

Remark 1. The properties T2) -
T5) are induced fror the property
T1).

Rermark 2. Such a chain is what
1s called a homogeneous chain by F.
Hausdorff (cf. [2] p.173) But on
account of the change of the defi-
nition of horogeneity, we use the
new term, When such a chain is also
conditionally complete, it is called
a homogeneous linear continuum, and
we shall make use of this term lat-~
ter,

(3.6) Now we shall prove that
any bounded open interval (x,y)
in X is isomorpnic to T. (The nota-
tions X, Y and T are the same as the
previous propositions.)

We define the following equivalence
relation: for a pair of elements
x,y € X, X &y, 1f the open interval
(x, ¥v) or (y, x), according to
X <y, or x >y respectively, is
isororphic to T. Then, assuming that
X a x, this relation satisfies the
axioms of equivalency, since the
transitive law is valid by the pro-
perties Tl) and T2) of T. &ach
equivalent class 1s an interval by
Tl). And obviously, one oi these
classes contains the homogeneous
interval Y, and hence this class con-
tains at least two elements.

e shall see that each class is

a regular interval. Indeed, if
x,y € U, U being one of the equivalent
classes, for instance, that which
contains Y, and ¢ (x) &€ U, and

9 (y)& U for some % €¢gx , then
the interval ( ¢ (x), % (y)), (or
the interval ( 9(y), #(x)) is isomor-
phic tc the interval (x, y) (or the
interval (y,x)), and hence to the
chain T, since x 18 equivalent to
Y. On the other hand, ( $(x), ?(y))
{or (2 (y), #?(x))) can not be iso-
morphic to T, since P (y) is not con-
tained in the equivalent class U
which contains 9 (x). This is a con-
tradiction.

Thus we have proved that the equil-~
valent class is a regular interval,
but, since X is simple by assumption,
each class must be a non-proper inter-
val ol' X, and especially the class
which contains Y must entirely coin-
cide with the whole chain X, This
proves that for every pair of ele-
ments X, y € X; X < y, the interval

(x, y) is isomorphic to T.

Hence we have the following
Theorem.,

Theorem 3, For every palr of
elements x, and y in a simple homo-
geneous chain, whose automorphisms
are not unique, the open interval
(x, y) (assuming that x < y) is
isomorphic to a definlte totally
homogenecus chain.

(3.7) We shall say that the total-
ly homogeneous chain T associates to
the simple homogeneous chain X whose
automorpnisms are not unique.

Let W, be the regular ordinal
number, which is cofinal to the
chain X, and let W; be the dual of a
regular ordinal number, which is
coinitial to the chain X. Obviously,
W, 1s, at the greatest, the first
ordinal number ww , with the type
of which, no subchain of T can con-
tained in T, and W; is, at the grea-
test, the dual &, of the first
ordinal number, with the dual type
of which, no subchain of T can con-
tained in T, T being the totally
hom;geneous chain which associates
to X.

We consider the following four
cases,
cl) is less than “« , and
is (dually) less than w,,

°

¥,
Wa

c2) W, iIs equal to wu , and
W, is (dually) less than

Dy e

C3) W. is less than «wu , and
W, 1s equal to w, .

C4) ¥, is equal to <« , and
. is equal to &, .

In the first case Cl), X is iso-
morphic to the chain (W, @ W,)°T",
as easily seen. On the other hand,
we can take a subchain S' of T,
which is isororphic to (W, ® W.).
Then the minimal intervel S of T,
which contain S' (S consists of all
elements which exist between in sore
pair of elements in §') is obviously
isomorphic to (W, ® W,)e T%, and
hence isomorphic to X. 1In other
words, X is siomorphic to a subchain
of T,

In the case C2), the unbounded
open interval (-, x) of X, for some
X ¢ X, is isomorphic to an interval
S of X, similarly as in the case Cl).
And hence the chain X is lsororphic
to the chain 3 ® (<«w.*T'). In the
case C3), the result is similar, and
we can get the following Theorem.



Theorem 4, For any simple homoge-
neous chaln X, there exists a tatally
honogeneous chain T, which associates
to X, and X is isomorphic to one of
the following four representations.

c1) s

€2) SO (wue ')
c3) (L,0 T') es
C4) (@) @ wu) o Tt

where “uw is the first ordinal num~
ber with the type of which no sub-
chain of T can be contajned in T, &,
is the dual ofthe first ordinal number,
with the dual type of which no sub-
chain of T can be contained in T,

and S is an interval of T, dependent
on X.

(3.8) If a chain X is a condi-
tionally complete homogeneous chain,
then the problem stated at the last
of chapter 2 is easily resolved.

Theorem 5, A conditionally com-
pleTe homogeneous chain X with unique
automorphisms is isomorphic to the
chain of integers.

Proof. We embed the chain X
into the additive group of real num-
bers (Theorem 2), Take an element
x of X and a non~identical autoror-
phism ¢ of X, then the set
J = {9$"(x)} 1is isomorphic to the
chain of integers,

If for any y ¢ X, and the unique
automorphism ¥ such that 7% (x)= y,
there exists an integer m such that
P™(x) € J, then it is easy to see
that X is isororphic to either the
chain of integers or the chain of
rational numbers, the later can not
be complete,

If 1or some element y of X, and

the unique automorphism 7% such that

¥ (x) = y, any #™{x) is not con-
tained in J, then 1t is easy to see
that the set K ={ ™ $™(x)} where
m, n are integers, is dense in the
chain of real numbers. Hence the
chain X is also dence in the ordered
additive group of real numbers, but
since X 1s conditionally complete,

X must entirely coincide with the
chain of real numbers, whose automor-
phisms are not unique. Hence the
proof 1s accomplished.

(3.,9) If the conditicnally com-
plete homogeneous chain X is dense-
in-itself, and hence its automorphisms
are not unique, then X is always sim-
ple (cf, the Example of Definition 6).

Hence X is associated with a totally
horogeneous chain T, which must be also
conditionally complete. A condition-
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alJy complete totally homogeneous
chain is so-called a homogeneous linear
ccntintum (cf. the remark of Definition
7).

In a homogeneous chain, every
point has the same character (cf.
[2] pp. 142-147) as that of another,
In a conditionally complete homoge-
neous chain, which is dense~in-itself,
the definite point-character is ob-
viously ( w , & ) where < 1s the
first infinite ordinal number, and

& 1is its dual., Since there exists
no gap in T, the first ordinal num-
ber, with the type of which no sub-
chain of T can be contained in T, .
and the dual of the first ordinal
number, with the dual type of which,
no subchain can be contained in T,
are S _and , respectively,
where & and @ are the first un-
countable ordinal number and §ts dual
respectively. Mkoreover, every
interval in I, which has no greatest
element nor least element in it, is
an open interval. Hence, in this
case, Theorem 4 can be stated as the
following

Theorem 6. A conditionally con-
plete homogeneous chain X is either
isomorphic to the chain of integers,
or its every bounded open interval
is Isororphic to a definite homogene-
ous linear continuum T.

In the later case, the condition-
ally complete homogeneous chain X
is isomorphic to one of the following
four representations,

C1) T
c2) T® (-1
c3) 2ot

ca) (Re & ot

where T is the homogeneous linear
continuum associating to the chain
X, and & and are the tirst un-
countable ordinal number and its
dual, respectively.

4. General homogeneous chains.

(4.1) To investigate the struc-
ture of general homogeneous chains,
we shall study the behaviours of
regular intervals in a general homo-
geneous chain.

Let Y be a regular interval in a
general homogeneous chain X. We de-
fine an equivalence relation between
elements of X. We say x~ y, if and

only if, for any autororphism ¢ of
X,

¢(x) ¢ Y implies ¢P(y)e Y.



Then that x ~ x and that x ~ 2
follows from x ~ y and y ~ z are
obvious, Let x~ y, and assume that
for some automorphism ¢ of X,

¢(x) ¥ Yand ¢(y) € Y. Take an
automorphism ¥ of X, which maps

9 (x) into Y. Then ¥ P (x) = u €Y,
and so Y9 (y) = v ¢ Y, by the defi-
nition of x ~ y. But then

P (u)= P (x) & Y, ¥'(v) - F(y) €V,
and u,v € Y. This contradicts the
regularity of Y. Hence x ~ y implies
¥ ~ Xo

(4.2) We shall call the each
equivalent class, a co-class of Y.
Y itself is a co-class ol Y.

Indeed, any element in Y is equi-
valent to the other element of Y by
the regularity of Y. On the other
hand an element in Y is not equivalent
to an element out of Y, since the
condition of equivalency does not
hold for -the identical mapping.

Let Y, and Y, be co-classes of
Y. We shall show that if an autopor-
phism ¢ of X maps an element x of
Y, into Y,, then ¢ maps Y, entirely
onto Y,.

Indeed, 1f % (x) = u € Y,, and
P(y)= va Y. for some x,ye Y,,
then u is not equivalent to v, hence
there exists an automorphism ¥
of X such that ¥ (u) € ¥, and
¥ (v) A Y. Then ¢ (x)e ¥, and

¢(y) & Y. This contradicts the
assumption; X ~ y.

Hence £ maps Y, into ¥¢, but
since 9'(u) = xe ¥, ue Y, 2
maps Ye into ¥,. Hence $ maps Y,
entirely onto Y, . This proves the
statement,

Since ¢ gives an isomorphism
from Y, to Y., the co-classes are
isororphic to one another,

Especially if ¥, = Y,, then we
see that for any pair of elements
x,y € Y, and for any automorphism
9 of X, $(x) e Y, implles
¢(y) ¢ ¥,. In other words, each co-
class of Y is a regular interval.

Moreover, for any palr of elements
x,y € ¥,, there exists an automor-
phism ¢ of X, which maps x to y.
But then 9 maps Y, onto ¥, itself,
hence Y, is itself a homogeneous
interval of X, Especially Y is so.
Hence a regular interval of X is a
homogeneous interval,.

(4.3) The co-classes of Y are
rutually disjoint, and the union
of all co-classes agrees with the
whole chain X.

If we define an ordering in the
meaning of P2), (1.,2), between those
co~classes, then the set «= {Yp}
of all co-classes Y, of Y, becomes
a chain (1.2).

Let ¢ be an automorphism of X,
then ¢ maps one co-class Y, onto
another co-class Y,. Hence naturally,
this mapping ¢ 1is regarded as an

one-valued mapping of the chain «
of co-classes, and this mapping

#:Yp Yo = $(Yy) s obviously one-to-
one and order-preserving in « ,
hence ¢ 1s regarded as an automor-
phism of X . Moreover, the homo-
genuity of < follows from the homo-
geneity of X, Hence we can assert

Theorem 7. If Y is a regular
interval of X, then Y is a homogeneous
interval of X, and there exists a
homogeneous chain o with which X
is represented as a ordinal product:

X = X oY,

(4.,4) If a regular interval Y
of X intersects some other homogene-
ous interval Z of X, then one of them
contains the other.

Indeed, if neither of them con-
tains the other, then there exists
three elements x € Y A 2', y€ Y~ 2,
and 2z € Y' ~ Z, where the prime de-
notes the complerent set. Then since
Z is horogeneous, there exists a

P € gg such that ¢ (y) = z, and

% (x) = x. But this contradicts

the regularity of Y. Hence the state-
ment is proved.

If a regular interval Y contalns
another regular interval Z of X, then
every co-class of Z Js contained by
some co-class of Y, and every co~
class of Y contains some co-class of
z.

Indeed, Z € Y implies §(Z) c 9 (Y)
for any 9 ¢ gx , (4.3), and this
verifies both statements,

¥oreover, for any palr of regular
intervals Y and Z, some co~class of
Y must intersect with Z, Hence some
co-class of Y elther contains Z or
is contained in 2.

If we regard the set % = {Y,}
of all co-classes of Y, as a division
of X, and cal) « a regular division
of X: then for any palr of regular
division of X, cne of them must be a
refinement of the other.

(4.5) Definition 8. The hyper-
index chain ¢i* of & homogeneous
chaln X Js the set of all regular
divisions of X. The index chain

OL of X is the set ol all regular
divisions which have the next [lner
regul ar sub-division,

0f course, Ol is a subset of
ot*,

We introduce an ordering into ou*
We say «%<¢ , o, geot , if
and only if @ is finer than « .
Then, by (4.4), ot* becomes a chain.

gL is naturally a subchain of Ot*

°

(4.8) We denote the set of all
regular intervals which contains some
x ¢ X, by oy defining the order
in the meaning of P.1) (1.2).

®
For any regular division xe O,
there exists a regular interval
Y € X , which contains x. Hence
the correspondence Ax 1 X YeOx



is one-to-one, and it is easily

seen that thils correspondence A x

is a dual-order-isomorphism from o.*
to otk . Hence the order-type

of @&} does not depend on the choice
of x € X.

(4,7) We" shall s:e that for any
subset Hy of ot ,

*
N Y ; Y« € Hx and
U Yu H Y € J;:
are also regular intervals,

Indeed, if u,v el Yu , Yo ¢ &
and 9(u)e N\ Ya, Pe gx , then,
since each interval Y« is re%ular,

P(v)e Yu for any Y« ¢ H% »
hence $(v) € N Y« . This shows that
NY¥sx , Yue 2 is regular.

Ifuv €¢UYx , Yo € ,Z._:‘ ,
then there exists a Ysge £i3 .
which contalns u, and exists a
Y, ¢ 3% , which contains v. But
since x ¢ Y¢ ~ Yy, one of Y¢ and
Y, contains the other (4.4). Assume
Yy c Yl’ , then u,v e YG .

We shall see that if ¢ (u) e U Y, ,
then ¢ (v)e U Y« . Indeed, if
x€ 9 (Ye) then ¢ (Ys) = Yp , since
P (Yg) is a co-class of Yo o In this
case 9 (v)e P (Yo) = YpeUVYs . If
x & ¢(Ys), then there exists a
Ys e %% , which contains ¢ (u),
But then ?(u) e Ys A 9(Ye), and
Ye& @ (Yg), since x & 9('!?5‘ Hence
® (ve) c¢ Y5, ané so
?{(v) € @ (Yp) c Ys ¢ U Yx . Hence
?(u)e U Yyimplies ¢ (v) e U Y4,
and so U Yy is a regular interval,

(4.8) For any pair of elements
x,y € X, the lntersection Ly
of all regular intervals, which con-
taln both x and y, is a regular inter-
val, and this is the minimal regular
interval which contains both x and

D

On the other hand, the union x4
of all regular intervals which con-
tain x and do pnot contain y, is a
regular interval, and this is the
maximal regular interwval, which con-
tains x and does not contain y.

It is easily seen that 7lx.y
is properly contained In May s
and that there exists no regular
interval which contains 7x,
and is contained in /lrL,,J
perly.

Definition 9. For a pair of re-
gular intervals 7% , 7 such that
> 1 , if there exists no regular
interval which properly contains
7t , and is properly contained in

o, then we call the paix; [ m ,141. ]
the simple palr of regular intervals.
FeposTally, the patr T atx,;s ey I
where <=3 is the minimal regular
interval which contains both x and y,
and My is the maximal) regular
interval which contains x and does
not contain y, is a simple pair, which
we call the simple pair defined b
the pair [x,”y] of elements x,y of X.

s pro-
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(4.9) The set of all regular
intervals mt e ot , which cover
some 7 < Oz is denoted by o« .
Since the.correspondence A = from
¥ to % 1is a dual isororphism,
A x glves also a dual isororphism
from o to Otx .

Ift[m,7), m,m e |,
is a simple pair, then % 1s a re-
gular interval of the homogeneous
chain 7 . Hence there exists a
homogeneous chain M, by which 7t {is
represented as an ordinal product:

m = WY e T (Theorem 7)

If m, 1s a co-class of 7ML ,
and 7, 18 a co-class of 7t such
that n, < M, , then for an auto-
morphism ¢ of X, such that ¢m= 17,
P(m)=Mm,s» Hence the automorphism

¢ egives an isomorphism from the
chain of all co-classes of @ in m ,
to the chain of all co-classes of 7,
in ¢, . In other words, if o,
is represented as I, = N T, R
then N is isororphic to ¥, Hence if
we denote the chain M by ”"-/,,L ,
then we can assert:

If ® 1s a regular division in
the index-chaln ot of X, then for
any regular interval a e X ,
and any regular interval =« which
is covered by 7 , the homogeneous
chain 7/ 31s isomorphic to a de-
finite chain X« o

Definition 10, We shall call the
above chaln X« , the factor chain of
X, which corresponds To a regular
division ® in the index chaln ot
of X,

(4.10) We shall see that every
factor chain of X is a simple homo-~
geneous chain.

We have already seen that every
factor chain is homogeneous,
(Theorem 7)

We shall prove that the chain
M= mM/q , where M C M € K et
and 7t is covered by m. , is a
simple chain.

Indeed M is the chain of co-classes
of 7t in 7m , It there should
exist a proper regular interval I
in M, then the union X, of co-classes
in L, would become an interval of

m . If for an autororphism ¢
of m , an element x of X 1is mapped
in £ , then the co-class =, of =
which contains x is mapped entirely
onto a co-class 7, , which is con-
tained In £ . But since ¢ indu-
ces an automorphlsm of N, any co-class-
es 7p€ L of 7t must be mapped
in ¥ , as the set I of these co-
classes 7L, is a regular interval
of M. Hence any element in £ 1is
mapped in X , that 1s, £ is a
regular interval of 2t . This
i1s obviously a proper interval of

m , and properly contains 7t , since
L is proper interval of M. Ihis con-
tradicts the assumption that m covers
7C o Hence the chain M must be sim-
ple.



The factor chain X« is isomorphic
to this M, by the definition, hence
every factor chain is a simple homo-
geneous chain.

(4.11) We number the elements of
X with ordinal numbers T < wg ,
where w, 18 a suitable ordinal
number, for instance, the initial
ordinal) number with the power of the
chain X, and denote the element num-
bered with T by x(T).

We have already seen that for any
simple pair {7 , @ ] the chain
M = ™/pn is isormorphic to the factor
chain Xx , where X 1s the regular
division which consists of all co=~
classes of ”~x . We choose from each
factor chain Xx an element 7,‘0 ,

and define an isomorphism BOm
from "™/n to X« in such a way that
the co-elass of @ , which contains
the element of X, numbered with the
least ordinal number within m ,
is mapped onto the chosen element
¥«.0 of X« o Since the ractor
chain Xx 1s homogeneous, such an
isomorphism can be always selected.

(4.12) For each x e X, we shall
define a function fx of ¢ , which
selects for each x € 0L , an ele-
ment Yx= fx(x) € Xx . For each
%60t , there exists a regular inter-
val "m«e€ & , which contalns x, and
a regular interval 7 « which is
covered by my , and contains x.
Set

fx(x ) = @m«('”-a()c

We shall see that the set
Dfy={xe 0] fxlo) # Fuo} ({1 P}
denotes the set of all elements
which satisfy the condition P) satis-
fies the descending chain condition.

Take any subset E of D4x , and

set Ax(E) = {Ax(x)| & €E
where Ax 18 the dual isomorphism
from a* to 0% , which was de-
fined in (4.6). We denote the union
of the regular intervals 7 in
Az(E), by £ , then there exists
the least ordinal number T with
which an element x in ¢ 1is numbered.
x( T ) is contained in some M «

¢ Ax(E). Ifanother regular in-
terval M= A x (@) sy 6 c¢E »
contains 7m« , then since 7m,
covers some g ed%k , My must
be contained also In 7, .+ Hence
Mg contains x(T ). But T 1is the
least ordinal number with which an
element in £ 13 numbered, hence by
the definition of function f« ,
fx(8) = Fe.o . This contradicts the
assumption that @ € E ¢ Dy, o
Hence M« 1is the maximal regular
interval in &z (E), that is,

= Ox (ma) 1s the least regu-
lar division in E, Hence any subset
of Dgf, has the least element,

Now let x,y € X, x < y, and let
Ix and fy be functions defined
above. corresponding respectively to
x and to y. Then there exists a
simple pair [ , 7t ] def'ined by the
pair (x, y] (cf. Detinition 7) and
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for @= a7 (M, £L(€)< fy(e),
since the co-class of 7 which con-
tains y, is greater than the co-
class of 7t , which contains x, in
the chain ¥ = ™/ . Noreover, g
is the least element in the set
Diy, fg = & | $20x) # F50) }

Indeéd, if for a simple pair [m,, ],
m,, m, e % , m, contains
properly, then obviously 9T, con-
tains . properly. But since 7 is

the maximal regular interval which
contains x and does not contain y,

7, contains both x and y. Hence
for v = ad (m), flr) = f30r)
that is, for any v< ¢ , £x(v) = fy(¥).
This shows that @ is the least ele-
ment In the set Dy, ¢ . It is
sirilarly seen that the correspon=-
dence x — fx 1s one-to-one.

(4.13) Definitionll. Let L be

a poset, an or each « € 0L »

there be a corresponding poset X« .
Let %«,0 be a fixed element in Xx .
The lexicographic product Txea X,< Fuo?
is defined as the set of all func~
tions f which select for each Xxedl |,
a }.(=f(b() € X, and rmake the sets

Di = {xeo| f(x) # Fu,0}
satisfy the descending chain condi-
tion, where f ¢ g means that for every
« ¢ 0. such that f(«) # g(x), there
exists an @ <« such that £(g) < glp).

This definition is a slight exten~
tion of that of the maximal product
by F. Hausdorft (ef. [2] pp.l47-161),
and the following statements are
easily proved,

The axioms of order are satisfied
without any restrictive condition on
the posets concerning, such as the
descending chain condition on the
index set ot .

If we denote the set [« | f(x) # ()}
by D ¢,g , and the set of all minimal
element of D by min(D), then f € g
is equivalent to that f(«) < g(x)
for any o € min(Dg,g ).

If any factor set Xx , in the
lexicographic product X = Ilxen Xu& Fu.0>
is homogeneous, then the order type
of the resultant system X does not
depend on the cholce of the fixed
element «,0 in X , and in this
case the sign < fa,0> 1in the lexi-
cographic product can be omitted.
Moreover in .this case that each fac-
tor set 1s homogeneous, the resul tant
poset is also homogeneous.

If any factor set X« is a homo-
geneous chain, and the index set ot
is a chain, then the resultant poset
is also a homogeneous chain.

(4.14) The following theorem
follows frorm the propositions in
(4.12), directly.

Theorem 8, For any horogeneous
chaln X, there exists a homogeneous
chain X which is represented as a
lexicographic product IT«em Xx oOf
simple homogeneous chains X« , xeot ,
and X can be embedded in it as a
subchain:



XcX = ITuer Xu

where 0L 1s a chain isomorphic to
the index chain of X, and each X,
is isororphic to a factor chain
of X,

In this decomposition it is easily
seen that the regular interval in
X corresponds to the set of functions
f € X, such that the values of f(x ),
®ep , are definite, where BH
is a segment of 6t

{4.15) At first the author ex-
pected that the conjecture in the
following problem would be correct.

Froblem 2. Does the identity
X=ITTgea X«

hold, for any homogeneous chain X,
and for its index chain o , and
the factor chains Xy ?

This problem seems to be equiva-
lent to the following one.

Problem 3. For any homogeneous
chaln, does there exist a minimal
proper regular interval?

But the author could not decided
whether those expectations would be
correct or false, and the identity
in the Problem 2 is confirmed only
in the following case.

Theorem 9, If in a homogeneous
chaln X, for any family of regular
intervals with the finite-intersection-
property, the regular intervals in
it have a non-void intersection, then
the chain X 1s a lexicograpnic pro-
duct of 1ts factor chains:

X= ITyem Xu

Proof. We need only to prove that
for any function f in the lexlicogra-
phic product Il en Xx, there exists
an x € X, which corresponds to f.
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Lat f ¢ Tl xen Xx » For a
€ Dy ={ &K} ftx) # Fa,0
vge ahal}l di.t‘inef a regt?lar}interval
Mg in the regular division ¢ .
Let ¢: be the minimal element of
D# (remark that the Dj satisfies the
descending chain condition.), and
select as m, , the regular interval
mm, e §; , which contalns x(1)
(4.11), and let 7L, be the regular
interval covered by 2, , such that
Om,(m) = (¢ (4.11). If sor
any element @» in Dj less than a
@~ ¢ Dy, the simple palr [ e, 7, 1
is defined in such a way that aecm,
for v <@ , then N 7Mey is non-
void regular interval by assumption,
hence N Mo intersects sore co-
class mtg, in @u €& Dg « But
since any 7lgv contains M.
n,, contains Mg, . We select as
the regular interval in T, which
N mp, contains the element numbered
with the lsast ordinal number in
N 7Le, , and set Tpu = Bm,, (F(E0)
Thus we can inductively select a
simple pair [ g, , 74,1 for any
fr € Dt o Aqfﬂun F@M € Df ...
is non-void. If N7, consists
of only one element x, then set
x(f) = x. If NN is yet a
proper interval, then set x(f) = x(z),
where T 1is the least ordinal num-
ber, with which an element in N M.
is numbered. (It is easily seen that
the former or the latter case occurs,
when D¢ is cofinal to ot or not,
respectively.)

Then, as easily seen, this cor-
respondence f —> x(f) ¢ X, is the
converse one of the correspondence
x — fx, defined in (4.]2). Hence
the mapping x —> fx ranges all over
TIxeot Xx , and the proof is accom-
plished.
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