By Hisaharu UMEGAKI

The concept of centering has been introduced by I.E.Segal into L' group algebra on the product group of locally compact abelian group and compact group [6] in which he has proved that such a group algebra is strongly semi-simple in the sense of I.Kaplansky. While R.Godement has applied such a method for his central group, and he had many interesting results. Recently J.Dixmier [2] has introduced by his original method an operation \exists into W^* -algebra as a characterization of finite class, and Nakamura-Misonou [5] has discussed in a central C*-algebra and called it centering. W*-algebra is selfadjoint weakly closed operator algebra with unit on a Hilbert space and C* -algebra is uniformly closed with or without unit, in the terminology of Segal.

1. <u>Centering and trace in D[#]-algebra</u>. Let α be a D[#]-algebra, i.e. u = normed[#]-algebra over the complex number field and with approximate identity $\{e_{\alpha}\}$ where the norm usig not always satisfying us*un=uxu² (cf. [10]). Assume that σ has center Z. We call a mapping 4 in α being weak centering, if 4 is.linear transformation from σ 1 onto Z such that for all x.y $\in \sigma$ 1 and zeZ

$$(xy)^{h} = (yx)^{h}, (xz)^{h} = x^{h}z$$

 $x^{n} = x^{n}, z^{h} = z$

and

и**х^чи <u><</u> ихи**.

Moreover the weak centering \ is called centering if

$$(x^*x)^{\eta} = 0 \longrightarrow x = 0.$$

Let τ be a <u>semi-trace</u> of \mathcal{A} (cf. [10]), i.e. positive linear functional defined on \mathcal{A}_{\circ} (= self-adjoint subalgebra of \mathcal{A} generated by {xy | x, y $\in \mathcal{A}$ }) such that for any x, y $\in \mathcal{A}$ $\tau(xy) = \tau(yx), \tau(x^*) = \tau(x),$ $\tau((xy)^*xy) \leq |x|^2 \tau(y^*y)$ and there exists a subsequence { $e_{x,n} \} \subset {e_x}$ dependently on x such that $\tau((e_{x,n}x)^*e_{x,n}x)$ $\rightarrow \tau(x^*x)$ as $n \rightarrow \infty$. Moreover if the τ is bounded, i.e. $|\tau(x)| \leq M \parallel x \parallel$ for some const. M, then call it <u>tra-</u> <u>ce</u>. The domain of any trace is e_n -

tensible for all $\times \in \sigma t$, and if σt has unit element then any semi-trace , and if ol is trace. For any semi-trace τ of Is trace. For any semi-trace () of there corresponds a two-sided-representation $\{x^*, x^*, j, b\}$ such that $w^{a'} = w^{b}$ and $w^{a} = w^{b'}$ where w^a and w^b are w^{*}-algebras ge-nerated by $\{x^*\}_{a}$ and $\{x^b\}_{a}$ repectively (cf. [10], Th. 2). Here we recall the construction of the two-sidea representation $\{x^*, x^*, J, W\}$. Let $K = \{x \in \Omega \mid \tau(x^*x) = 0\}$ and $\mathfrak{N} = \mathfrak{N}/\mathfrak{K}$ (quotient space) and \mathfrak{x}^{\bullet} be the class containing x . More-over x* . x* and j are defined be the class containing x. More-over x, x and j are defined by $x^{*}y^{*} = (x \)^{*}, x^{*}y^{*} = (yx)^{*}$ and $jx^{*} = x^{*}$. \mathcal{O}^{*} is incomplete Hilbert space with inner product $(x^{*}, y^{*}) = \tau(x \ y^{*})$ and f_{2} is completion of \mathcal{O}^{*} , then x and x are bounded linear ope-rators on f_{2} and j is conjugate unitary operator from f_{2} onto it-self. An element v in f_{3} is a const. For such v in f_{3} there corresponds uniquely a bounded opera-tor V on f_{3} such that $x^{*}v = Vx^{*}$ corresponds uniquely a bounded opera-tor V on f_{x} such that $x^{v} - V \times^{0}$ for all $x \in 0$. Denote V by v^{*} . Let \mathcal{B} be the set of all bounded elements in f_{x} and $\mathcal{B}^{*} =$ $\{v^{*} | v \in \mathcal{B}\}$. Then \mathcal{B}^{*} is self-adjoint operator algebra on f_{x} and has an approximate identity $\{F_{x}\}$, hence \mathcal{B}^{*} is a D^{*} -algebra. When \mathcal{F} is a family of bounded operator on a Hilbert space, denote the set F is a lamily of bounded operator on a Hilbert space, denote the set of all projective, unitary, and self-adjoint (s.a. say) operators in F by $\mathcal{F}^{(1)}$, $\mathcal{F}^{(u)}$ and $\mathcal{F}^{(Se)}$ respec-tively. Put $\mathcal{L}^{(1)} = \{ \flat \mid \flat^{e} \in \mathcal{L}^{e^{-(1)}} \}$ and $\mathcal{L}^{(Se)} = \{ \lor \mid \lor^{e} \in \mathcal{L}^{e^{-(1)}} \}$ be uniform closure of \mathcal{L}^{e} , then \mathcal{R}^{e} and \mathcal{L}^{e} are ideals in \mathbb{W}^{e} . The linear set & is itself considerable a *-algebra by the multiplication: $v_i v_2 = v_i^* v_1$ for $v_1, v_2 \in \mathcal{A}$. A semi-trace τ of σ is said to be <u>l'inite</u> if w^{*} is of l'inite class. Then any trace is always rinite (cf. [9], Th. 1).

PROPOSITION 1. If semi-trace τ of \mathcal{A} is finite, then \mathcal{J}^{*} , \mathcal{R}^{*} and w^e have uniquely common centering \forall , i.e. \forall of w^{*} coincides on \mathcal{R}^{*} with the centering \forall of \mathcal{R}^{*} and on \mathcal{J}^{*} with the \forall of \mathcal{J}^{*} . Any trace $\tau(\cdot)$ on each algebra satisfies that $\tau(A) = \tau(A^{*})$ for all $A \in W^{*}$ or \mathcal{R}^{*} or \mathcal{J}^{*} respectively.⁽¹⁾ PROOF. It has been already stated in [10], Prop. 3 and its proof that \mathcal{B}^* has a centering 4, and coincides 4 of W^{α} . From the definition of 4 of finite W^* -algebra (cf. Dixmier [2] Th. 1), for $A \in W^{\alpha}$ A⁴ belong to the uniform closure of convex hull of $\{u^{-1}Au \mid u \in W^{*(\alpha)}\}$. Since \mathcal{R}^{α} is an ideal in W^{α} , $A^{4} \in \mathcal{R}^{\alpha}$ for $A \in \mathcal{R}^{\alpha}$.

Let $T(\cdot)$ be a trace of $\mathcal{J}_{\bullet}^{\bullet}$. Since $A \lor \in \mathcal{J}_{\bullet}^{\bullet}$ for any $\lor \in \mathcal{J}_{\bullet}^{\bullet}$ and $A \in W_{\bullet}^{\bullet}$, $T(uF_{Y} \lor u^{-1}) \xrightarrow{} T(u \lor u^{-1})$ and $T(uF_{Y} \lor u^{-1}) = T(\lor u^{-1}) = T(\lor u^{-1}) = T(\lor u^{-1})$ where $\{F_{X}\}$ is approximate identity of $\mathcal{J}_{\bullet}^{\bullet}$, hence $T(\lor) = T(u \lor u^{-1})$ for all $u \in W^{\circ}(u)$ or $T(\lor) = T(\lor^{\circ})$. Taking uniform limit, also holds for $\lor \in \mathbb{R}^{\bullet}$.

A trace τ of \mathcal{A} with unit norm is said to be <u>character</u> if the corresponding two-sided representation is irreducible. The set of all characters with weak* topology on \mathcal{A} is said to be <u>character space</u>. While a trace τ of \mathcal{A} is called <u>hemi</u>-<u>character</u> if $\tau(xz) = \tau(x) \tau(z)$ for all $x \in \mathcal{A}$ and $z \in \mathbb{Z}$.

PROPOSITION 2.⁽³⁾ If \mathcal{A} has a character τ , then it is necessarily hemi-character. A trace τ of \mathcal{A} with unit norm is hemi-character if and only if for all $2 \in \mathbb{Z}$ are scalar operators. Moreover if the approximate identity $\{e_n\} \subset \mathbb{Z}$ then any hemi-character τ has unit norm.

PROOF. Let $z \in Z$ be $z^{\alpha} \neq 0$ and s.s. (if $2^{\alpha} = 0$ for all $z \in Z$, it is trivial). Let $z^{\alpha} = \int_{Y}^{Y} \lambda dE_{\lambda}$ for some resolution of identity $\{E_{\lambda}\}$. Putting $H_{\lambda} = E_{\lambda}E_{\lambda}$ for $\lambda \in (-Y, Y)$ interwal, $x^{\alpha} H_{\lambda} = E_{\lambda} x^{\alpha} f_{\lambda} \subset H_{\lambda}$, $\mathcal{H}_{\lambda}(H_{\lambda})$ and $jH_{\lambda} \subset H_{\lambda}$ as $z^{\alpha} \in W^{\alpha} \land W^{\alpha}$ and [9], Th. 2. Since $\{x^{\alpha}, x^{\alpha}, j, f_{\lambda}\}$ is irreducible, $H_{\lambda} = 0$ or $H_{\lambda} = f_{\lambda}$, and hence $E_{\lambda} = \alpha(\lambda)$ I for some real number $\alpha(\lambda)$ and $z^{\alpha} = \int_{Y}^{Y} \lambda d\alpha(\lambda) I = \alpha(z)I$. Since T can be represented as a normalizing function $(z^{\alpha}\xi, \xi)((\xi_{\lambda}) = 1)$, $T(xz) = (x^{2}-\xi, \xi) = \alpha(z)T(x)$. Replacing \mathcal{C}_{α} instead of x we have $\alpha(z) = \pi(z)$.

Let τ be hemi-character of \mathcal{A} and $\{x^{\circ}, x^{\circ}, j, \gamma^{\circ}\}$ be corresponding representation of \mathcal{A} . For any $z \in \mathbb{Z}$ $(z^{**}, y^{\circ}) = \tau(zx)\tau(xy^{*}) = \tau(z)(x^{\circ}, y^{\circ})$. Hence $z^{\circ} = \tau(z) I$. Conversely if $z^{*} = c(z) I$ then $\tau(zxy^{*}) = (z^{*}x^{\circ}, y^{\circ}) =$ $(z_{2})(x^{\circ}, y^{\circ}) = c(z)\tau(x^{\circ}) = (z^{*}x^{\circ}, y^{\circ}) =$ $(z_{2})(x^{\circ}, y^{\circ}) = c(z)\tau(x^{\circ}) = c(z)\tau(x^{\circ}, y^{\circ}) =$ $(z_{2})(x^{\circ}, y^{\circ}) = c(z)\tau(x^{\circ}) = c(z)\tau(x^{\circ}, y^{\circ}) =$ $(z_{2})(x^{\circ}, y^{\circ}) = c(z)\tau(x^{\circ}, y^{\circ}) = c(z)\tau(x^{\circ}, y^{\circ}) =$ $\tau(z) = c(z^{\circ}) = and \tau(zxy) = \tau(z)\tau(xy)$ for all $z \in \mathbb{Z}$ and $x, y \in \mathbb{A}$. Since $\{xy \mid x, y \in \mathbb{A}\}$ is dense in \mathfrak{A} and τ is continuous, $\tau(xz) = \tau(x)\tau(z)$. We shall prove the last statement. The given hemi-character τ can be represented by the normalizing function $\tau(x) = (x^*\xi, \xi)$ for the corresponding two-sided representation $\{x^*, x^*, j, \xi^*\}$. From the construction of ξ (ξ, ξ) = norm of τ . Let $\{e_k\}$ and $\{e_x\}$ be two cofinal subsets of $\{e_x\}$. Since $\tau(e_i e_i) =$ $\tau(e_i)\tau(e_i)$, $(e_i^*e_i^*\xi, \xi) = (e_i^*\xi, \xi)(e_i^*\xi, \xi)$. The left side $\rightarrow (\xi, \xi)$ and right side $\rightarrow (\xi, \xi)^2$. Therefore $(\xi, \xi) =$ l (as $(\xi, \xi) \neq \sigma$) and the norm of $\tau = 1$.

We prove now a theorem of Plancherel-Godement's type [4] for a D^* algebra.

THEOREM 1. Let \mathcal{A} be a D^* algebra with a finite semi-trace τ . Then there exists a positive Radon measure μ on the character space Ω of \mathcal{R}^* such that

(1)
$$\tau(xy^*) = \int_{\Omega} \omega(x^*y^{**}) d\mu(\omega)$$

for all $x, y \in \mathbb{N}$. Where $\{x^{*}, x^{*}, j, f_{*}\}$ is two-sided representation generated by τ .

PROOF. The character space Ω is compact or locally compact according to I $\in \mathcal{R}^{\alpha}$ or $\notin \mathcal{R}^{\alpha}$. It is sufficient to show that the case of I $\notin \mathcal{R}^{\alpha}$, because the case of I $\in \mathcal{R}^{\alpha}$ follows as a special case. By Prop. 1, \mathcal{R}^{α} has centering 4 and any character ω of \mathcal{R}^{α} reduces of ones of \mathcal{R}^{α} by $\omega(A) = \omega(A^{\alpha})$. Hence \mathcal{R}^{α} is isometrically isomorph with $C_{\omega}(\Omega)$ by the correspondence: $A \in \mathcal{R}^{\alpha} \to A(\omega) \in C_{\alpha}(\Omega)^{\alpha}$. We shall prove in the several steps:

(1°) For any $A \in \mathbb{R}^{2^{\frac{1}{2}}}$ there exists a sequence $\mathbf{v}_{k} \in \mathbb{C}^{\frac{1}{2}}$ such that $\mathbf{v}_{k}^{-} \wedge \mathbb{A}^{\frac{1}{2}} \to 0$ ($\mathbf{v} \to \infty$), hence $|\mathbf{v}_{k}^{+}(\omega)| \to 0$ uniformly on Ω . This follows from the construction of **B**ⁱ for **B** $\in \mathbb{R}^{4}$ which belongs to the uniformly closed convex hull { $\mathbf{u}^{-}\mathbf{B}\mathbf{u}$ } spaned by inner authorhisms for $\mathbf{u} \in \mathbf{w}^{+(\alpha)}$.

(2°) We may use the construction of Segal's (cf. [8], p.284). For $v \in \zeta_{2}^{\text{tise}} v^{\star} = \int_{\lambda}^{\lambda} \lambda E_{\lambda} \cdot Put T_{\lambda} = {\lambda | (v-1)2^{-n} \langle \lambda \leq 12^{-n} \} (n > 0)}.$ For $\lambda \in T_{1,n}(n=1,2,\cdots)$ we define a step function $f_{n}(\lambda) := (i-1)2^{-n}$ for $\lambda > 0$, $= i2^{-n}$ for $\lambda \leq 0$. Then the functions sequence $f_{n}(\lambda)$ is uniformly converges to λ in the interval $(-\tau, \tau)$ which also monotone increasing to λ in $(-\tau, \tau)$ on each absolute value. (3°) II we put $A_{in} = \int_{I_{in}} \sum_{j=1}^{i} \frac{1}{2} \frac{1}{$

(4°) $\mathcal{Q}^{a^{k}(p)} = \mathcal{Q}^{a^{k}(p)}$. For, if $\flat \in \mathcal{R}^{a^{k}(p)}$, then there exists a compact-open set K in Ω such that $\flat^{(\omega)} = C_{\kappa}^{(\omega)(5)}$. From (1°) and (3°) there exists a sequence $\{1_n\} \subset \mathcal{Q}^{5}$ such that $|1_{\alpha}^{(\omega)} - \flat^{(\omega)|} = 1_{\alpha}^{2}$ uniformly on Ω and each q_n is a finite linear combination of the orthogonal elements of $\mathcal{Q}^{(p)}$. Hence $\flat \in \mathcal{Q}^{a^{k}(p)}$ follows from above fact and \mathcal{Q}^{s} being ideal in w^a. The converse is trivial.

(5°) $C_0 = d\sigma^{\alpha \ b}$ where C_0 is the class of all continuous functions on Ω with compact supports. Proof: By (4°), for any $A \in C_0$ with $A(\omega) \ge 0$, there exists $P \in d\sigma^{\alpha \ b'}$ and $\alpha > 0$ such that $\alpha P(\omega) \ge A(\omega)$ and $\alpha PA = A$. Since $d\sigma^{\alpha \ b'}$ is ideal in W^{α} , $A \in d\sigma^{\alpha \ b'}$ and $C_0 \subset d\sigma^{\alpha \ b'}$ (as any $A \in C_0$ is decomposable into linear combination of non-negative functions in C_0). The converse follows from a property of the resolution of identity: We can assume without generality that $v \in d\sigma^{\alpha \ b'}$ and $v^{\alpha}(\omega) \ge 0$ for this statement. Let $v^{\alpha} = \int_0^{\sigma} \lambda dE_{\lambda}$, then

$$\begin{split} \sum_{i=1}^{n-1} \lambda_i \left[(E_{\lambda_{i+1}} - E_{\lambda_i}) \xi \right]^2 & \leq (\sigma^* \xi_j \xi) \\ & \leq \sum_{i=1}^{n-1} \lambda_{i+1} \left[(E_{\lambda_{i+1}} - E_{\lambda_i}) \xi \right]^2 \end{split}$$

for all $\xi \in \beta$, where $\{\lambda_i\}_{i=1}^n$ is $\delta = \lambda_i < \lambda_2 < < \lambda_{n-1} < \lambda_n = Y$.

(6°) For any $p \in \mathcal{G}^{q(p)}$, putting $\mu(p^*) = (p, p)$, μ is extended a complete additive measure function on the Borel family generated by compact-open sets in Ω .

(7°) For any $v, w \in \mathcal{J}^{h}_{0} \int_{\Omega} v^{*} w^{**}(\omega) d\mu^{(\omega)} = (v, \omega)$, and this implies μ is Radon measure on Ω . Indeed, if v, ω are s.a., there exist two sequences $\{v, v\}$ and $\{v, v\}$ for v and w respectively such that the q_n in $(3^{\circ}): q_n = \sum_{i=1}^{m(w)} a_i p_{m_i}$ and $v_n = \sum_{i=1}^{m(w)} a_i p_{m_i}$ where $\{p_{m,i}\}$ $\{p_{m_i}\} < \mathcal{L}^{h(v)^{-1}}$ and $\lambda \neq e$ orthogonal respectively. Hence $f_{n}^{*}v_{n}^{*}(\omega) \neq \mu(\omega) =$ $\sum_{i=1}^{d_i} f_{m_i}^{*}(\omega) = (v, w)$ Since $|v_n^{*}v_{n}^{*}(\omega)| \leq |v^{*}w^{**}(\omega)| \leq M P(\omega)$ for $n = 1, 2, ..., p_{m_i}$ const. M and some $P \in \mathcal{L}^{*}w^{*}(\omega)$ by $(5^{\circ}), f^{*}v^{**}(\omega) \neq \mu(\omega) = (v, w)$ by Lebesgue convergence theorem. For any v and w in \mathcal{L}^{*} (Can be decomposed into the s.a. terms and shown on each term. Since any element in \mathcal{L}^{**} can be represented by the form $v^* \omega^{**}$ for $v, \omega \in \mathcal{L}^{*}$ by (4°) and (5°), $\mu(v) = \int_{\Lambda} v^*(\omega) a\mu(\omega)$ is considerable as a positive linera function on \mathcal{L}^{**} by the integral computation, and hence μ is Radon measure on Λ by (5°).

(8°) For any vet $\int_{\Omega} \omega((vv^*)^*) d\mu(\omega)$ = (v, v) Proof: Putting $w = (vv^*)^*$ and K = closure of $\{\omega \mid w^*(\omega) \neq 0\}$ is compact in Ω by (5°) and $\mathfrak{p}^*(\omega) \geq C_K(\omega)$ (5) for some $\mathfrak{p} \in \mathcal{G}_K^{k(\mathfrak{p})}$ by (4°). From (7°) $(v, \mathfrak{p}v) = (vv^*)^{\mathfrak{q}} = \mathfrak{p}^*(\omega) d\mu(\omega) = \int_{\Omega} \omega(vv^*)^* d\mu(\omega)$ $(\mathfrak{s} (vv^*)^{\mathfrak{q}} \mathfrak{s}(\omega) - \omega((vv^*)^{\mathfrak{s}}) = \omega((vv^*)^*)$ While $((\mathfrak{p}v - v))^{\mathfrak{q}} = (vv^*)^{\mathfrak{q}} = \mathfrak{p}(vv^*)^{\mathfrak{q}}$ Thus we have the required relation.

(90) For any $v, w \in \mathcal{G} \int \omega(v^* w^{**}) d\mu(\omega) = (v, w)$. Indeed, this case reduces to (8°). For, $vw^* = [(v+w)(v+w)^* - (v-w)(v-w)^* + ((v+w)(v+iw)^* - (v-iw)(v-vw)^*)]/4$

In (9°), especially putting $x^{\bullet} = v$ and $y^{\bullet} = v$ for x and $y \in \mathcal{A}$, as $(x^{\bullet}, y^{\bullet}) = \tau(x y^{\bullet})$, we obtain the required relation (1).

REMARK. I. In Theorem 1, if $l \in \mathcal{R}$, then $\mathcal{L}^* = W^*$ and hence there is $u \in \mathcal{L}^*$ such that $u^* = I$. Therefore $\tau(x\gamma^*) = (x^*u, \gamma^*u) = ((x\gamma^*)^*u, u)$ and τ is trace of \mathcal{A} .

II. Above theorem implies decomposition of finite H-system (cf. [1], for H-system), i.e. let H be a H-system such that the W*-algebra generated by left multiplication algebra \mathcal{J}_{\bullet} of all bounded elements in H is of finite class, then there exists a family of irreducible H systems $H_{\bullet}(\omega \in \Omega)$: character space of uniform closure \mathcal{R}^{\bullet} of \mathcal{J}^{\bullet} such that for any $v, w \in \mathcal{J}_{\bullet}$ ($v, w \rangle = \int_{\Omega} (v_{\omega}, w_{\omega}) d\mu(\omega)$ where $(v_{\omega}, w_{\omega}) = \omega (v^{\omega} \psi^{*})$ and H_{ω} is completion of the linear set $\{v_{\omega}\}v \in \mathcal{J}\}$ with respect to (v_{ω}, w_{ω}) . The irreducibility of H_{ω} for each $\omega \in \Omega$ (i.e. H_{ω} has no non-trivial twosided ideal in the sense of W.Ambrose [1]) follows from that each $\omega \in \Omega$ is character of \mathcal{R}^{*} and corresponding two-sided representation is irreducible. Moreover we can show that for any $\xi, \eta \in H$ there are $\xi_{\omega}, \eta_{\omega}$ $\in H_{\omega}$ (for each $\omega \in \Omega$) such that $(\xi, \chi) = \int_{\Omega} (\xi_{\omega}, \eta_{\omega}) d\mu(\omega)$.

2. <u>Centering in group algebra and</u> <u>application of §1</u>. If G is a unimodular locally compact group, and L is *-algebra of all continuous function on G with compact supports and with t -norm. Then L is D*-algebra with respect to the multiplication of convolution for the Haar measure. Putting $\tau(x) = x(e)$ for $x \in L$, τ is semi-trace and corresponding representation ix^*, x^*, j, j is regular two-sided reprosentation of L i.e. $j = t^2(G), x^* y^e = x \cdot y$ and $x^* y^e = y \times$ and $j \times = x^e = \frac{x(s^*)}{x(s^*)}$ for x and $y \in L$ where \cdot is convolution. The notations R, f_{π} and \mathscr{R} with respect to semi-trace τ for D*-algebra Ω (cf. §1) are used for regular representation: $\Re(g) =$ *-algebra of all bounded elements in $t^2(G), \quad f_{\sigma}(G) = corresponding$ operator sigebra for $f_{\sigma}(G) =$ uniform closure of $f_{\sigma}(G)$. Let I(G)be the group of all inner automorphisms on G.

PROPOSITION 3. For the group algebra $\mathcal{L}(\mathbb{G})$ having an weak centering it is necessary and sufficient that there exist at least one compact $\mathfrak{N}\mathfrak{A}$ of unit $e \in \mathfrak{G}$ invariant under $I(\mathfrak{G})^{(e)}$. Moreover for the weak centering being centering in $\mathcal{L}(\mathfrak{G})$ it is NASC⁽¹⁾ that \mathfrak{G} has complete system of $I(\mathfrak{G})$ invariant compact nbds.

PROOF. The statements of the sufficiencies of the both parts follow immediately from Th. 4 of Goement [4], and the necessity of the first part is clear by the existence of central element of $l^2(G)$. Now we prove the necessity of the second part. Let \mathbb{Z}^2 be the maniforld of all central elements in l^2 and \mathfrak{T}_1 be set of all bounded linear functional on \mathbb{Z}^2 . Let P be the projection of l^2 onto \mathbb{Z}^2 . Then $v^{\mathfrak{h}} = \mathbb{P} \vee$ for all $v \in \mathcal{G}_0(G)$ by Th. 4 of [4] where \mathfrak{h} considering in the operation in $\mathcal{G}_1(G)$ such that $v^{\mathfrak{h}} = v^{\mathfrak{h}(2)}$. Noreover we put $\mathfrak{P}(\mathfrak{f}) = \mathfrak{q}_1(\mathfrak{f}\mathfrak{f}) \leq M (\mathfrak{f}, \mathfrak{f}) \leq M (\mathfrak{f}, \mathfrak{f})$ and $\mathfrak{f} \in \mathfrak{L}^2$, and also put $\mathfrak{P} = \mathfrak{f} \mathfrak{q}(\mathfrak{f}, \mathfrak{f})^2$ such that $v \mathfrak{f}^* \in \mathfrak{F}$ is a bounded linear functional on l^2 and hence $\mathfrak{q} \in l^2$. Since $\mathfrak{q}(\mathfrak{f}v) = \mathfrak{q}(v^{\mathfrak{h}}) = \mathfrak{q}(v^{\mathfrak{h}}) = \mathfrak{q}(v) = \mathfrak{q}(v) = \mathfrak{q}(v) = \mathfrak{q}(\mathfrak{f})$ for $\mathfrak{q} \in \mathbb{Z}^2$. Therefore for each $\mathfrak{q} \in \mathfrak{F} \mathfrak{q}^* \mathfrak{s}(\mathfrak{s})$ is a trace vanishing at infinity. If $x \in \mathfrak{L}$ and $\int_{\mathfrak{G}} x^* x(s) \mathfrak{q}^* \mathfrak{q}(\mathfrak{s}) ds = \mathfrak{o}$ for all $\mathfrak{q} \in \mathfrak{F} \times \mathfrak{s}$ and $(\mathfrak{q}^*, x) = (\mathfrak{q}, x^*) = (\mathfrak{q}, (x^* \mathfrak{s}))^* = \mathfrak{o}$ and $(\mathfrak{q}^*, x) = \mathfrak{q} \times \mathfrak{s} + \mathfrak{$

of [10] their traces are also sufficiently many on $G_{\rm T}$, i.e. our required result has been obtained by Lemma 3 of [10].

REMARK. If G has a I(G)invariant compact nbd, then by the Prop. 3 existences of sufficiently many traces in all group algebras of G are equivalent each other. In case $\mathcal{J}_{i}(f_{1})$ having the weak centering described in Prop. 3 any trace $\tau(x)$ of $\mathcal{J}_{i}(f_{1})$ (and hence any trace of G) satisfies $\tau(x^{*}) = \tau(x)$ for all $x \in \mathcal{J}_{i}(f_{1})$.

G is said to be <u>central group</u> if the group of inner-automorphisms $I(G_1)$ is totally bounded with respect to the uniform structure generated by the compact-open topology on G (cf. [3]). Then G is a central group if and only if G has complete system of compact and I(G)-invariant nbds and conjugate class of each point of G is always totally bounded. Let $K(G_1)$ be completion of I(G) concerning the uniform structure, then K(G) is compact topological group of automorphisms of G and has Haar measure m. When $x \in L$, the function $\times(ut)$ for $u \in K(G_1)$ and $t \in G_1$ is continuous on the product topology $K(G) \times G$. Hence $x(ut_1)$ is measurable on the product measure of both Haar measures of K(G) and G, and this measurability also holds for $x \in L'(G_1)$. Since $\kappa(G_1)$ is compact, $\times(ut_1)$ is Bochner integrable on $K(G_1)$ into $L'(G_1) = \int_{K(G)} \times(ut) am(u_1) = K(G_1) + Au(G_1) +$

PROPOSITION 3. In a central group G , all group algebras L, 1¹(G), $\mathcal{R}(G)$, $\mathcal{L}(G)$, $\mathcal{R}(G)$ and $W(G)^{(?)}$ have a common centering, e.g. let \forall_1 and \forall_2 be centerings in L and $\mathcal{L}_2(G)$ then $\times^{\forall_1 \land} = \times^{\land_{\forall_1}}$ for all $\times \in L$. Any trace T of each group algebra satisfies $T(A) - T(A^{\lor})$ for all elements in that algebra respectively. Hence any hemi-characters of their algebras are characters, and each character of any group algebra reduces unique character of $L^1(G_1)$.

PROOF. We have already shown that \mathbf{a}_1 is common centering of \mathbf{L} and \mathbf{L}^1 , and \mathbf{a}_2 is common ones of $\mathcal{J}(\mathcal{K}_1)$, $\mathcal{R}(\mathcal{K}_1)$ and $\mathbf{w}(\mathcal{K}_1)$. It is clear from the definition of centering \mathbf{a}_1 , for \mathbf{L} or \mathbf{L}^1 that $\tau(\mathbf{x}^{\mathbf{a}_1}) = \tau(\mathbf{x})$, for all $\mathbf{x} \in \mathbf{L}^1$ and its trace τ . For $\mathcal{L}(G)$, $\mathcal{R}(G)$ and $\mathcal{W}(G)$ it has been stated in Prop.1. Let T be a trace of $\mathcal{R}(G)$ then there exists trace τ of $G^{(10)}$ such that $\tau(\mathbf{x}^*) = \int \mathbf{x}(s)\tau(s)ds$ for all $\mathbf{x} \in \mathbf{L}$. From the construction of \mathbf{x}_1 , $\int \mathbf{x}(s)\tau(s)ds = \int \mathbf{x}(s)\tau(s)ds$ and $\tau(\mathbf{x}^*) = \tau(\mathbf{x}^{\mathbf{x}_1 \mathbf{x}})$. While $\tau(\mathbf{x}^*) = \tau(\mathbf{x}^{\mathbf{x}_1 \mathbf{x}_2})$ and hence $\tau(\mathbf{x}^{\mathbf{x}_1 \mathbf{x}_2}) = \tau(\mathbf{x}^{\mathbf{x}_1 \mathbf{x}_2})$ for all traces τ of $\mathcal{R}(G)$. Since the traces of $\mathcal{R}(G)$ are sufficiently many in $\mathcal{R}(G)$, $\mathbf{x}^{\mathbf{x}_1 \mathbf{x}_2} \mathbf{x}^{\mathbf{x}_2}$. The fact $\mathbf{x}^{\mathbf{x}_1 \mathbf{x}} = \mathbf{x}^{\mathbf{x}_1 \mathbf{x}_2}$ for all $\mathbf{x} \in \mathcal{L}$ implies that \mathbf{x}_2 is considerable as the centering in $\mathcal{R}(G)$. The last part in this proposition is obvious.

Finally we can state that the group algebra $L^1(G_1)$ is strongly semi-simple in the sense of I. Kaplansky, i.e. the intersection of all regular maximal ideals of $L^1(G_1)$ contains only the zero element. This follows from the little modified proof of Segal [6], Th.1.7.

Suppose that G has complete system of I(G)-invariant compact nbds and Ω be the character space of $\mathcal{R}(G)$. Since for every $\omega \in \Omega$ there corresponds uniquely a continuous positive definite function $\omega(s)$ on G such that $\omega(\mathbf{x}^*) = \int \mathbf{x}(s)\omega(s) ds$ for all $\mathbf{x} \in \mathbf{L}$, if $\omega(\mathbf{x}^*) - \omega'(\mathbf{x}^*) = o$ for all $\mathbf{x} \in \mathbf{L}$ then $\omega = \omega'$ in Ω . Therefore Ω can be embedded into trace space of $\mathcal{R}(\mathcal{E})$ (i.e. set of all traces of unit norm with weak* topology on $\mathcal{R}(\mathcal{G})$) by the canonical mapping ϕ which is one-to-one. It is clear that the range $\phi(\Omega)$ is closed in trace space of $\mathcal{R}(\mathcal{G})$ and locally compact, moreover the image or inverse image of each compact ping \neq is also compact in $\varphi(\Omega)$ under the mapping \neq is also compact in $\varphi(\Omega)$ or Ω respectively. Put $G^+ = \varphi(\Omega)$. We can easily seen that the Radon we can easily seen that the haddh measure μ on Ω induces a Radon measure ν on G^* by the way that $\nu(\phi(K)) = \mu(K)$ for compact set K in Ω . For $\times \epsilon L$ and $\omega \in \Omega$ the representation $x \rightarrow x^{a(\omega)} = \int_G x(r) s^{a(\omega)} ds^{(11)}$ is considerable as generalized Fourier transformation which is containing as a special case ones of product group of abelian group and compact group or more generally central group. Now we obtain Plancherel-Godement's theorem from Th.1.

THEOREM 2. Let G be a locally compact group with complete system of I(G)-invariant compact nbds of unit e of G. Then for any $x \in L$

$$\int_{G} x(s) \overline{y(s)} ds = \int_{G^{*}} \omega(x^{*} y^{**}) d v(\omega).$$

Finally we show a duality of the Fourier transformation for a group described in Th.2 which is a general form of abelian or compact case where the compact case proved by Weil [11], §24. We define formally second Fourier transform $x^* \rightarrow x^{**}(s)$ $= \int \omega(x^*) \omega(s^{-1}) d \sqrt{(\omega)}$ for all $x \in L$ where $\omega(s)$ described above i.e. $\omega(x^*) = \int_G x(s) \omega(s) ds$

COROLLARY. Let G be a group described in Th. 2. Then for all central functions z in $L z^{**} = z$, and for all x in L and s in center of $G x^{**}(s) = x(s)$.

PROOF. The approximate identity $\{e_{z}\}$ of L is in center of L. Therefore $\omega(x^{e}e_{z}^{e}) = \int_{G} xe_{z}(s)\omega(s)ds \xrightarrow{}_{Z} \int x(s)\omega(s)ds = \omega(x^{e})$. While $xe_{z}(s)\xrightarrow{}_{Z} x(e)$ and $\omega(e_{z}^{e}x^{e}) \xrightarrow{}_{Z} \omega(x^{e})$ for all $\omega \in \Omega$. Since for all $x, y \in L$ $xy(e) = \int_{X} \omega(x^{e}y^{e})dy(\omega)$ by Th. 2 and $\omega(x^{e})$ is y-integrable function on Ω ,

$$\int_{\Omega} \omega(x^{*}e_{\alpha}^{*}) dy(\omega) = x e_{\alpha}(e) \xrightarrow{\rightarrow} \int_{\Omega} \omega(x^{*}) dy(\omega)$$

and hence

$$x(e) = \int_{\Omega} \omega(x) dv(\omega) \quad \text{for all } x \in L.$$

Hence $\omega(z^{*}y^{*}) = \int_{G} zy(s)\omega(s) ds$

$$= \int_{G} \int_{G} z(t^{-1}s) y(t) \omega(s) dt ds$$

$$= \int_{G} \int_{G} z(s)y(t) \omega(st) ds dt$$

$$\omega(z^{*})\omega(y^{*}) = \int_{G} \int_{G} z(s)y(t)\omega(s)\omega(t) ds dt.$$

Since $\omega(z^{*}y^{*}) = \omega(z^{*})\omega(y^{*})$ for all $y \in L$
by Prop. 3,

$$\int_{G} Z(s) \omega(st) ds = \int_{G} Z(s) \omega(s) \omega(t) ds \text{ for all } t \in G_{T}.$$

If we put $x_t(s) = x(st)$ for each $x \in L$, then

$$Z^{*a}(t) = \int_{\Omega} \int_{G_{T}} Z(s) \omega(s) \omega(t^{-1}) ds dv(\omega)$$

=
$$\int_{\Omega} \int_{G_{T}} Z(s) \omega(st^{-1}) ds dv(\omega)$$

=
$$\int_{\Omega} \int_{G_{T}} Z_{t}(r^{-1}s) \omega(s) ds dv(\omega)$$

=
$$\int_{\Omega} \omega(Z_{t}^{*}) dv(\omega) = \int_{\Omega} \omega(Z_{t}) dv(\omega)$$

 $= Z_t(e) = Z(t).$

If s is in center of G , then s^a is also in center of W^{*} -group algebra W(G) . Since $\omega(\cdot)$ can be considerable as a character of w(G), for $\omega \in \Omega$ there corresponds an irreducible two-sided representation and hence all elements in center of w(G) is represented into scalar field, it is obvious that $\omega(st) = \omega(s)\omega(t)$ for all $t \in G$ and S in center of G. Consequently we have that for all s in center of G.

 $\begin{aligned} x^{aa}(s) &= \int_{G_{\Gamma}} \int_{G_{\Gamma}} x(t)\omega(t)\omega(s^{-1})dtdy(\omega) \\ &= \int_{G_{\Gamma}} \int_{G_{\Gamma}} x(t)\omega(ts^{-1})dtdy(\omega) = \iint_{G} x(ts)\omega(t)dtdy(\omega) \\ &= \iint_{S} x_{s}(t)\omega(t)dtdy(\omega) = \int_{\Omega} \omega(x_{s})dy(\omega) \\ &= \int_{\Omega} \omega(x_{s})dy(\omega) = x_{s}(e) = x(s). \end{aligned}$

(1). We denote the inner product in any Hilbert space f_y by (ξ, χ) for $\xi, \chi \in \mathcal{L}$ and it norm by $i\xi \in (=(\xi, \xi)^{N_k})$; and denote operator norm by $\|A\|$.

(2). We can also consider in \mathcal{L} a mapping # similar to \forall , i.e. there exists a mapping # form \mathcal{L} onto center of \mathcal{L} with the properties of the centering \forall in \mathcal{D}^{\pm} algebra except for the term of continuity (the last condition of \forall) such that $\sqrt{*^{\alpha}} = \sqrt{*^{\alpha}}$ for all $\sqrt{e} \mathcal{L}$. We shall use the same notation \forall in \mathcal{L} instead of the # and denote the center of \mathcal{L} by \mathcal{L}^{\pm} .

(3). In this proposition, the considering two-sided representations $\{x^*, x^*, z, z_i\}$ are taken for the each trace for which we discuss, and they are used the same notation: $\{x^*, x^*, z, z_i\}$.

(3'). = C^* -algebra of all continuous functions vanishing at infinity.

(4). For p and $p' \in \mathcal{L}^{k(p)}(p, p') = \int p' p'^{(\omega)} d\mu(\omega)$. For, putting $p_1 = p - pp'$, $p_2 = pp'$ and $p_3 = p' - pp'$, $p_1(z = 1, 2, 3)$ are nutually orthogonal and $p = p_1 + p_2$, $p' = p_2 + p_3$. Hence $(p, p') = (p_2, p_2)$ and $\int p^* p^{(\alpha)} = \int (p, p')^* = \int p_2^* = (B, f_2)$

(5). Denote the characteristic function for the set K by $C_{K}\left(\omega\right)$.

(6) Denote it by I(G)-invariant compact nbd.

(7). = necessary and sufficient condition.

(8). M.Nakamura has proved that $\mathcal{R}(\mathcal{C})$ has also a centering which has been introduced by the similar correspondence $\star^{\circ} \rightarrow \star^{\circ}$ consi-

dering as $u \in K(\mathbb{G})$ being unitary operator on $L^{2}(\mathbb{G})$.

(9). $W(G) = W^*$, i.e. W^* -algebra generated by the left regular representation $\{x^* \mid x \in L\}$ and called W^* -group algebra.

(10). The trace $\tau(s)$ of Gis meant by that τ is central continuous **positive** definite function. Putting $\tau(x) = \int x(s) \tau(s) ds$ for $x \in L$, $\tau(s)$ is trace of Gif and only if $\tau(x)$ is trace of L for their details, see [10]).

(11). Where $x \rightarrow x^{*(\omega)}$ and $s \rightarrow s^{*(\omega)}$ are representations of L and G corresponding to the traces $\omega(x)$ of L and $\omega(s)$ of G respectively such that $\omega(x^*) =$ $\omega(x) = \int x(s)\omega(s) ds$. And the integral $\int x(s) s^{*(\omega)} \xi ds$ ior all $\xi \in L^2$ in the sense of Bachner integral with respect to the Haar measure ds of G \circ

(*) Received August 11, 1952.

- W.Ambrose, The L²-system of a unimodular group I. Trans. Amer. Math, Soc. 65 (1949) pp.26-48.
- [2] J.Dixmier; Les anneaux d'operateurs de class finie, Ann. Sci. de L'Ecole Norm. Sup. Paris (1949), pp.209-261.
- [3] R.Godement; Analyse harmonique danse les groupes centraux, C.R.Paris, 225 (1949), I. pp.19-21.
- [4] R.Godement; Memoire sur la theories des caracteres dans les group localement compact unimodulaire, Jour. de Math. pure et appl. 30 (1951), pp. 1-110.
- [5] M.Nakamura and Y.Misonou; Centering of an operator algebra, Tohoku Math. Jour. 3 (1951), pp.243-248.
 [6] I.E.Segal; The group algebra
- [6] I.E.Segal; The group algebra of a locally compact group, Trans. Amer. Math. Soc. 61 (1947), pp.69-109.
- (1947), pp.69-109.
 [7] I.E.Segal; Irreducible representations of operator algebra, Bull. Amer. Math. Soc. 48 (1947), pp.73-88.
- [8] I.E.Segal; An extension of Plancherel's formula to separable unimodular groups, Ann. Math. 52 (1950), pp. 272-292.
- [9] H.Unegaki; On some representation theorems in an operator

algebra, III, Proc. Japan Acad. 28 (1952), pp.29-3 [10] H.Umegaki; Some decompositid theorems on operator alg Jour. of Math. Soc. of J (under the press).
--

[11] A.Weil; L'integration dans les groupes topologiques et ses applications. Actual. Sci. et Indust. 869. Paris, 1940.

Department of Mathematics, Kyūsyū University.