OPLRATOK ALGEBRa OF FINITE CLASS

By

The concept ol centering has been
introduced by I.E.Segal into LU -
group algebra on lhe product group
of locally conpact abelian group and
compact group (61 in which he has
proved that such a group algebra is
strongly semi-sinmple in the senge of
I.Kaplansky. While R.(;odenent has
applied such a method ror his central
group, and he had many interesting
results. Recently J.Dixnmier (2] has
introduced by his original method
an operation 8 into w#* -algebra
as a characterization of finite class,
and Nakamura-Misonou (5] has discussed
in a central C*-algebra and called
it centering. Ww¥ -algebra is self-
ad joint weakly closed operator alge-
bra with unit on a Hlilbert space and
C* -algebra is uniformly closed with
or without unit, in the terminology
of Segul,

1, centering and trace in D*-
algebra. Let & be a D* -algebra,
i.e. u v =normed*-algebra over the
complex number field and with appro-
ximate identity {e«} where the norn
v nig not always satistying wx*xn=uxu?
(cf. €101 }). Assume that e has
center 2 . We call a mapping &

in @ being weak centering, if §

ts._.linear transrormation from O onto

2 such that for all x,y € 0. and 262,
Gy ey, Gzt a Otz
x“= " , z" = z
and
ey g wxwm,

Moreover the weak centering Y 1is
called centering ir

(*x)"= 0 — x= o,

Let T be a semi-trace of Ol
(cf. T10) ), i.6. positive linear
functional defined on O, ( =
self-adjoint subalgebra of & gene-
rated by {xy| x,ye O} ) such that
for any x, y € & T(xy) = T(yx), WX*)=T(x),
T(xy)*xy) S 4xw@*t(y*y) and there exists
a subsequence {e.,} € { €4} depen-
dently on x such that —<((enxie,, x)
~> T(x*x) 48 M= oo . Moreover ir
the = 1is bounded, i.e.iTM)|& Mxy
tor some const. M, then call it tra-
ge. The domaln o1 any tLrace is e.-
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tensible for all xe a , ana if A
has unit element then any seni-trace

is trace. Tor any semi-trace T of
RN there corresponds a two-sided-

representation {x=, x",3 ,fat sucn
that w*' = w* and w* = wt’ wnere
w* and w* are W?* -algebras ge-

nerated by R P und §xPy

repectively (ct. (101, Th. 2,.

Here we recall the construction ot
the two-siuea representation
{x*x" 3. %), Let K ={xea] Ttx) =0}
and 0®= /X (quotient space, and »®
be the cluss containing x . DMore-
over x* , x* and j are delined
by x*y* = (x3)¢ By = g’ and Jx®= xre,

n® 18 incomplete Lilbert space
with inner product ¢x% 3°)= <w(xy*)
and is completion or a® , then
x* and x* are bounded linear ope-

rators on % and j
unitary operator from onto it-
self, An element v in is
bounded 1L (x*v, vy s M(x?, xH
tor all x € O  yhere ™M 1s a
const. For such v in % there
corresponds uniquely a bounded opera-
tor V_on # such that xv - v x®
for all x ¢ O . Denote V by

v . Let & Dbe the set of all

is conjugate

bounded elements in % and &H° =
{ve|ve Ht. Then B° 1is selr-adjoint
operator algebra on % and has an

approximate identity §F8 ,

hence J&H° 1is a D¥ -algebra. When
is a family ot bounded operator

on a Hilbert space, denote the set

of' all projective, unitary, and self-

adjoint (s.a. say, operators in £

by P, £ and £ % respec-

tively. Put LV =1{p| $° € B}

and L5V = {v | vte £V Let R
be uniform closure of & , then K"
and H* are ideals in w= . The

linear set o 1is itself considerable
a * -algobra by the multiplication:

VWV, = Vi, for v, v, e ds o A semi-
trace T of o 1s sald to be inite
if w* 1is otf t'inite class. Then

any trace is always rinite (cr. (9],
Th. 1).

PROPOSITION 1. If semi-trace T
of A 1s trinite, then 5/*, g+
and w* have uniquely common center-
ing g , 1.e. § of W* coincides

on ®* witn the centering 4§ or ®*
and on J%* with the § or &6* .
Any trace T() on each algebra
satist'ies that TA) = T@AYH reor all
Ae W* or g% or 5* respecti-
vely *



PROOF. It has been already stated
in (107 , Prop. 3 and its prooi that
L has a centering 4 and coincides
Y of w*® . From the definition
of § o1 rinite W¥ -algebra (cl.
Dixmier €23 Th. 1), LoraAe w* A% be-
long to the unirorm closure of con-
vex hull of ju'Au | uews™i,

Since @+« is an ideal in w* , e R"
for A € R%* .

Let T( ) Dbe a trace of 5% .

Since AV e 5H* for any v e 5°  andAeWS
T(UFVW') = Tuvu)and TRV =Tiv )

= TWFRHp T(V) where {Fx) is
approxinate identity of B> , hence
T(Y) = Tuvu™'y for all uew*'*> op
Twy= TW%), Taking unitornm linit,
also holds for ve ®* .

A trace T of d with unit norm
is sald to be character i1 the cor-
responding two-sided representation
is irreduciblg. The set of all cha=-
racters with Weak* topology on a

is said to be character space. ‘ihile
a trace v of @ 1is called hemi-
ir T(X Z) = TiX) TL=z)

c
for all x ¢ A and z e Z .
3)

PROPOSITION 2. It Ol has a
character © , then it 1s necessarily
hemi -character., A trace — of @A
with unit norm is hemi-character it
and only i1 for all 2¢ 2 2* are
scalar operators. Moreover i the
approxinate identity {ey & 2
then any hemi-character ~ has unit
norme.

" PROOF. Let ze¢XZ be 2* # 0 and
s.g. (if 2*= 0 forall z¢ Z ,
it is trivial). Let 2*= [V 4E,
for some resolution of identity (e, .
Putting w, = E.% for xe¢ (Y, Y) —
interval, x* W, = E, x*% ¢ Ha,PHcn,and
JHL € ML as z*eW* AW anJ[Q] »
Th. 2. Since {x=, x*, j , § is
irreducible, Hy, = 0 or H.= fz >
and hence E, = «0)T for some real
number _e(x) and 2*= [ rdac)I=a@].
Since ‘T can be represented as a
normalfzing function (x*§ £)((§f)=1),
Txzy= (x*2*§ L)ca(z)TiX). Repla=-

cing €x 1instead of x we have a(z)=Tz),

Let T Dbe hemi-character or a
and {x%%,J,%} be corresponding
repregentation of @ . For anyz¢
(23 Tizayh) = TZ)yTxy*) = T2x®% y®),
Hence z* = T(z)I .  Conversely ir
zt= «z)I  then T(zxyf) =(z*x%y®) =
=) Yra eTirfland Tlzeh e ) = Clz)T(eh €x)
The lert side > T2) and
right side = 2 ., Thus
Twzy= elz)y and T(zxy)= TZ)Tixy)
for all =z ¢ Z and x,ye A, .
Since {xy | x, ye O} 1s dense ina
and T 1s continuous, T(xz)=Tix)T(2),
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Wwe shall prove the last statenent.
The given hemi-character T can be
represented by the normalizing iunc-

tion TOLO= (x*% | g) tor the
corresponddng two-sided representa-
tion x4, x* 4, %} . From the con-

struction of % (% ¥)=norm ot T
ILet 1€} and eyt be two cofinal
subsets of {est . Since T(gey) =
Tle) Tley), (egerE T ) = (€3 1)(ey%, % ).

The lert side — (%, %) and right
side —> (g, £)* . Theretore )=
1 (as ¢§ %) # o ) and the norm of
T= 1 .

We prove now a theorem ol Plan-
cherel-Godement's type (4] tor a JD*=
algebra.

THEOREM 1. Let Ol be a D*-
algebra with a rinite semi-trace T .
Then there exists a positive Radon
measure [ on the character space Q.
of ®* such that

a4y Tyr) = J w(x‘y“)érw»
n A d

tor all x,y ¢ Ol , where {x* x",j.%}
is two-siued representation generated
by T .

PROOF., The character space )
is compact or locaily compact accor-
ding to T ¢ R* or ¢ R> . It is
sutrficient to show that the case of
L ¢# R*, Dbecause the case of T€¢ R*
follows as a speclial case. By Prop.
1, ®* has centering 4 and any cha-
racter @ of QR reducesg of ones
of ®*% by w(A) = w(A“) , Hence
®**' 1s isometrically- isonmorph
with ¢.(Q) by the correspondence:
AR 5 A ¢ Ca(N) P, We shall prove
in the several steps:

(1°) For any A ¢ R there
exists a sequence % € J>% such
that 4wy ~AR-> 0 (n = o0 ), hence
luS () -~ Al =» 9 unirormly on L .
This follows from the construction

of B'for B € R* which belongs

to the uniformly closed convex hull {u'pu}

spaned by inner autmorhisms for
u e wtw .

(2°) Wwe may use the conatraction
ot Segalt's (ci‘.‘L‘SJ s, P.284;, For
Ve Lo e o .[r'\ 48, . Put 1 | =
Irl -2 <"X' L) in> ),

For Xe¢ T, a(n=13,-.) Wwo deline a
step function ¢,oxn): =(i-1)2™"

for x>0, = i2~ for » £ o .

Then the functions sequence Ya >

is unitormly converges to » in the
interval (-v, v ) which also monotone
increasing to > in (-v¢, ¥) on
each absolute value,



(3°) Ir we put A.n =»/IL-’:"7L'~“] dE,
then Awav®= fp  f.) dEL and RinAnv®
e LY (R being a const.). It
can be written ¢ = ZTV Anve
for some q,€ JW¥¥ and linteger
moeny > 9 such that wq,, - v*u
and ﬁ‘L.‘—-‘\"\Ho a8 m —> o o

(4°) auup) OGANP) . vor,
1 op e Ry then there oxists
a compact-open set K in Q such
that ble) = Celart®? From (10)
and (3°) there exists a sequence
{4y C DY such that i {uw - ptodlxr0
uniformly on & and each 9« 1is a
finite linear combination ol the
orthogonal elements of &H™P
Hence p e LV rollows from
above fact and  JG° being ideal
in w?® . The converse is trivial,

(5°) Co= & " where Co, 1is
the class ol all continuous functions
on QL with compact supporis. Proof':
By (4°), for any A ¢ C, with A
20 , there exists P € S*"'D
and « > 0 such that «Pw) 2 Aw)
and «PA = A « Since f5° 1is ideal
in w* , A ¢ £*% and G c 5"
(as any A € C, is decomposable
into linear combination of non-nega-
tive functions in ¢, ), The conver-
se tollows fror a property-or tne
resolution or identity: We can assume
without generality that wve %%
and vtw) 2 0 ° Lor this statement.
Let ve _ /:«\'*Ex , then

»-)

z

MI(EMﬂ'EA;)Z'L L (V‘x,g)

V=
n

t

2

¢ Ml - BT
f'or all E €

n
B where  {a}
Is 2 =acrc<

< Xaerv < 2= Y,

(6°) For any p € & | put-
ting )= (p,p), B is extended
a complete additive measure function
on the Borel famlly generated by
compact-open sets in (. .

(7°) For any v,we HT _/AV‘M**«-»
dpwr=(v,w), and this implies M
is Radon measure on 0 . Indeed,
YW are s.a., there exist two
sequences 4§ iwt and ivYa3 Tror
v and w respectively such that
the 4. 1in (50): 1., = z‘?‘_“:’du P,
and  Yw= 270 where ' {p, 3
{th) ¢ &7 dnd’ are orthogonal'’
respectively. Hence z:r:‘(u).grm=
Zegs Mo g o= Sa ) V8RD Lo,
fl:":"tw) = (v, w) . Since M, rw)i
Ivtweiog M Plw) ror w=1,3,. ,
const. m and some P e SO by
(50)9 fV'w"“(W)&tLt,w) = (v, w) by
Lebesgue convergence theorem. For
any v and w in &% %%n be de-

composed into the s.a. terms and
shown on each term. Slince any ele-
ment in £*% can be represented
by the form  vewss ror v,we N
by (4°) and (59, pw) = /“v*(:a) A
is consideruabie as a positive linera
trunction on  B5° by the integral
computation, and hence s is
Radon measure on .0 by (59).

(8°) For any veds _/n w((VV’)“)pr(w)
= (v, v . Proof: Putting
w = (vvH® and K = closure or
lw] we(w) # 0} 1is compact in O by
(5°) and p*w» 2 Cxwy & Tor
some pe L8P by (4°). Fron (79)
(v, pw) =iy = [ oren P pr @) apun = o otitapuw)
(as (VV¥)i%(w) = wUVUSUFa)N) = w((ouvt)~)
While ((pv- v )(pu-viF)h = (vvh)Bs prveN
= o© and hence pv = v .
Thus we have tLhe required relation.

(90) For any v, w e I} jw(v‘wi‘)
dpw) = (v, w), Indeed, this case
reduces to (8°). For, vw* =
[vewirs wit L (v-wi(v-w)® .

P S TR R R A A )/4.

In (9°), especially putting x*= v
and y° = vy Jlor X end ye a, as
x%y°)’= <uxy*) we obtain the required
relation (1}.

REMARK. I. In Theorenm 1, ir
L€ R , then 5“=W" and hence
there is « ¢ 0o such that u== 1T .
Theretrore T(xy*)= (x*u,y*u) = ((xy*)*u,w)
and Tt 1is trace of g .

II. Above theorem implies de-
composition of tinite H -system (ct'.
(1], for H-system), i.e. let H Dbe
a Fr -system such that the w?* -alge-
bra generated by left rmitiplication
algebra S of all bounded elenents
in H 1is or rinite class, then there
exists a ramily ol irreducible +H =
systems H, (« € () : character space
of unitorn closure R“ of b5%) such
that for any v,wedy (v,w) =/A(VUIU”)J’LLU)
where (vu K w,) = w (v*w**) ""an He
is completion of the linear set {v,|ves}
with respect to (ve, W,), The irre-
ducibility of MYw for each w ¢ QO
(i.e. He has no non-trivial two-
sided ideal in the sense of W.Ambrose
1] ) tollows from that each w ¢ Q
is character off R* and corresponding
two-sided representation is irredu-
cible. Moreover we can show thst
for any § ,72 ¢ H there are %, 1,
€ Hw (for sach w e (O ) such that

(3,7) = A@«, lo) ApL@),

2. Centering in group algebra and
application of 8§1. If & 1is a
unimodular locally compact group,
and L. 1is * -algebra o1t all conti-
nuous function on G with compact
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supports and with t* -norm. Then LU
is D* -ulgebra with respect to the
multiplication of convolution for the
Faar neasure.- "Putting Ty = x(e)
for xe L. , T is semi-trace and
corresponding representation

ix%, x*, 3 ftls regular two-sided repre-
sentation of L 1.6, = Cla) xy°=xy
and x*y® = y x and jx = x*= X(s)
I'or x and y ¢ 1, where - is
convolution. The notatlons =R, 4
and ® with respect to seni-trace T
tor D*-algebra & (ct'. §1) are used
t'or regulur representation: R(g) =
unirorm closure of ix*( xe L} L(G)=
* -algebra of all bounded elemnents
in &), £(G) = corresponding
operator algebra ror J£4G) as
operator on L&) and QR(¢) =
unirorn ciosure off SH(G)Y . let I(&)
be the group of all inner autonmor-
phisms on G .,

PROPOSITION 3. For the group
algebra  J[5(&) having an weak cen-
tering it is necessary and suf1i-
cient that there exist at leasti one
compact nba ol' unit ee G in-
variant under T(&)Y“., Moreover for
the weak centering being centering
n JgBtg) 1t is NasCV that &
has complete system of (G -
invariant compaet nbds,

PROOF. The statements ot the
sulficiencies of the both parts
follow immediately from Th. 4 of
Goement (41, and the necessity of
the first part is clear by the exi-
stence of central element of (&) .
Now we prove the necessity o1 the
second part. Let 2? be the uani-
rorld oi all central elements in @
and €, be set o1 all bounded linear
tunctional on 22 . Let P be the
projection of 12 onto =2
Then v% = Pv for ali v € B (G)b
Th. 4 of [43 where 4§ considering
in the operation in b (&) such
that . y4a - v2" ), Moreover we put
®3) = ¢,(P%) for ¢ ¢ 3, and

€ 12 , 4and aiso put B ={q (% %}
A L#()1= (9(FL) S M (PL PEIEC Mgy
each ¢ ¢ 3 is a bounded linear '’
tunctional on (2 and hence ¢ ¢ X .
Since @Pv) = gvi) = @) = (v, q) =
(v%,¢) = (Pv, %) = (v,Pg) for all
ve G (G), $=P¢ and ¢ ¢ 22 .
Therefore for each ¢e¢ 2 g%¢(s)
1s a trace vanishing at inrinity,

It x ¢« L and [fo ¥ *x0r4%sids=o
ltor all 4 ¢ % , then (gx, $x)=0
and (§x,x) = (g, xx) = (g, (¥FxW)= o0,
Since =z* 1s a Banach space, 3,

is total'on Z* and hence (x»**)% =o
and x=0 by that % is centering
in £,y o Thus jg¢*g|¢ ¢ §

are traces vanishing at infinity

on & and sulficlently many on 1, .
As the proot of last part o1 Th.s
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of [103 their traces are also surri-
ciently many on & , l.e. our re-
quired resultl has been obtained by
Lemma 5 ot (101 .

REMARK. It G has a I(G)-
invariant compact nbd, then by the
Prop. 3 existences ol surricliently
many traces in all group algebras of
G are equivalent each other. 1In
case 5H(&y having the weak center-
ing described in Prop. S any trace

T(x) of &H(&) (and hence any
trace of & ) satisfies T(x") = -tixy
for all x € S (&) -

& is said to be central group if
the group of inner-autouorphisms 1(&)
is totally bounded with respect to
the uniform structure generated by
the compact-open topology on &

(cf. [(31). Then G 1is a central
group if and only if & has complete
system of compact and T(&) -invari-
ant nbds and conjugate class or

each point of G 1is always totully
bounded, Let K(&) be completion
of T(G) concerning the uniforn
structure, then k(&) is conpact
topological group of automorphisms

of & and has Haar measure m .
When «x e¢l. , the function x(ut)
for uwekK(g) and teG 1is conti-
nuous on the product topology k(@) x G .
Hence x(ut) 1s measurable on the
product measure of both Hawr measures
of K@) and & , and this mea-
surability also holds for x e L'(&).
Since k(&) 1is compact, xtut) 1is
Bochner integrable on K(&) into

1 (&) and we can define a runction
x¥(E) = x(utyamiuy « By Fubini's
theorem,”X®u 1, or L&) according
to- xel. or 1'(g) . Moreover it can
be easily proved that x —» x* de-
tines a centering in 1L and 1%&)
with L' -norn'®’ This ract results
following:

PROPOSITION $. 1In a central
group G , all group algebras 1 ,1MG),
RGY 5 L&Y » R(&) and w(gy'D
have a cormon centering, e.g. let &,
and &, be centerings in 1, and [(&)
then x%e = x*% for all xe¢ L, .

Any trace T of each group algebra
satisfies T(A)= T(AY) for all ele-
ments in that algebra respectiveiy.
Hence any hemi-characters of their
algebras are characters, and each
character ol any group algebra redu-
ces unique character of 1(&) .

PROOF. We have already shown that
§, is common centering ol L and
> , and % 1is cormon ones of bH(f),
Ry &and w(g) « It is clear
fronm the definition ol centering 4y,
tor L or L! that T(xf) = tix)
for all x ¢ L' and its trace T .



For &Lua)y » R (&)

it has been stated in Prop.l. Let

T be a trace ol' R(G) then there

exists trace — of & ‘“’ such that
T(x*) = [ x(s)<isrds lor all xe L .

From the construction of b, »
xs)Ts)ds -/)?(s)-ru)d; and Toe)= TN,

While Tix+)= T(x7) and hence

Tix%*) = Ti(x*¥) ror all traces T

of R(s) . Since the traces of &)

are sulticiently many in QR(&)

x4 a8, The fact x&« = ,ak,

tfor all x¢[, implies that &, is

considerable as tne centering in ).

The last part in this proposition

is obvious.

and  wd(g)

Finally we can state that the
group algebra L(&) is strongly
semi-simple in the sense of I.
Kaplansky, l.e. the intersection of
all regular maximal ideals ol L&)
contains only the zero element. This
tollows fronm the little modified
proof ol Segal (6] , Th.l.7.

Suppose that & has completle
system ot (@) -invariant compact
nbds and () be the character space
of R(&) . Since for every well
there corresponds uniquely a conti-
nuous positive detrinite function w(s)
on G such that w(x) = [xrwes)ds
tfor all xe¢ LL , 1t w(xY —w/(x*)=p
for all xel, then we=®’ in £ ,
Therelore (. can be embeded into
trace space of R(&) (1.e. set of
all traces of unit norm with weak*
topology on TR(G) ) by the canonical
mapping ¢ which is one-to-one. It
1s clear that the range ¢() is
closed in trace space of' R(&G) and
locally compact, moreover the image
or inverse image of each compact

set in Q or $(qQ) under the map-
ping ¢ 18 also compact in Q)
or QO respectively. Put g*= ¢(Q).

We can easily seen that the Radon
measure K on (1 1nduces a Radon
measure v on &' by the way that
YP(K)) = plK) for compuact set
K in O . FPor xe L, and we()
the representation x -, xa«) -/;m)x““’-(s
i1s considerable as generalized Fourier
transformation which is contalning

as a speclal case ones of product
group of abelian group and compact
group or more generally central group.
Now we obtain Plancherel-Godenment's
theorenm Lrom Th,l.

THEOREM 2. Let G be a locally
compact group with complete systen
of I(&)-invarisant compact nbds of
unit e of @ . Then tor any xe]l,

f x(sﬁt_s'—)asaj w(x* ) dv(w),
<y &

o)

FPinally we show a4 duality ol' the
Fourler transtormation for a group
described in Th.2 which 1s a general
torm ol abelian or compact case
where the compact case oved by
Weil (111, §24., We del'ine rornally
second Fourier transform x*—> x*%(s)

wxyw(s™") d V(@) ror all xeL,
where wts) described above i.e.

Wixe) = _/(T X5 wis)ds  *

COROLLARY. Let & be a group
described in Th. 2. Then for all

central functions z inl =z**=z,
and for all x in 1, and s in
center of G x*"ws)y = xts) .

PROOF. The approxinate identity
Lt ol L 1is in center ol [, .
Therelore w(sted) = [, xe s)wi)ds o>
Srsrwis ds = wixy.  While xeuus) > xce)
and w(esx*) > w(x*) ror all weQ)
Since for all x,yel. xyter= [ xt)ys')ds
= [pw*y*)dp(w) by Th. 2 and ~ w(xe)
is v -integrablie function on O ,

fw("‘el)dv(u)= xe ey 3 fwtx‘)dv(w)
‘n Q
and hence

Y(2)=/w(x)af;)(w) for all xe L,
a

Hence w(z*y+) -'—‘/&z/(:)w(;)d:
:// 247 ) yit) @) drds
/ / Z(s)yt) w(st )ds 4t

Wz*)W(ye) = /[z(s)y(t)w(-*)w(x)lsdﬁf‘

Since w(z*y* )—w(z-).u)/‘) ror all ye L
by Prop. 3,

/Z(J)w(yt).ls =-/zu)w15)w(t)ds fw.lL tefr
a &

If we put
each x ¢ [, ,

Xe(s) = Xx(st) f'or

then
“cx)—/ fzum(s)utt")alsowm)

Z()w(st™) ds dv(w)

Ze (¥ s Y (s)ds dviw)

n\.s@\\

-,

LA

Jf w(Z?) dv(w) :/w(.ze.).w(w)
o fel

1

= Zle) = Z(k),

If S is in center of &G , then
& is also in center of w* -group
algebra w(g) . Since () can
be considerable as & character of
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W& , for we¢ Q there corres-
ponds an irreducible two-sided re-
presentation and hence all elemonts
in center of Ww(&) 1is represented
into scalar 1'ield, it is obvious that
w(st) = w)wil) Tor all t¢ G
and S in centver of G . (onsequ-
ently we have that tor all s 1in
center of G

x*e(s) = // X (D) a(E)w(s™ )l dviw)

f/xmw(rs ) ol viw) //x(rnw{t)#,lv(w)
= // X (1) w(t) o dview) =/ W(x;) dV(w)
fol

__.j w(xe) dvlw) =
n

(1). We denotle the inner product
in any Hilbert space % by (g 1)
for 3 ,7ne and Lt norm by 1i|(~c§g)
and denote operator norm by sARf

Xs(e@) = x(5),

(2). We can also consiuer in 0>

a mapping # similar to Y , 1.0
there exists a mapping # torm b
onto center o1 & with the proper-
ties of the centering 4 in D*-
algeora except ior the term of conti-
nuity (the last condition of &

such that v** = va8% for all ve > .
We shall use the same notation ¢

in & 1instead of the # and denote

the center of 5 by 5% .

(3,. In this proposition, the
considering two-sided representations
Pt X, Gy are taken for the
each trace for which we discuss, and
they are used the sane notation:
s"vxhtll{ak °

(31). = C’-nlgobra ol all con-
tinuous functions vanishing at in-
Linity.

(4). For P and P €L (pp') =
jp w‘unar(w) . For, puttingp=p -pp/,
P = PP and py=p! = PP po =, 2,3)

are rwutually orthogonal and P=Fb+ pa
P'=p, + p . Hence «(p p'y = (p, ’h)’
and «/P‘*'. :\/(PP') j?‘ - x, r‘

(5). DbDenote the characteristic
function ror the set K by Cx(w) o

(6) Denote it by
compact nbd.

T (&) =invariant

necessary and sutticlent

(7). =

condition.

(8). M.Nakanura has proved that
R(&) has also a centering which
has been introduced by the similar
correspondence x" — x*%  consi-

w € K(&) being unitary
(& .

dering as
operator on

(9,. W&Y=w*, i,e., W¥ -algebra
generated by the lel't regular repre-

sentation {x~ [ xe¢L} and called
w* -group algebra.
(L0). The trace Ttis)> ol &

is meant by that <~ 1is central con-
tinuous positive derinite function.

Putting «(x) = / X($)TLS) ds ror

X € L, <) is trace ol &

if and only if Tix) is trace of
L for their details, see [10] ).

(11). Where x —> x*@) and
s > e are representations of
L and § corresponding to the
traces w(x> or 1, and wIs)
of G respectively such that wixy=
and the integral

x%e) =

X(S)(SIAS o
x(s)7s *®as meant by that
a{;x(s>s““k as ror all ¥ € LF in
the sense ol Bachner integral with

respect to iLhe Haar measure d¢ ot

G

(*) Received August 11, 19b2,
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