ON EXTENSION OT SCHWARZ'S THEOREM

By Sanz0 AIKAWA

§1. Schwarz's theorem .n the toneory
ol' functions oi several complex va-
riables is as uselul as in one comn-
plex variable.

In this paper we are going to
extend tLhe tormer, and to illustrate
simple examples.

(I) Schwarz's theorem in one comn-
plex variable.

Let F(%)
closed unit circle |t] =1
F(o) =0 , then we have

be analytic in the
and ir

[F(t)|<t] max |Fw)l jtis) (1)
hri=1

the equality sign holding il and
only it F(t)=cXt , where ¢ 1is a
constant,

(II) Schwarz's theorem in several
complex variables§

Let f(=, -2 f(@ (=1, ")
be 7 [functions whica are analytic
in the closed unit hypersphere

% Z
“z“i[{% lz)* -J <! , and vanish
at the origin. Then I'or any value
of p>1 , we have

llf(z>llf,§)lzll max | fw)ll (=)
P =1 4

tor every value of 2z in|=z|l=1 ,
where

- Y
"‘F(z)up = [% H:‘ (z)”’] P. (3)

§2. Our main theoren 1s as rollows:

Let fi(®) (i=1, --,m) be mn func-
tions wticeh are analytic in the clo=-
sed unlt hypersphere |z s .

Assume that

fotkors fo(te -, teg) = tTE R (4)

(i¢=1,--,m; m : 4 non-nogative
integer, .

where Fy(t;2) are analytic and

vanish on £ =0 1or every 2 in

@Z1<s1 . Then, ror any value ol
p>1 » we have
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@l = 1z™ max ool (5)
P Iwh= 1 P

for every value oi z in 2l ={ .

Prooi. (i, For m=1 . e onit
the suttix ol f(z) . Pulling

z _(= Z
t —-(_tlzi-—/_—&)
Sw, -, W) = ) (8)
(t+o0),

= p and |f] =P imply lwl=1 ,
and conversely llwil =4 , It] =F
Imply |2l =ltwil = £ .

We introduce the [functions
M(p,2) = Max|f(tz)|= max |f™F(t,=)|
W=p lel=p 4
(7)
Mcp) = pax )= max M(p;w),
o<p=t, (8)

NP3 =) =max |F(t, 2] (9)
F

1=
N (p) = max N(P;=) _ (10)
hz) =1
Since F(0,2)=0 yror every = 1in

zn=1 ,» Scnwarz's theoren ylelas,
r'or each fixed lzell=s{ ,

N(Piz9= pPN(1, =) sp N (11)

so that

NePYE PN, O<PELl,  (12)

From (7) we have
M(r;z)= f“N(P;Z)’ 0<\°§1,

Nz =t (13)

and 80
M(p) = PPN (IS ™ N ) = P ML),
o<pP=l, (14)

since M(1;2)=N(1; %) ., (14} neans



+1
max f(z) s p" max |fow) (15)
hzy=p wi=1 4
which proves our theorem tor f(g) .

(11) For n>1 . Let & (i=1,-°m)
be M arbitrary constants. Deline

'f(m)ﬁ’z)z—{% Qa; ){_.(z) , (16)

then f,,(2) has the same proper-
ties as f(z) , and then by (i),
we get

max |2 @i f. =)
ﬂﬂll'r =]

< f’"‘ max )Z:; a; ﬁ(w)l . an
nwh=1 N
For p>1 , HOlder's inequality
states

12 asfeowr] = Nally - F6oll, - (18)
where % +-% =1 . Therefore we have

S < "
,};‘j’: |2 acfee=)] 5 97 lladly max (fewl, _(19)

Now denote by z! a value of 2

on Lxll=p for which 4(=z) attains
its maxinmum on ||z) = § , L.e.

e, shf=ll, | hzi=p. (20)

and then determine Q, (i=1, --7)
a8 f'ollows:

l/f=), 1 f@0,
A=

0 ) if £.(z)=0.
Then we have
N 4%
lany = (Hf; )"~

,Z':,\ as f,-(z’)l = (Hf(z’)”,. )P

and 8o

1l = (Jl ftz')",,)'

= ’ ‘2?_’ a; (z’)]/uo.n,

Inserting this into (19) and (&0),
we obtain

(1-4)

If=i, = ™" nax bowll,, 1aisp
1wi=4 /
or

bfeol, v max o, | reist
twi=1 ’
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which proves the theoremnm.

§3. Example 1, Consider an analy-
tic transformution

=2 +fi(2) (i=1,...,n)

where 1 (=) are analytic in l2l€l
and have only the terms ol order Zm
in the power~-series expansions at
the origin., Then for any value ol
p>1 , we have

m /|
iz, —a=z)” max N§El, < 1=
I, + 1=l | 21
,+ =0 max N, (1)

for every vaiue of =z inje| =1 .

First we give a lerma whose proof
is omitted here.

Lerma. Tor any complex numbers

A, B, and lor any value o' p> 1 ,
the following inequality holds good

1Bl ar AP+ e DB, (22

. (2)
shere ¢ 1is any positive number.

Proof ol the Exampleld. Due to

the above lemma, we have

12" = 12, + £, )
£ (1) Mz v ) M)
so that
=" < (k0P P

+ (e D ugen,” .

Putting ¢ =lf=, /121, » and
take the p-th root, we obtain

HZ’HP glizh, + llf(z)ﬂp . (23)

By the same consideration tor
z; =z -f(2), We have

ety 2=y, =lf ol (24)

From the hypothesis on f) ,
we have, by our main theorem

. m
I, = Iz1™ max If(=), , (25)

and inserting (25) into (2%) and
(24), wo finally obtain (21), which
gomplotes the prool ol our example



$4. Exauple 2. 4An lnequality lor
Alf )l

B + Clf=lp -

1w £z (i=1,2, M) have the
same properties as (=) in the
maln theorem, and let A , B

and C be real constants such that
A>0 , B> Ic|- max|fm.}, «
Tnen we have "=t
A 5=l
B +Clf=lp
s A-max |[fwll,  (26)
B8 — IC] maxnﬂwm
ror Jzlls1 and p>l.

Proof. Denote by (z’) a value

of (z) on yzN=p for which|f@l,
attain‘s its maximum on Nz =p ,
so Lhat

1@l = 1SN,
for Uzl=f = 1.

Using this point ( 2/ ), choose

it Z’)

fi=) "f(z')"’, , if £&)#0

Ry, =
o, if £(2z)= 0
7
and put

fm(z):_-g; a; f; (=)

Then we have

fay (27 =Z‘ S b e

and ot
oty = [ 3, o™ ] el '

o P
=n§¢z>uf‘ =1, (28)

1 1
where _p"+?=1'

Now introducing the l'ollowing
I'unctions,

P(z)= ,_4__@'3(:)___
B + C'f(a)(ﬂ) ,
(29)
at t,z)
Brmm A BNE
B+#t™C gmf{(t,z)/
we have

Pltz) = A fw D

B +C fu (42
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£A-Z &Rt

= =18,z
B+Ct"a, Ft,2) )
=]
Then ¢(z) and @(f,=z) have the
same properties as f (z) and
Flt,= respectively in the main
theoz-em, so that
1
lp=) = 120" . max |Pw)) ,
nwi=1
== 1. (30)
For any reali number p>1 , we

nave by HOlder's inequality
n
@] =1Z, a. fitx)] =laly-lIfil,

=lf@llp  (31)
: [ S SR <
tor H4+g =1 , k11,
ir A0, B> 0, and ¢ is
real, the function
A x
B +C=x

is a monotone increasing iunctition
of a real variable x , so that lor

Kzli= P , we have
Alf@)) AdsEDN,
B+C M@l ~ Brcien,
= N =D (by (27))

B+ C (=)

=19 U z1™ max |pw)| (by (30))

Nwli=t
= pzg™! maxr_ A ﬁg(“”__,
i<t | B+C f,,w
< "g"””‘ .m«n =1 | far (w2 (by (31))

B- lCl'|m|l=‘l Iﬁ“’w)\

< "z"m! A-m “w“ X \'f(w)llf,
B —IC| - max If oI,

which is the required result (26,.

(%) Received July 31, 1952,

(1) S.Bochner and W.T.Martin, Several
conplex variables, Princoton
1448, pp.SY=-64,

(<) S.Takshashi, Univalent nappings
in several complex variables,
Annals ol Math. $3 (1v6l),
P.464.

Nagoya Institute of Technology.





