§l. Schwarz's theoren in the tneory or functions oi several complex variables is as usetul as in one coraplex variable.

In this paper we are going to extend the former, and to illustrate simpla examples.
(I) Schwarz's theorem in one complex variuble.

Lel $F(t)$ be analytic in the closed unit circle $|t| \leqq 1$ and if $F(0)=0$, then we have

$$
|F(t)| \leqq|t| \max _{|w|=1}|F(w)|,|t| \leqq 1 \text { (1) }
$$

the equality sign holding in and only il $F(t)=c t$, where c is a constant.
(II) Schwarz's theorem in several complex variables. ${ }^{(1)}$

Let $f_{i}\left(x_{1}, \cdots, z_{k}\right) \equiv f_{2}(z) \quad(i=1, \cdots, n)$ be n functions whicn are analytic in the closed unit hypersphere $\|z\| \equiv\left[\sum_{i=1}^{k}\left|z_{i}\right|^{2}\right]^{\frac{1}{2}} \leqq 1$, and vanish at the origin. Then ior any value of $p>1$, we have

$$
\begin{equation*}
\|f(z)\|_{p} \leqq\|z\| \max _{\| w=1}\|f(w)\|_{p} \tag{2}
\end{equation*}
$$

for every value or z in $\|z\| \leqq 1$, where

$$
\begin{equation*}
\|f(z)\|_{p} \equiv\left[\sum_{i=1}^{n}\left|f_{i}(z)\right|^{p}\right]^{1 / p} \tag{3}
\end{equation*}
$$

§2. Our main theorem is as lollows:
Let $f_{i}(x)(i=1, \cdots, n)$ be n functions wheck ure analytic in the elosod unit hyporsphere $\|x\| \leqslant 1$ Assume thet

$$
\begin{aligned}
f_{i}(t \&) & =f_{i}\left(t z_{1}, \cdots, t z_{A}\right)=t^{m} \cdot F_{i}(t, z)(4) \\
& (i=1, \cdots, n ; m: \underset{\substack{\text { a non-nogati vo } \\
\text { intogei }}}{ }
\end{aligned}
$$

where $F_{i}(t ; z)$ are analytic and vanish on $t=0$ lor overy z in $\|z\| \leqq 1$. Then, lor any value of $p>1$, we have

$$
\begin{aligned}
& \|f(z)\|_{p} \leqq\|z\|^{m+1} \cdot \max _{\| w n=1}\|f(w)\|_{p} \\
& \text { for every value Oi } z \text { in }\|z\| \leqq 1
\end{aligned}
$$

Erooi. (i) for $n=1$ - we oriil the sutijx of $f(z)$ - putling

$$
\begin{aligned}
\frac{z}{t}= & \left(\frac{z_{1}}{t}, \cdots, \frac{z_{k}}{t}\right) \\
= & \left(w_{1}, \cdots, w_{k}\right)=(w) \\
& (t \neq 0)
\end{aligned}
$$

$\|z\|=\rho \quad$ and $|t|=\rho$ imply $\|w\|=1$, and conversely $\|w\|=1$, $|t|=\rho$
Imply $\|z\|=\|t w\|=\rho$.
We introduce the functions

$$
\begin{equation*}
M(p, z) \equiv \max _{|t|=p}|f(t z)|=\max _{|t|=p}\left|t^{m} F(t, z)\right| \tag{7}
\end{equation*}
$$

$$
M(p) \equiv \max _{\|z\|=p}|f(z)|=\max _{\|w\|=1} M(p ; w)
$$

$$
N(p ; z) \equiv \max _{|t|=p}|F(t, z)|
$$

$$
\begin{equation*}
N(p) \equiv \max _{\|z\|=1} N(p ; z) \tag{10}
\end{equation*}
$$

Since $F(0, z)=0$ Lor avery z in $\|z\| \leqq 1$, Scriwariz's theorera vielas, for each lixed $\left\|z^{\circ}\right\| \leqq 1$,

$$
\begin{equation*}
N\left(\rho ; z^{0}\right) \leqq \rho N\left(1, z^{0}\right) \leqslant \rho N(1) \tag{11}
\end{equation*}
$$

so that

$$
\begin{equation*}
N(p) \leqq \rho N(1), \quad 0<p \leqq 1 \tag{12}
\end{equation*}
$$

From (7) we have

$$
\begin{gather*}
M(p ; z)=p^{m} N(p ; z), \quad 0<p \leqq 1, \\
\|z\| \leqq 1 \tag{13}
\end{gather*}
$$

and 80

$$
M(\rho)=p^{m} N(\rho) \leqslant \rho^{m+1} N(q)=p^{m+1} M(1)
$$

$$
\begin{equation*}
0<p \leqq 1 \tag{14}
\end{equation*}
$$

since $M(1 ; z)=N(1 ; z)$. (14) rieans
$\max _{\|z\|=p} f(z) \leqq p^{m+1} \max _{\|w\|=1}|f(w)|$,
which proves our theorem ror $f(z)$.
(ii) For $n>1$. Let $a_{i}(i=1, \cdots, n)$ be n arbitrary constants. Derine

$$
\begin{equation*}
f_{(a)}(z) \equiv \sum_{i=1}^{n} a_{i} f_{i}(z) \tag{16}
\end{equation*}
$$

then $f_{\text {(a) }}(z)$ has the same properties as $f(z)$, and then by (i), we get

$$
\begin{align*}
& \max _{n=1=p}\left|\sum_{i=1}^{n} a_{i} f_{i}(z)\right| \\
& \leqq \rho^{m+1} \max _{n w n=1}\left|\sum_{i=1}^{n} a_{i} f_{i}(w)\right| \tag{17}
\end{align*}
$$

For $p>1$, Hölder's inequaiity states

$$
\begin{equation*}
\left|\sum_{i=1}^{n} a_{i} f_{i}(w)\right| \leqq\|a\|_{q} \cdot\|f(w)\|_{p} \tag{18}
\end{equation*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$. Therelore we have

$$
\max _{\|z\|=\rho}\left|\sum_{i=1}^{n} a_{i} f_{i}(z)\right| \leqq \rho^{m+1}\|a\|_{q} \max _{\|w\|=1}\|f(w)\|_{\beta} \text { (19) }
$$

Now denote by z^{\prime} a value of z on $\|z\|=\rho$ for which $f(z)$ attains its maximum or $\|z\|=\rho$, i. θ.

$$
\begin{equation*}
\|f(z)\|_{p} \leqq\left\|f\left(z^{\prime}\right)\right\|_{p}, \quad\|z\|=\rho \tag{20}
\end{equation*}
$$

and then determine $a_{2}(i=1, \cdots, n)$ ss follows:

$$
a_{i}=\left\{\begin{array}{cl}
\left|f_{i}\left(z^{\prime}\right)\right|^{p} / f_{i}\left(z^{\prime}\right), & \text { if } f_{i}\left(z^{\prime}\right) \neq 0 \\
0, & \text { if } f_{i}\left(z^{\prime}\right)=0
\end{array}\right.
$$

Then we have

$$
\begin{aligned}
& \|a\|_{q}=\left(\left\|f_{i}(z)\right\|_{p}\right)^{p / q}, \\
& \left|\sum_{i=1}^{n} a_{i} f_{i}\left(z^{\prime}\right)\right|=\left(\left\|f\left(z^{\prime}\right)\right\|_{p}\right)^{p}
\end{aligned}
$$

and so

$$
\begin{aligned}
& \text { d so } \\
& =\mid \sum_{i=1}^{n} a_{i} f_{i}\left(z^{\prime}\right) \|_{p}=\left(\left\|f\left(x^{\prime}\right)\right\|_{p}\right)^{p\left(1-\frac{1}{q}\right)} \\
& =a \|_{q} .
\end{aligned}
$$

Inserting this into (29) and (20), we obtaln

$$
\|f(x)\|_{p} \leqslant \rho^{m+1} \cdot \max _{\|w\|=1}\|f(w)\|_{p},\|a\|=\rho
$$

or

$$
\|f(z)\|_{p} \leqslant\|z\|^{m+1} \cdot \max _{n w \|=1}\|f(w)\|_{p},\|z\| \leq 1,
$$

which proves the theorem.
§3. Exanple 2. Consider an anaiytic transiormation

$$
z_{i}^{\prime}=z_{i}+f_{i}(z) \quad(i=1, \ldots, n)
$$

where $f_{i}(z)$ are analytic in $\|z\| \leqq 1$ and have only the terms of order $\geqq m$ In the power-series expansions at the origin. Then for any vaiue ol $p>1$, we have

$$
\|z\|_{p}-\|z\|^{m} \max _{\|z\|=1}\|f(z)\|_{p} \leqq\left\|z^{\prime}\right\|_{p}
$$

$$
\begin{equation*}
\leqq\|z\|_{p}+\|z\|^{m} \max _{\|z\|=1}\|f(z)\|_{p} \tag{21}
\end{equation*}
$$

for every value of $z \quad$ in $\|z\| \leqq 1$.
First we give a lemma whose proot is oriitted here.

Lemma. For any complex numbers A, B, and for any value of $p>1$, the following inequali.ty holis good

$$
\begin{equation*}
|A+B|^{p} \leqq(1+c)^{p-1}|A|^{p}+\left(1+\frac{1}{c}\right)^{p-1}|B|^{p}, \tag{22}
\end{equation*}
$$

where c is any positive number。 ${ }^{(2)}$
$\frac{\text { Prool ol the exampled. }}{\text { above lemane, we have to }}$

$$
\begin{aligned}
& \left|z_{i}^{\prime}\right|^{p}=\left|z_{i}+f_{i}(z)\right|^{p} \\
& \leqq(1+c)^{p-1}\left|z_{i}\right|^{p}+\left(1+\frac{1}{c}\right)^{p-1}\left|f_{i}(z)\right|^{p}
\end{aligned}
$$

so that
$\left\|z^{\prime}\right\|_{p}^{p} \leqq(1+c)^{p-1}\|z\|_{p}^{p}$ $+\left(1+\frac{1}{c}\right)^{p-1}\|f(z)\|_{p}^{p}$.
Yutting $c=\|f(z)\|_{p} /\|z\|_{p}$, and
take the p-th root, we obtain

$$
\begin{equation*}
\left\|z^{\prime}\right\|_{p} \leqq\|z\|_{p}+\|f(z)\|_{p} \tag{23}
\end{equation*}
$$

By the same consideration lor $z_{i}=x_{i}^{\prime}-f_{i}(z)$, we have

$$
\begin{equation*}
\left\|\boldsymbol{x}^{\prime}\right\|_{p} \geqq\|\boldsymbol{z}\|_{p}-\|f(\boldsymbol{x})\|_{p} \tag{24}
\end{equation*}
$$

From the hypothesis on $f_{i}(z)$ we have, by our mas.n theorem

$$
\|f(z)\|_{p} \approx\|z\|^{m} \cdot \max _{\|z\|=1}\|f(z)\|_{p}, \quad \text { (25) }
$$

and inserting (85) into (23) and
(24), we finaliy obtain (2i), which completes the prool ol our example 1.
§4. Example 2. An inequaiity for $\frac{A\|f(z)\|_{p}}{B+C\|f(z)\|_{p}}$.

II $f_{i}(z) \quad(i=1,2, \cdot n)$ have tho same properties as $f_{i}(z)$ in the main theorem, and let A, B and C be real constants such that $A>0{ }_{\text {Tnen }}$ we have $B>|c| \cdot \max _{n \sim 1=1} \| f\left(x, \lambda_{p}\right.$.
$\frac{A\|f(z)\|_{p}}{B+C\|f(z)\|_{p}}$
$\leqslant\|z\|^{m+1} \cdot \frac{A \cdot \max _{\| m i=1}\|f(w)\|_{p}}{B-|C| \max _{\| w i=1}\|f(w)\|_{p}}$
$\leqslant 1$ and $p>1$.
for $\|z\| \leqslant 1$ and $p>1$.

$$
\text { pronf. Denote by }\left(z^{\prime}\right) \text { a value }
$$ of (z) on $\|z\|=\rho$ for which $\|f(z)\|_{p}$ attains its maximura on $\|z\|=p$, so that

$$
\|f(z)\|_{p} \leqq\left\|f\left(z^{\prime}\right)\right\|_{p}
$$

for $\|x\|=p \leqq 1$.
Using this point $\left(\mathcal{Z}^{\prime}\right)$, cnoose

$$
a_{i}=\left\{\begin{array}{l}
\frac{\left|f_{i}\left(z^{\prime}\right)\right|^{p}}{f_{i}\left(z^{\prime}\right)} \|\left. f\left(z^{\prime}\right)\right|_{p} ^{1-p}, \text { if } f_{i}\left(z^{\prime}\right) \neq 0 \\
0,
\end{array} \quad \text { if } f_{i}\left(z^{\prime}\right)=0,\right.
$$

ancu put

$$
f_{(a)}(z)=\sum_{i=1}^{n} a_{i} f_{i}(z)
$$

Then we have

$$
\begin{equation*}
f_{(a)}\left(z^{\prime}\right)=\sum_{i=1}^{n} a_{i} f_{i}\left(z^{\prime}\right)=\left\|f\left(z^{\prime}\right)\right\|_{p} \tag{27}
\end{equation*}
$$

and

$$
\begin{align*}
\|a\|_{q} & =\left[\sum_{i=1}^{n} \left\lvert\, f_{i}\left(\left.z^{\prime}\right|^{q(p-1)}\right]^{\frac{1}{q}} \cdot\left\|f\left(z^{\prime}\right)\right\|_{p}^{1-p}\right.\right. \\
& =\left\|f\left(z^{\prime}\right)\right\|_{p}^{\frac{p}{q}+1-p}=1 \tag{28}
\end{align*}
$$

whero $\frac{1}{p}+\frac{1}{q}=1$.
Now introducing the roilowings runctions,

$$
\varphi(z) \equiv \frac{A f_{(a)}(z)}{B+C \cdot f_{(a)}(z)}
$$

(29)

$$
\Phi(t, z) \equiv \frac{A \sum_{i=1}^{n} a_{i} F_{i}(t, z)}{B+t^{m} \cdot C \sum_{i=1}^{n} a_{i} F_{i}(t, z)}
$$

we have

$$
\varphi(t z)=\frac{A \cdot f_{(a)}(t z)}{B+C \cdot f_{(a)}(t z)}
$$

$$
=\frac{t^{m} A \cdot \sum_{i=1}^{n} a_{i} F_{i}(t, z)}{B+C t^{m} \sum_{i=1}^{m} a_{i} F_{i}(t, z)}=t^{m} \Phi(t, z)
$$

Then $\varphi(z)$ and $\Phi(t, z)$ have the same properties as $f_{i}^{\prime}(z)$ and $F_{i}(t, z)$ respectively in the main theoren, so that

$$
\begin{align*}
&|\varphi(z)| \leqq\|z\|^{m+1} \cdot \max _{\|w\|=1}|\varphi(w)|, \\
&\|z\| \leqq 1 . \tag{30}
\end{align*}
$$

For any reai number $p>1$, we nave by Hölder's inequality

$$
\begin{aligned}
& \qquad \begin{array}{r}
\left|f_{(a)}(z)\right|=\left|\sum_{i=1}^{n} a_{i} f_{i}(z)\right| \leqq\|a\|_{q} \cdot\|f(z)\|_{p} \\
\\
=\|f(z)\|_{p} \\
\text { for } \frac{1}{p}+\frac{1}{q}=1 \quad, \quad\|z\| \leqq 1 .
\end{array} \\
& \text { If } A>0, B>0, \text { and } C \text { is }
\end{aligned}
$$

$$
\frac{A x}{B+C x}
$$

$$
\begin{aligned}
& \text { is a monotone increasing Iunction } \\
& \text { of a real variable } x \text {, so that lor } \\
& \|z\|=\rho \text {,we have } \\
& \frac{A \cdot\|f(z)\|_{p}}{B+C \cdot\|f(z)\|_{p}} \leqq \frac{A \cdot\left\|f\left(z^{\prime}\right)\right\|_{p}}{B+C \cdot\left\|f\left(z^{\prime}\right)\right\|_{p}} \\
& =\frac{A f_{(a)}\left(z^{\prime}\right)}{B+C f_{(a)}\left(z^{\prime}\right)} \quad \text { (by (z7)) } \\
& \leqq\left|\varphi\left(z^{\prime}\right)\right| \leqq\left\|z^{\prime}\right\|^{m+1} \max _{\|w\|=1}|\varphi(w)|(\text { by (30))) } \\
& =\|z\|^{m+1} \max _{\|w\|=1}\left|\frac{A f_{(a)}(w)}{B+C f_{(a)}(w)}\right| \\
& \leqq\|z\|^{m+1} \frac{A \cdot \max _{\|w\|=1}\left|f_{(a)}(w)\right|}{B-|C| \cdot \max _{\|w\|=1} \mid f_{(a)(w) \mid} \quad \text { (by (31)) }} \\
& \leqq\|z\|^{m+1} \frac{A \cdot \max _{\|w\|=1}\|f(w)\|_{p}}{B-|C| \max _{\|w\|=1}\|f(w)\|_{p}},
\end{aligned}
$$

which is the required result (2.6).
(*) Recelved July 31, i952.
(I) S.Bechner and W.T.Martin, Several complex variables, princoton 1,443, pp.59-64.
(2) S.Takahashi, Univalont mappings in several compiex variabies, Annals of Math. 53 (IV51), p. 464 .

Nagova Insti.tute of Technology.

