In 1939, H.Grunsky [1] gave a perfect condition for a meromorphic function to be univalent in terms of the local coefficients. Later S.Bergman-M.Schiffer [l] also has given a condition under a somewhat different formulation.

It is the afm of the present paper to establish a perfect criterion In terms of the local coefficients in order that a single-valued regular function has an image domain whose area does not exceed π.

1. Kasic notations. Let B be a planar scnjecht n-ply connected domain wi.th a boundary Γ consisting of analytic curves $\Gamma_{v}(\nu=1$, $\cdots, n)$. For simplicfty's sake, we shall assume that B contains the origin.

Let $P\left(z ; z_{0}\right)$ be a polynomial with respect to $t \equiv 1 /\left(z-z_{0}\right)$: $P\left(z, z_{0}\right)=x_{N} t^{N}+x_{N-1} t^{N-1}+\cdots+x_{0}$,

$$
z_{0} \in B
$$

Let $f_{p}\left(z, z_{0} ; \alpha\right.$; be a singlevalued meromorphic function satisfying the following conditions:
i) $f_{P}\left(z, z_{0} ; \alpha\right)-P\left(z, z_{0}\right)$ is regular jn B;

1i) all the images of $\Gamma_{\nu}(v=1, \cdot, n)$ by $f_{P}\left(z, z_{0} ; \alpha\right)$ are the segments with inclination α to the real axis.

Existence and uniqueness of $f_{p}\left(z, z_{0} ; \alpha\right)$ for any eiven P j.s well-known. Cf. H.Grunsky [1] .

$$
\begin{aligned}
& \text { Let } F_{P}\left(z, z_{0}\right) \text { be } \\
& \frac{1}{2}\left(f_{P}\left(z, z_{0} ; \alpha\right)-f_{P}\left(z, z_{0} ; \alpha+\frac{\pi}{2}\right)\right),
\end{aligned}
$$

then we have

$$
\begin{aligned}
& F_{p}\left(z, z_{0}\right)=\exp (2 i \alpha) \sum_{m=0}^{N} \bar{x}_{m} \rho_{m}\left(x, z_{0}\right) \\
& \oint_{m}\left(z, z_{n}\right) \text { beine defined by } \\
& \oint_{m}\left(z, z_{0}\right)=\frac{1}{2}\left(f_{t^{m}}\left(x, z_{0} ; 0\right)-f_{t^{m}}\left(z, z_{0} ; \frac{\pi}{2}\right)\right),
\end{aligned}
$$

$$
\varphi_{0} \equiv 0 .
$$

Let further

$$
\begin{aligned}
& \phi_{m}\left(z, z_{0}\right)=\frac{1}{2}\left(f_{t=}\left(z, z_{0} ; 0\right)+f_{t^{-}}\left(z, z_{0} ; \frac{\pi}{2}\right)\right), \\
& \phi_{0} \equiv 1 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Obviously the local expansions of } \\
& \phi_{m} \text { and } \mathscr{\rho}_{m}(m \geq 1) \text { about } z_{0} \text { are } \\
& \text { of the form } \\
& \phi_{m}\left(z, z_{0}\right)=\frac{1}{\left(z-z_{0}\right)^{m}}+\sum_{v=1}^{\infty} B_{m v}\left(z-z_{0}\right)^{v}
\end{aligned}
$$

and

$$
\Phi_{m}\left(z, z_{0}\right)=\quad \sum_{y=1}^{\infty} S_{m y}\left(z-z_{0}\right)^{\nu},
$$

respectively. The coefilicients $S_{m n}$ may be called the generalized (m, n)span. Obviously we have along Γ : $d \rho_{m}=d \bar{\phi}_{m}$

We shall define the Dirichlet norm $\sqrt{D_{m}(f, f)}=\left\|f^{\prime}\right\|_{B}$ by

$$
\left(\iint_{B}\left|f^{\prime}(z)\right|^{2} d \sigma_{z}\right)^{1 / z} \quad \text { I. I.t } \quad L^{2}(B)
$$

be a family of functions $\psi(z)$ satisfying the following conditions:

1) $\int^{z} \psi(z) d z$ is a singlevalued regular function in B,

$$
\text { 1i) }\|\psi\|_{B}<\infty
$$

$$
\text { Let now } f^{\prime}(z) \text { belong to }
$$

$$
L_{1}^{2}(B), \text { then we have }
$$

$$
D_{B}\left(f, \Phi_{m}\right)=\frac{i}{2} \int_{\Gamma} f d \bar{\Phi}_{n}
$$

$$
=\frac{i}{2} \int_{\Gamma} f d \phi_{m}
$$

$$
=\frac{i}{2} \int_{\Gamma}^{\Gamma} f(x)\left(\frac{-m}{\left(z-z_{0}\right)^{m+1}}+\sum_{v=1}^{\infty} v B_{m v}\left(z-z_{0}\right)^{v-1}\right) d z
$$

$$
=\frac{i}{2} \int_{f} f(z) \frac{-m}{\left(z-z_{0}\right)^{m+1}} d z
$$

Here if $f(z) \quad$ has an expansfon
$\sum_{\nu=1}^{\infty} c_{\nu}\left(z-z_{0}\right)^{\nu}$, then we have

$$
D_{B}\left(f, \varphi_{m}\right)=\pi m c_{m}
$$

Especially we have

$$
D_{B}\left(\varphi_{n}, \varphi_{m}\right)=\pi m S_{n m}=\pi n \bar{S}_{m n}
$$

and

$$
D_{B}\left(\varphi_{m}, \varphi_{m}\right)=\pi m S_{m m} \ngtr 0
$$

2. Preparatory considerations. Let z_{0} be the origin.
(a) $\left\{\varphi_{n}^{\prime}\right\}, n=1,2, \cdots$, is
linearly independent.
This fact is equivalent to the strictiv posjitive derind.teness of the Hermitian form $\sum_{\mu, \nu=1}^{N} \nu S_{\mu \nu} x_{\mu} \bar{x}_{\nu} \nsupseteq 0$ • of. H.Grunsky [1].
(b) $\left\{\varphi_{n}^{\prime}\right\}, n=1,2, \cdots$
complete system in $L^{2}\left(B^{\prime}\right)$ is

In $L^{2}(B)$, introducing the inner product

$$
\left(f^{\prime}, g^{\prime}\right)=\iint_{B} f^{\prime}(z) \overline{g^{\prime}(z)} d \sigma_{z},
$$

$L^{2}(B)$ becomes a Hilbert space.
Let

$$
g^{\prime}(z)=\sum_{v=1}^{\infty} \nu g_{v} z^{v-1} \in L^{2}(B)
$$

satisfy the orthogonality relations:
$\left(g^{\prime}, \varphi_{m}^{\prime}\right)=0, m=1,2, \cdots$, then $m g_{m}=0$. Thus we have g^{\prime} a on B, and hence the desired completeness in $L^{2}(B)$
for all $f^{\prime}(x) \in L^{2}(B)$

In $L^{2}(B)$ there exists a kernel function $K(z, \bar{\zeta})$. This is a well-known fact, or we can construct it from $\left\{\varphi_{\nu}^{\prime}\right\}$ by a usual orthonormlization process due to Gram-Schmidt. But we need only the f'ollowing expression of $\mathrm{K}(x, \bar{\xi})$:

$$
K(z, \bar{\xi})=\sum_{\mu, v=1}^{\infty} q_{\mu \nu} \varphi_{\mu}^{\prime}(x) \overline{\varphi_{\nu}^{\prime}(\zeta)}, q_{\mu \nu}=\bar{q}_{\nu \mu}
$$

Expanding $K(z, \bar{\zeta})$ in a nejghborhood oi the origin as an analytic function or two variables z and $\bar{\zeta}$ in the form
$K(z, \bar{y})=\sum_{\mu, \nu=0}^{\infty} k_{\mu \nu} z^{\mu} \bar{j}^{\nu}$,
we shall show the following Iemma.

Lemma 1. $k_{\mu \nu}=\frac{1}{\pi}(\mu+1) S_{\nu+1, \mu+1}$.
Proof. Evidently we have
$\mu!\nu!k_{\mu \nu}=\frac{\partial^{\mu+\nu}}{\partial^{\mu} z \partial^{\nu} \bar{\zeta}} K(0, \overline{0})$

$$
=\sum_{m, n=1}^{\infty} q_{m n}(\mu+1)!S_{m, \mu+1}(\nu+1)!\bar{S}_{n, v+1}
$$

The reproducing property of the kernel function leads to the relation

$$
\begin{aligned}
\varphi_{m}^{\prime}(\xi) & =\int_{B} \varphi_{m}^{\prime}(z) \overline{K(x, \bar{s})} d \sigma_{z} \\
& =\sum_{k, \lambda=1}^{\infty} \bar{q}_{x \lambda} \varphi_{t}^{\prime}(s)\left(\varphi_{m}^{\prime}(x), \varphi_{k}^{\prime}(x)\right)_{B} \\
& =\pi \sum_{x, \lambda=1}^{\infty} \bar{q}_{k \lambda} k S_{m x} \varphi_{\lambda}^{\prime}(\xi) .
\end{aligned}
$$

Thus, in local, we have

$$
\begin{aligned}
& \sum_{\rho=0}^{\infty}(\rho+1) S_{m, \rho+1} \zeta^{\rho} \\
= & \pi \sum_{x, \lambda=1}^{\infty} k \bar{q}_{k \lambda} S_{m \times k} \sum_{\rho=0}^{\infty}(\rho+1) S_{\lambda, \rho+1} \zeta^{\rho},
\end{aligned}
$$

and hence

$$
S_{m, \rho+1}=\pi m \sum_{k, \lambda=1}^{\infty} \bar{q}_{k \lambda} S_{\lambda, p+1} \bar{S}_{k m},
$$

which leads to the desired result.
3. Perfect condition for Dirichlet integral to be bounded.

Theorem. Let $f(z)$ be a sin-gle-valued regular function with a power series expansion $f(z)=\sum_{k} c_{\mu} z^{\mu}$ in a neighborhood of the origin. Then the fact that the inequalities
$\left|\sum_{\mu=1}^{N} \mu c_{\mu} x_{\mu}\right|^{2} \leqq \sum_{\mu, \nu=1}^{N} \nu S_{\mu \nu} x_{\nu} \bar{x}_{\mu} \quad(N=1,2, \cdots)$
hold for arbitrary complex number x_{μ} is a perfect condition in order that $D_{B}(f, f) \leqq \pi$

Proof. Necessity. Let $f(z)=\sum_{\mu=1}^{\infty} c_{\mu} z^{\mu}$ be a single-valued regular function in B satisfying $D_{B}(f, f)=\left\|f^{\prime}\right\|_{B}^{2} \leq \pi$ then we have
$D_{B}\left(f, F_{P}\right)=\exp (-2 i \alpha) \sum_{\mu=1}^{N} x_{\mu} D_{B}\left(f, \rho_{\mu}\right)$

$$
=\pi \exp (-2 i \alpha) \sum_{\mu=1}^{N} \mu c_{\mu} x_{\mu}
$$

Therefore, by Schwarz's inequality, we have

$$
\begin{aligned}
\pi^{2}\left|\sum_{\mu=1}^{N} \mu c_{\mu} x_{\mu}\right|^{2} & \leqq D_{B}(f, f) D_{B}\left(F_{P}, F_{P}\right) \\
& \leqq \pi \cdot \pi \sum_{\mu, \nu=1}^{N} \nu S_{\mu \nu} x_{\nu} \bar{x}_{\mu}
\end{aligned}
$$

For the sufficiency proof. we need a lemma with regard to the analytic continuability of an Hermitian analytic function.

Lemma 2. Let $H(z, \bar{\zeta})$ be an Hermitian analytic function with local expansion $\sum_{\mu, \nu=0}^{\infty} h_{\mu \nu} z^{\mu} \bar{\zeta}^{\nu} \quad$ around the origin. If, for every complex vector $x=\left(x_{0}, x_{1}, \cdots, x_{N}\right)$,

$$
0 \leq \sum_{\mu, v=0}^{N} h_{\mu \nu} x_{\mu} \bar{x}_{v} \leqq \pi \sum_{\mu, v=0}^{N} k_{\mu \nu} x_{\mu} \bar{x}_{\nu}
$$

holds, then $H(z, \bar{s})$ is analytic and Hermitian in the whole domain B.

Proof. This Lemma is an anlogue of a continuability theorem due to Bergman-Schiffer [1]. We can choose an orthonormal complete system $\left\{X_{0}(z)\right\}$ in $L^{2}(B)$ satisiying $\chi_{\nu}(z)=\sum_{\mu=\nu}^{\infty} a_{\nu \mu} z^{\mu}$,
$a_{\nu \nu} \neq 0$ in local. Since the matrix
$\left(a_{\nu \mu}\right)$ is of the triangular
form and $a_{v \nu} \neq 0$, this matrix has an inverse matrix $\left(b_{\nu \mu}\right)$ in which $b_{\nu \mu}=0$ for $\nu>\mu$ and $b_{\nu \nu} \neq 0$, and we can solve

$$
x_{\nu}=\sum_{\mu=v}^{\infty} a_{\nu \mu} z^{\mu} \quad \text {, in local, in }
$$ the form

$$
z^{\mu}=\sum_{\nu=\mu}^{\infty} b_{\mu \nu} X_{v}(z), \mu=0,1, \ldots
$$

Then, by identifying two expressions of $K(x, \bar{s})$
$\sum_{\nu=0}^{\infty} x_{\nu}(z) \overline{X_{\nu}(\xi)}=\sum_{\mu, \nu=0}^{\infty} k_{\mu \nu} z^{\mu} \bar{\zeta}^{\nu}$,
we get the relation

$$
\sum_{\mu, v_{x}}^{\infty} f_{\mu \nu} b_{\mu m} \bar{b}_{\nu n}=\delta_{m n},
$$

in which the sums are actually of finite range and hence the leit-hand side is well-defined. Similarly,

$$
H(x, \bar{\xi})=\sum_{\mu, \nu=0}^{\infty} h_{\mu \nu} z^{\mu} \bar{\xi}^{\nu}
$$

can be written, in local, in the form

$$
H(z, \bar{\zeta})=\sum_{m, n=0}^{\infty} t_{m n} \chi_{m}(z) \overline{x_{n}(\xi)},
$$

where

$$
t_{m n}=\sum_{\mu, \nu=0}^{\infty} h_{\mu \nu} b_{\mu m} \bar{b}_{\nu n} .
$$

In the last expression summation is extended again actual. ly over ijinf.te terms in number so that this i.s well-

This leads to the relation

$$
\begin{aligned}
0 & \leqq\left|\sum_{\mu, v=0}^{N} t_{\mu \nu} y_{\mu} \bar{y}_{\nu}^{\prime}\right| \\
& \leqq \pi\left(\sum_{\mu=0}^{N}\left|y_{\mu}\right|^{2}+\sum_{v=0}^{N}\left|y_{v}^{\prime}\right|^{2}\right)
\end{aligned}
$$

for arbitrary complex numbers y_{μ} and

Let B^{\prime} be an arbitrary closed subcomain of B Then $K(z, \bar{\xi})$ is unitormly bounded ($<M$) in

$$
B \text {, Futting } y_{\mu}=\bar{x}_{\mu}(x) \text { and }
$$

$$
y_{v}^{\prime}=x_{v}(5) \quad \sigma_{\mu} \text {, we have }
$$

$$
\left|\sum_{\mu, v=0}^{N} t_{\mu \nu} \chi_{\mu}(z) \overline{\chi_{\nu}(\zeta)}\right| \leqq \pi 2 M
$$

for $z, \zeta \in B^{\prime}$ 。 Thus $H_{N}(z, \bar{\zeta})=$ $\sum_{\mu, v=j}^{N} t_{\mu \nu} X_{N}(x) \overline{X_{\nu}(z)}$ is uniformly bounded in ${ }_{B}$ - Thus we can select a subsequence of H_{N} converging unfinormly in B^{\prime} and having a limit function. On the other hand, this limit flunction cofncides with $H(z, \bar{\xi})$ in the neighborhood of the orligin. Hence the whole sequence $H_{N}(x, \bar{\xi})$ possesses the same limit and converges uniformly in each closed subdomaln of B. The limiting function is the analytice continuation of the power series $H(z, \bar{\xi})$ over the whole domain B. q.e.d.

Sufficiency proof of Theorem. Let

$$
f^{\prime}(z)=\sum_{\nu=1}^{\infty} \nu c_{v} z^{\nu-1}=\sum_{\mu=0}^{\infty} d_{\mu} z^{\mu}
$$

satisty the condition

$$
\left|\sum_{\mu=1}^{N+1} \mu c_{\mu} x_{\mu}\right|^{2} \leqq \sum_{\mu, v=1}^{N+1} \nu S_{\mu \nu} x_{\nu} \bar{x}_{\mu},
$$

$$
\begin{aligned}
& \text { delined. } \\
& \underset{\text { have }}{\text { Putting }} \quad x_{\nu}=\sum_{\mu=0}^{N} b_{\nu \mu} y_{\mu} \quad \text {, we } \\
& \text { have } \\
& 0 \leqq \sum_{\mu, \nu=0}^{N} t_{\mu \nu} y_{\mu} \bar{y}_{\nu} \leq \pi \sum_{\mu=0}^{N}\left|y_{\mu}\right|^{2} \text {. }
\end{aligned}
$$

then Lemma 1 leads to the inequality

$$
\left|\sum_{\mu=0}^{N} d_{\mu} x_{\mu}\right|^{2} \leqq \pi \sum_{\mu, v=0}^{N} e_{\mu \nu} x_{\mu} \bar{x}_{\nu}
$$

Now, $H(z, \bar{\zeta})=f^{\prime}(z) \overline{f^{\prime}(\zeta)} \quad$ satisfies the assumptions of Lemma 2. I? hus $f^{\prime}(z)$ fez) is analytically continuable and coincides with the expression

$$
\sum_{\mu, v=0}^{\infty} t_{\mu \nu} X_{\mu}(x) \overline{Y_{\nu}(\xi)}
$$

where

$$
t_{\mu \nu}=\sum_{m, n=0}^{\infty} d_{m} \bar{d}_{n} b_{m \mu} \bar{b}_{m \nu}=\left|\sum_{m=0}^{\infty} d_{m} b_{m \mu}\right|^{2}
$$

Thus

$$
\sum_{v=0}^{\infty} f_{v} x_{v}(x), \quad f_{v}=\sum_{m=0}^{\infty} d_{m} b_{m \mu \mu}
$$

is a regular function in B coincfding with $f^{\prime}(x)$ in a neighborhood of the origin

In a similar manner as in Lemma 2 , we have

$$
\left|\sum_{n, n=0}^{N} f_{m} y_{n n}\right|^{2} \leqq \pi \sum_{n=0}^{N}\left|y_{n=1}\right|^{2}
$$

$$
\text { Putting, } y_{m}=f_{m} \text {, we have }
$$

$$
0 \leq \sum_{m=0}^{N}\left|f_{m}\right|^{2} \leq \pi
$$

Let N tend to ∞, then we conclude

$$
\sum_{m=0}^{\infty}\left|f_{m}\right|^{2} \leqq \pi
$$

This shows that, $f^{\prime}(z)$ belongs to $L^{2}(B)$ and $D_{B}(f, f)=\left\|f^{\prime}\right\|_{B}^{2} \leq \pi$ by an analogue of Riesz-Fisher therem. Cf. SoBergman [1].
(*) Received Tuly 14, 1952。
S.Rergman [1]: The kernel function and conformal mapping. Math. Survey, l951.
SoBergman-MoSchfffer [1] : Kernel functions and conformal mapping. Comp, Math. 8 (1951) 205-249。
H.Grunsky [1]: Koefifizientenbedingungen four schlischt abbjlidende meromorphe Funktionen. Math. Zeits. 45 (1939) 29-61.

Tokyo Institute of Technology.

