By Masatsugu TSUJI

Let F be a Riemann surface. If F can be mapped one-to-one conformally on a proper part F' of another Riemann surface Φ , then Φ is called a continuation of F. If there exists no such a continuation, then F is called maximal.

Bochner¹⁾ proved:

Theorem. For any Riemann surface, there exists a maximal continuation.

Bochner uses the selection axiom in his proof. Heins²⁾ proved Bochner's theorem without using the selection axiom. I shall simplify a little Heins' proof in the following lines.

<u>Proof.</u> In the beginning, we remark the following. If Φ is a continuation of F, then we enlarge Φ to a Riemann surface Φ in the following way. Namely Φ is a covering surface of Φ , such that a closed curve on Φ is (on Φ) homotop null or homotop to a closed curve on F'. Then $\Phi^* \supset \Phi$ and Φ is a continuation of F. In the following, a continuation Φ of F means always the thus enlarged surface. Let F be a Riemann surface spread over the z-plane and z = 0 be contained in F and different from its branch point. Let Φ be a continuation of F, spread over the w-plane and let z=0 be mapped on w=0 by w=f(z) (f(0)=0). We map the universal covering surface of F on $|\zeta_c| < 1$. Then we obtain a Fuchsian group \mathcal{G} (F) in $|\zeta_c| < 1$. We map the universal covering surface of Φ on $|\zeta_c| < R$ by S = h(w) (h(0)=0), where R is determined by the condition:

$$\mathcal{G}(0) = 0$$
, $\mathcal{G}'(0) = 1$, (1)

where $\mathcal{G}(z) = h(f(z))$.

Let $\mathcal{G}(\Phi)$ be the Fuchsian group corresponding to $h^{1}(\varsigma)$ in $|\varsigma| < \mathbb{R}$. Then by the remark in the beginning, \mathcal{G} (F) is mapped on \mathcal{G} ($\underline{\mathbf{T}}$) homomorphically, such that to an element of \mathcal{G} (F), there corresponds an element of \mathcal{G} ($\underline{\mathbf{T}}$), but an element of \mathcal{G} ($\underline{\mathbf{T}}$), but an element of \mathcal{G} ($\underline{\mathbf{T}}$), which is the identity, may correspond to the identity of \mathcal{G} ($\underline{\mathbf{T}}$). By $\mathbf{5} = \mathcal{G}(z)$, F is mapped conformally on a proper part of the fundamental domain of \mathcal{G} ($\underline{\mathbf{T}}$).

Let

$$S_{\nu}^{\circ}: S_{\nu}' = \frac{e^{i\theta_{\nu}'}(\varsigma_{o} - a_{\nu}^{\circ})}{1 - \overline{a}_{\nu}^{\circ}} S_{o} \qquad (\nu = 1, 2, \dots) \qquad (2)$$

be an element of $\mathcal{G}(F)$, then by homomorphism, S, corresponds to an element S, of $\mathcal{G}(\Phi)$:

$$S_{\nu}: \varsigma' = e^{i\theta_{\nu}} \frac{R^{2}(\varsigma - \alpha_{\nu})}{R^{2} - \overline{\alpha}_{\nu}\varsigma} \quad (|\alpha_{\nu}| < R)$$

$$(\nu = 1, 2, ...). \quad (3)$$

We assume that F does not admit a Riemann sphere or a closed Riemann surface of genus 1 as its continuation. We consider all continuations Φ of F and let

$$\sup R = R_{o} . \tag{4}$$

Let a schlicht fisc |z| < f be contained in F. Since $\mathcal{G}_n(z)$ is schlicht in |z| < f, by Keebe's theorem, $\mathcal{G}_n(z)$, $\mathcal{G}'_n(z)$, $1/\mathcal{G}'_n(z)$ are uniformly bounded in $|z| \leq f_1 < f$. Since $\mathcal{G}_n(z)$ is locally schlicht on F, we see easily that $\mathcal{G}_n(z)$ is uniformly bounded in any compact domain on F.

Hence we can find a partial sequence, which we denote again $\mathcal{G}_n(z)$, such that

$$\lim_{n \to \infty} g_n(z) = g(z), g(0) = 0, g'(0) = 1$$
(4)

converges uniformly in the wider sense on F. $\mathcal{G}(z)$ is schlicht on F.

Let

$$S_{y}^{(n)}: \varsigma' = e^{i\theta_{y}^{(n)} \frac{R_{n}^{2}(\varsigma - a_{y}^{(n)})}{R_{n}^{2} + \overline{a}_{y}^{(n)}\varsigma}} = e^{i\theta_{y}^{(n)} \frac{(\varsigma - a_{y}^{(n)})}{1 - \frac{\overline{a}_{y}^{(n)} - \varsigma}{R_{n}}} (|a_{y}^{(n)}| < R_{n})}$$
(1)

be the element of $\mathcal{G}(\overline{\mathfrak{T}_n})$, which corresponds to (2) by homomorphism. By (4), so see that

$$\lim_{v \to v} a_{v}^{(n)} = a_{v} \quad (v=1, 2, \cdots) \quad (6)$$

exists and we may assume, by taking a suitable partial sequence, that

$$\lim_{n} \theta_{v}^{(n)} = \theta_{v} \quad (v = 1, 2, \cdots) \quad (7)$$

exists.

If $R_o = \infty$ and $R_n \rightarrow \infty$, then by (5), (6), (7),

$$S_{v}^{(n)} \rightarrow S_{v}; \ 5' = e^{i\theta_{v}}(5-a_{v}) \quad (v=1,2,\dots)$$

Since \mathcal{G} (F) has no fixed points, $\theta_v = 0$, so that

$$S_{y}: S' = S - a_{y} (y = 1, 2, ...).$$
 (8)

By Koebe's theorem, the image of |z| < f by $\mathcal{G}_n(z)$ contains a disc $|\zeta| < \frac{1}{4}$, hence the group \mathcal{G} generated by S_V is properly discontinuous. Hence \mathcal{G} is either the identity, or a simply periodic group of translations of a doubly periodic group of translations. Since F is mapped coniormally on a part of the fundamental domain of \mathcal{G}_{-} , F admits the Riemann sphere or a closed Riemann surface of genus l as its continuation, which contradicts the hypothesis. Hence $R_o < \infty$, so that by (5),

$$S_{v}^{(n)} \rightarrow S_{v} : \xi' = e^{i\theta_{v}} \frac{R_{o}^{2}(\xi - a_{v})}{R_{o}^{2} - \bar{a}_{v}\xi}$$

$$(|a_{v}| < R_{o}) \quad (v = 1, 2, \dots) . \quad (9)$$

Since the group 9 generated

by S, is properly discontinuous, let D be its fundamental domain, then F is mapped by $S = \mathcal{P}(z)$ conformally on a part of D. D can be considered as a Riemann surface Φ , so that Φ is a continuation of F.

We shall prove that Φ is maximal. Suppose that Φ is not maximal and can be mapped conformally on a proper part of another Riemann surface Φ_1 . As before, we map the universal covering surface of Φ_1 on $|\varsigma_1| < R_1$ and let $\mathfrak{P}_1(z)$ ($\mathfrak{P}_1(0) = 0$, $\mathfrak{P}_1'(0) = 1$) be the corresponding function defined by (1) for Φ_1 . Then $|\varsigma| < R_2$ is mapped on a proper part of $|\varsigma_1| < R_1$, which is the image of Φ_2 . Let $\varsigma_1 = h(\varsigma_2)$ (h(0) = 0) be the mapping function, then by Schwarz's lemma, $|h'(0)| < R_1 / R_2$. Since $\mathfrak{P}_1(z)$ $= h(\mathfrak{P}_1(z))$ and $\mathfrak{P}_2'(0) = h'(0) = 1$, we have h'(0) = 1, so that $1 < R_1/R_2$, or $R_1 < R_2$, which contradicts the definition of R_2 .

(*) Received May 17, 1952.

- 1) S.Bochner: Fortsetzung Rie mannscher Flachen, Math. Ann. 98 (1927).
- 2) M.H.Heins: On the continuation of a Riemann surface. Annals of Math. 43 (1942).

Mathematical Institute, Tokyo University,