CONFORMAL MAPPING OF MULTIPLY CONNECTED DOMAINS, II.

By Ylsaku KOMATU and Mitsuru OZAWA

4. Preparatory considerations;
monodrony conditions in doubly
connected case.

In previous Note we have dis-
cussed the problems of mapping
any given multiply connected do-
rain onto whole plane slit along
horizontal and vertical segments
as well as ontc Whcle plane slit

along radial segments and circu-
lar arcs, both under respective
asilgned normalizations- Komatu-
0zawa (1] . ie have pdinted out
that” general case of any connec-
tivity ceh, in each of" the above
problem$, be reduced to that of
connectivity two. Consequently,
in order to perform an existence
prool. for general case completely,
it remains only tc work out the
last simplest case in a direct
renner.

Por that purpose we now esta-
blish letmas necessary in' the
sequel. We Cirst’ take an annulus

(0<)g <1zl <1

as 4 doublv connected basic do-

main. "The exterior and interior
circumferences, l.e., |Z| =1

and 1z| = % will be denoted

by L, and [,, , respectively.

. We begin with lerma stating

a sort of monodromy condition
which will be used in case of
mapping onto whole plane slit
along horizontal and vertical seg-
ments.

Lerma 1. Let &y (x=1,:--,%)
be any points interior to 4IziI<! .
Then, a function, belng deter-
mined uniquely except a real addi-
tive :constant, which 1s reguylar
ana;ytic 1n‘¢< 1Z1< {. and whose
imaginary part possesses the bo-
undary values given by

gt

G %= ;x

(zel,;v=1,2)

with constant coefficients &, ,
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is one-valued in the annulus if
and only ir the relation holds:

Jf%:——=0.

Kel

Prcof. In view or a well~-
known monodromy condition, in or-
der that the real part of a thus
deflined function is also single-
valued in the annulus, it is ne-
cessary and suificient that the
relation

f]?’-—-s—ao:fji

&5, eyl §x

(9 s ang z]

does hold; cl'., for instance,
Komatu (5] or [8) . Now, by
means of residue theorem, we get

Jyéﬁx 4o = in; _u

: (L)
T (eely)

whence follows immediately the
desired result.

We now establish another sort
of monodrcmy condition which will
be useful in case of mapping onto
whole plane slit along a radlal
segment and a clrcular arc, Let
the Green function of the basic
annulus $< (2] <1 with singu-
larity 4 be (z; 3) .
and the harmonic mdasure of L,
(v=1,2) be @, (z) . An
*dentitv W (Z) + W (2) m1 is
obvious., Let further an arialytic
function whose real part coincides
with % (z;3) or with @,(X)
be denoted by G (2:8) or £,z),
respectively; more precisely, we

G(z;8)= g,(z;;)ﬂg(w;) ’

£ (2) = 0, (2)+i Ty (2) (v=1,2),



%4 and w, being conjugate har-
monics of' ¢ and w, , respec-
tively. These functions & and
£, (z) are determinate except
purely imaginary additive cons-
tants,

An explicit expression of
Green function ror the annulus
$<1zl <1 1is well-known; cf.,

for instance, Courant-Hilbert (1) ,

pP.335-337; Komatu (7} . We have,
in fact,

iz "“‘a{ )" AT

’S—l(_"%i} __%) }'+ ic*
7, (3 =)

c* being a real constant and
theta-functions depending on
parameter 4. colncident with
the interior radius of our annu-
lus. (In Courant-Hilbert (1] ,

X

another normalization of singulari-

ty at the source point & Dbeing
taken, the expression.is rmulti-
plied by the factor_t/2m )
On the other hand, v(Z) (v=1,2)
can be elementarily expressed,
namely

L(2)= 1y %/l}-%_- ,
£, z) = l}-{—/lj,-%— .

Lemma i1, Let A, (k= &)
be integers, ¢, be a real num-
ber, and further &, (k=4 , %)
be points interior to an annulus

$<1zl<{ . Then, the function

defined by

£
$ (2) = exp (3 NG @sE0)-2me, D)
K=t

is single-valued in the annulus
if and only if the relations hold:

Ay =0
K=t

) - c
u:lc-'u, = e *,

Proof., It 18 evident that
RE(2) 1s single-valued in
the annulug., In ract, the possi-

bility of meny-valuedness of

& (z) can be caused by the

conjugate harronics contained in
the exponent ol its expression.
Since Ay are ail supposed to
be integral, the points &, are
all ordinary points, eventually

and

zeros. or poles but not branch
points. Hence, the monodromy con-
ditions for i (z) may be ex-
pressed as in the following form:

JL d arg $(z) =0 (vay,2),

But, we have

J 49(2;8) = -2 w,(3),
Ly

Pyy (v=1,2). denoting the.
periodicity-moduli of @y(2)

= J&,(z) with respect to L, ;
ef., for instance, Bergman (2] ,
p.46. Thus, the monodromy condi-
tions become

£
Dm0y (5,) + Capyy =0 (ve1,2),

K=

In view of identities w,(z)+ @y (z)m}
and fg + Pea, =0 . We get, from
these conditions, a relation

e

> A =o0.

s

That the conditions stated in
the lemma are necegsary lor sin-
gle-valuedness of £(z) hds
thus been established. The suf-
ficiency of the conditions will
also be obvious. )

Any function 3 (z) of the
type stated in lerma 11 behaves
evidently analytically in the’
closed annulus ¢ £ [z| £ {
and its boundary values satisfy
the relations '

I1B(z)|=1 (zeL,),

12 (2)) = e (5, L,).
The Laurent expansion of & (z)

around zZ=3%, (x=1,..,4) has. a
beginning term

¢, (2 - ;,)"‘*,

L% being a coefficient,

If', in particular, we put
B=a4m, x =(-1)<1
(=1, , 4m),



then the first condition of thne
lemra is surely satisfied. If
we further put

c". =0, gzmﬂt = %/_E\L
(W=, ., “"‘-))

then the second condition is
also satistried. we thus obtain
a function of the form

P ()= exp xZ:"“K'i(G(Zf z.‘)+G(z:%;)).

Now, it will easily be veri-
tlied, based upon characteristic
propertiés of Green function, that
an identical relation

G(z8)= GW/z 5 $/3)

holds good; an unessential purely
imaginary additive constant be-
ing neglected. Hence, correspon-
ding to such a choice of additive
constant, we have, for the func-
tion o. the last-mentioned form,
an expression

b (2)= exfi(;l)“"(G @ 5rG(VEs Eu)’)
X=

the G 's with the same singu-
larity belng supposed as identi-
cal, whence we lirmediately deduce
a functional relation

Fr= I (Vz).

By means of the explicit expres-
sion ror Green function, & (z)
can also be immediately written
down; namely,

X1

(9,6 %) Sty )|
b |y 2 )

§()

In the following we shall re-
strict ourselves to a rurther
special case with m~=i1 , i.e.,
=4 , although a correspon-
ding argument will also be valid
for general case which may be
lef't to the reader.

5. Construction of mapping
functions in doubly connected
case,

e now enter into our main
discourse. It is well-known

that any ring domain can be mapped
univalently onto an annulus; cf.
the remark stated at the last
part o:' the previous Note. Con-
sequently, we may and shall sup-
pose that a given domain is it-
self an annulus,{0<)Q<[z|< |
say. For such a canonical basic
domaln, the required mapping
functions can explicitly be con-
structed, the ract which will be
shown in the rollowing lines.

Theorem 1. Let Ze be a
point interior to the annulus
Q<lzl<{ , and let W(z;Z.)
be a4 function whicnh is regular
analytic in the annulus ¢ = Q*
< Iz,l <1 obtained by adjoining
the inverse oi the original annu-
lus with respect to the interior
circunference, and whose imuaginary
part possess the boundary values
given by

_.’.

“:7( Z-2., z 1/5 )
(==t , 12=1).

Then, the function detfined by
w=§ (l,‘ zh)

- 1/z2 .
= z_ - v tie ;/t..+ W (z;z.)

naps the original annulus Q<lz/<1
univalently onto whole plane
slit along a horizontal and a
vertical segment in such a manner
that |z|=1 and [z] =
correspond to horizontal and
vertical segments of Ww =-plane
respectively and moreover that

Z oo correspond to the point
at infinity, the resldue ol

P (2 2a.) at 2.  being
equal to unity.

Proof. J W (2 ; Z=) being
the solution of Dirichlet pro-
blem, the function W (2 Z.)
is uniquely determined except a
real additive constant. It may
be noticed that for an annulus
the Dirichlet problem can be sol-
ved in an explicit form by means
of Villat's formula; ecf., for
instance, Komatu (7] . In view
of Lerma 1 of the preceding sec-
tion, since

I HE) =g (Lo )=,

the function W (%) 2,) is
surely single-valued, and hence
so is the function $(z: z..



also, By definition of W(Z;Za)
the function & (z2;2%2.) remains
real along whole circumferences
12l =1 and _|Z] = . The
sum & (2; %e) + B(§/Z ; Zw)  To-
presents a function.analytic and
single-valued in 4< /2] <1 and
moreover, as easlly veriried, re-
gular there, 1,e., the apparent
singularities at Z« and
| Zoo are removable. Since

along whole boundary of the annu-
lus JP(z; Z=) , and hence
JE(41Z; Z) also, vanishes
everywhere, the sum must reduce
to a real constant. By adjusting,
if necessary, a real constant,

we may suppose that the sum vani-

shes identically, We thus obtain
a functional relation

F(22)+8Wz,24) = o.

It shows that P (2, 2a)
remains, purely imaginary along
the circumference |z[=Q = Vg .
The inmages of [z{ =1 and
1zl = ¢ lying on the real axis
are syrmetric each other with
respect to the origin,

We shall now show that the

image of the annulus § < 1Z|< 1
by w= $F(z) is two-sheeted
everywhere except on the just
mentioned slits on the real axis.
We denote, in general, by N(¥)
the number of ¥ -points of $(z)
in the annulus ¢<iZ| <! . In
view of boundary behavior of

B (2 2e) we see that N(¥)
remains constant unless the point
T 1lies on a slit originated
from [2|= 1 or 2I=¢ .
And, since there exist two poles
Zow and: %/ Ze both being
of the first order, we get

N(¥) = 2 . Thus, the required
two-sheetedness has been asserted.

Hence, the annulus f<1z1<1
is mapped by w = P(z ;Zw)
onto a two-sheeted Riemann sur-
face extended over whole plane
slit along two segments lying
on real axis in dirferent sheets
and belng symmetric each other
with respect to the origin. Both
sheets cross over along a :segment
lying on inmaginary axis. Conse-
quently, the original annulus
Q<lz|{< 1 1s mapped univalently
just onto a domain of a character
stated in the theorem, The nor-
mallizing condition at Z is
also satisfled.

by adjusting a sultable addi-
tive complex constant we can nor-

malize the mapping function in
such a manner that its Laurent .
expansion around 2w 1s of the
forn

*1—— + 0(1),

Z~-Z
This condition determines the
function uniquely.

Theorem 2. Let 2, and Z.
be two different points interior
to the annulus Q< Jzl <1 ,
and let G(z; %) be an ana-
lytic function whose real part
coincides with the Green func-
tion or §= @Q*< 1zl <1 with
singularity & . Then, the
function defined by

ws P (2:2,,2Za)
2 exp (G (%5 2a) - G (25 22)
¢ Gl Vi)~ G V)

maps the original aanulus Q<Izi<1
uniyvalently onto whole plané
8llit along a radial segrent cen-
tred at the origin and a circular
arc around the origin; whieh
correspond to |Z|'=1 and 1Z/=Q
respectively, in such & manner
that Z, and - Ze& ‘correspond
to the origin and the point at
infinity respectively. o

Proot'. In view of the remark
subsequent to lerma ii of prece-
ding section, the function
P(2;%,,%00) 1s analytic and -
single-valued in ¢ < 1z2f < | R
and has the constant absolute
value equal to unity along whole
boundary (2| =1 and-z| =¢ .
The function &G (%3 5) being
determinate except a purely ima-
ginary additive constant, the
function $(z;2,,Ze) does
so except a constant f'actor with
absolute value equal to unity.
As already noticed, by sultable
adjustment of the“ undetermined
factor, we can suppose that the
funetional relation

e ———
§(zjz”z') = § ( t/i-; Z,,%)
does hold good. We then have,

for any point on (2/=Q =] ,
l.e., ror /7 =2 ,

B(2: %, 20) = B (252, 20) |



Consequently, the image of [z]=Q
lies on the real axis. On the
other hand, for any real ¢
have

, we

i —_—rr—————
G ‘;z.,z..) =B (1'% z,, 2.,) ,

and hence the circular slits
lying on doubly covered unit
circunference which correspond
to Jz] =1 and 1Z|= % are
symmetric each other with re-
spect to the real axis.

We then have to show that the
image of the annulus ¢<1zl<1
by w= $(z)=B (25 Z,, Zoe)
is two-sheeted everywhere except
on the just mentioned slits. We
denote by N (Y) the number

of ¥ -points of P (z) in
the annulus 9< 1zZf<1 . Sup-
pose first that |y| # 1 B

By means of argument principle,
we have

N - N(=)
=] dong (E ()~ ¥)

121=1

<= | dog (F(2) - x),
lil:%&

both curvilinear integrals in the
right-hand side being taken in
the positive sense with respect
to the domain §¢<(z] < | .
In view of the fact that I[F)|=1

along 1z| = | and |zl =¢ ,
we see that, 11’ lﬂ<1)
j dug (1- )
12l=]
‘Iz, %“3( §(z))
and if lTl> {,
( 2 )
'Zl-l
wg (S5 -1) =0
\z|= 1,
Hence, taking the monodromy con=

dition for H(2z2) also into
account, we finally obtain

N(T) - N(e)
1
:.-._._.( -
2% 'l‘=1+|£|=1, )dmj (E@)-7)

= 0.
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The last relation remains to
hold, in view of continuity, un-
less the point ¥ 1lies on a cir-
cular slit originated from i1zi=1
or 1Z2l=9% . It is evident
that there exist just two poles

w and $/Z . , both being
of the first order, namely

N(ee) = 2 , whence it follows
that
N(T) =

for any ¥  not lying on a cir-

cular slit.

Hence, we see, as in the proof
of Theorenm 1, that the original
annulus Q@Q<1zZ|< | 1s mapped
univalently just onto a domain
of a character stated in the
present theorerm., That 2, and Z,
correspond to O and o respec-
tively is obvious.

By modifying @(2;2%., 2Za)
by a sultable constant factor,
i.e., by a suitable dilatation .
followed by a rotation around the
origin, we can normalize the
mapping function in such a manner
that 1ts residue at Ze« becomes
equal to 1. This determines the
mapping function uniquely.

In Theorem 2 both points Z,
and Z~ have been restricted in
the annulus Q= /§ < 2] < I
But, the above argument shows
riore generally the following
fact:

Let 2, and Z. be any two
distinct points contalined in an
annulus <121 < ¢ . Then,
the function & (2;Z%..%)
defined in Theorem 2 maps §<iz|<li
also onto a two-sheeted Rie: ann
surface extended over whole plane
and slit along two arcs lying on
the doubly covered unit circum-
terence in such a munner that the

points Ze and 4/Z. corres-
pond to 6o while the points Z,
and /%, correspond to Q.

The orders of these poles and
zeros are, in general, all equal
to 1, but eventually equal to 2
if Ze or Z, lies exactly

on the circumference |zl=V§

and hence coincldes with {/Ze

or §/%, , respectively.
All the branch points o1 the sur-
face lie on a unique halr-line
starting from the origin which
bears also the image of the inter-
mediate circumference |Z.|=J'i .
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