In this note, we shall give the proof's of well-known results on an open Riemann surfiace. In author's previous paper [4] we discussed the existence of bounded harmonic functions on an open Riemann suriace. In the present paper we shall discuss the existence of harmonic functions whose Dirichlet integral is finite.

we may assume that $|u|<1$.
Let V be a continuous function in G which equals to, $u(p)$ in G and to zero in $G^{\prime}-G$.
Then obviously

$$
D_{G^{\prime}}(V)=D_{G}(u)<\infty .
$$

Next let v_{n} be the harmonic iunction in G^{\prime} such that, $v_{n}=u$ on H_{n} and $v_{n}=0$ on $H_{n}^{\prime}-H$ and on C_{n}^{\prime} - Then by the Dirichlet principle we have

$$
D_{G_{n}^{\prime}}\left(v_{n}\right) \leqq D_{G_{n}^{\prime}}(V) .
$$

Since $|u|<1$, we get $\left|v_{n}\right|<1$. Hence we can choose a suitable subsequence $\left\{v_{n_{n}}\right\}(k=1,2, \cdots)$ such that this sequence converges to, the harmonic function v in G^{\prime} unitrormly in the wider sense. For $h<h$ we get

$$
D_{G_{n_{k}}^{\prime}}\left(v_{n_{k}}\right) \leqq D_{G_{n_{k}}^{\prime}}\left(v_{n_{k}}\right) .
$$

From above three formulae we obtain

$$
D_{G_{n_{h}}^{\prime}}\left(v_{n_{k}}\right) \leqq D_{G}(u)<\infty
$$

Making lifst $h \rightarrow \infty \quad$ and next $h \rightarrow \infty$, it iollows that

$$
D_{G^{\prime}}(v)<\infty .
$$

Moreover $u(p) \leqslant v(p)$ at any
point p in G, since, by the
maximumprinciple, $u(p) \leqq v_{n}(p)$
at the point ol G_{n} on the
other hand $v(p)=0$ on C^{\prime}.
Hence $v(p)$ is non-constant.
Thus our theorem is established.

We may say that the ideal boundary Γ is (u, D) -removable if there exist no harmonic function whose Dirichlet integral over F is finite and which is non-constant. The class of Riemann surfaces with (u, D)-removable boundary is identical to the class
OHD in Ahliors' sense [l].

The class O_{H} in his sonse is equivalent to the class of Riemann surfaces with (u, M)removable boundary, which was discussed in author's previous paper
[4] .

By the same method as the above proof, we can show the rollowing

Theorem 2 (Bader-parreau [2] Mori [5]). The ideal boundary of F is not (u, D)-removable, if' and only if there exist two domains ' G ' and G ' on F belonging to of such that these both domains do not belong to the class C_{D} and have no point in common.

Proof. First we shall prove the necessity. By our assumption there exists a non-constant harmonic function $u(p)$ whose Dirichlet integral on F is finite. Taking an inner point P_{0} of F, we choose two components G^{\prime} and $G^{\prime \prime}$ whose points p satisfy the condition $u(p)>u\left(p_{0}\right)$ in G^{\prime} or $u(p)<u\left(p_{0}\right)$ in $G^{\prime \prime}$ respectively. Then it is easy to see that these two domains G^{\prime} and $G^{\prime \prime}$ do not belong to the class C_{D}.

Next we shall prove the sutficiency. Since G does not belong to C_{D}, there exists a nonconstant harmonic function $u(p)$ whose Dirichlet integral over G is finite and which equals to zero on the relative boundary C^{\prime} of
G^{\prime}. Again by Mori's lemma we may suppose that $|u|<1$. Hence the domain G^{\prime} does not belong to the class c. and this holds also to the other domain G^{*}.

Let V be the continuous function which equals to u in G^{\prime} and to zero in $F-G$. Obviously

$$
D_{F}(V)=D_{G^{\prime}}(u)
$$

We denote by v_{n} the harmonic function which equals to u on $H_{n}^{\prime}\left(=G^{\prime} \cap \Gamma_{n}\right)$ and to zero on $\Gamma_{n}-H_{n}^{\prime}$. Then by the Dirichiet principle we have

$$
D_{F_{n}}\left(v_{n}\right) \leqq D_{F_{n}}(V)
$$

Since $|u|<1$, we can fina a suitable subsequence $\left\{v_{n_{k}}\right\}$ ($k=1,2, \cdots$) which converges to the harmonic function v uniformly in the wider sense. For $h<k$,

$$
D_{F_{n_{h}}}\left(v_{n_{k}}\right) \leqq D_{F_{n_{k}}}\left(V_{n_{k}}\right) .
$$

Hence it follows that

$$
D_{F_{n_{h}}}\left(v_{n_{k}}\right) \leqq D_{G^{\prime}}(u)<\infty .
$$

Making first $k \rightarrow \infty$ and next
$h \rightarrow \infty$, we obtain

$$
D_{F}(v)<\infty
$$

Moreover it is immediate that $v \geqq u>0$ at the point p_{0} in G^{\prime} where $u\left(p_{0}\right)>0$, for $v_{n} \geq u$ in G_{n}^{\prime}. On the other hand, using the lact that $G^{\prime \prime}$ and hence $F-G^{\prime}\left(\supset G^{\prime \prime}\right)$ do not belong to the class C_{0}, we can easily see that $\lim _{p \in F-G^{\prime}} v=0$. Hence the function $v \in$ is non-constant.

Thus the prool of our theorem is complete.

By the same manner as stated already in [4], we can get the following

Theorem 3 (Mori [3]). Let
F have (u, D)-removable boundary, G be any domain on it belonging to the class of and u be any non-constant harmonic function in G whose Dirichlet integral over G is finite. There at least one of the maximum principle and minimum principle holds good, i.e., $\lim _{c} u \leqq u$ or $\lim _{c} u \geqq u$
3. In general the rotwowing is well-known (c.I'. Kuroaa 〔3〕).

Theorem. (Nevanlinna [6]). If the Riemann surfiace has a null boundary, its ideal boundary is (u, D) -removable.

In the case of a Riemann surface with inite genus we can prove

Theorem 4 (Nevanlinna [7]). Let F be a Riemann suriace with finite genus. If F has a null boundary, its ideal boundary Γ is (u, D)-removable. Thereiore, in the case of F with finite genus, F has a null boundary if and only if Γ is $(u, D) \rightarrow$ removable.

Proof. We shall show that

 there exists a non-constant harmonic function on F whose Dirichlet integral over F is finite, if F has a positive boundary. Since the genus of F is finite, the ideal boundary has the real sense. Hence we can find two closed sub-sets Γ_{1} and Γ_{2} such that these are disjoint each other and both have positive absolute harmonic measures. we put $F^{*}=F \cup \Gamma-\left(\Gamma_{1} \cup \Gamma_{2}\right)$. Let $F_{1} \subset F_{2} \subset \cdots \subset F_{n} \subset \cdots$ be an exhaustion of F^{*} such that the boundary of F_{n} consists of two classes H_{n} and H_{n+1} of closed analytic curves on F^{*} and H_{1}, $H_{3}, \cdots, H_{2 n-1}, \cdots$ converges to Γ_{1} and $H_{2}, H_{4}: H_{2 n}, \cdots \quad$ converges to Γ_{2}. Of course $F_{n}(n=1,2, \cdots)$ is compact in F^{*}. We denote by n^{\prime} the odd number among n and $n+1$, by $n^{\prime \prime}$ the even number among n and $n+1$ and by ω_{n} the harmonic measure of H_{n}^{*} in F_{n}. Then we can easily see that for $m>n$

$$
\begin{aligned}
D_{F_{n}}\left(\omega_{n}-\omega_{m}\right)= & D_{F_{n}}\left(\omega_{n}\right)+D_{F_{n}}\left(\omega_{m}\right) \\
& -2 \int_{H_{n^{*}}} \frac{\partial \omega_{m}}{\partial V} d s .
\end{aligned}
$$

Further it is easy to see that

$$
\int_{H_{\mu^{\prime \prime}}} \frac{\partial \omega_{m}}{\partial v} d s=\int_{H_{m^{\prime \prime}}} \frac{\partial \omega_{m^{\prime \prime}}}{\partial v} d s=D_{F_{m}}\left(\omega_{m^{\prime}}\right),
$$

whence it follows that
$(*)$

$$
\begin{aligned}
D_{F_{n}}\left(\omega_{n}-\omega_{m}\right) & \leqq D_{F_{n}}\left(\omega_{n}\right)-D_{F_{m}}\left(\omega_{m}\right) \\
& \leqq D_{F_{n}}\left(\omega_{n}\right)-D_{F_{n}}\left(\omega_{m}\right) .
\end{aligned}
$$

On the other hand we can choose a suitable subsequence $\left\{\omega_{n_{k}}\right\}$ ($k=1,2, \cdots$) such that this sequence converges to a harmonic lunction ω on F^{*} unitiormly in the wider sense. Applying (*) for this sequence, we see that the Dirichlet integral $D_{F}(\omega)$ of ω over F^{*} is finite. Moreover it is immediato that ω is non-constant. Thus our assertion is proved.
4. The rollowing is still
open:

```
    Does a domain C
    of belong to the class c. it
    bolongs to the class }\mp@subsup{C}{D}{}\mathrm{ ?
```

The converse of the above was proved by Mori [5] using the method owing to Virtanen [8] and was reiered to as Mori's lemma in this note.
(*) Received Dec. 15, 2951.
[1] L.Ahlfors: Remarks on the classification of open Riemann surtiaces, Ann. Acad. Sci. Fenn. A.I. 87 (1951) 8pp.
[2] K.Bader-M.Parreau: Domaines non-compacts et classilication des surtiace de Riemann, C.R.Yaris, 232 (1951), pp. 138-139.
[3] T.Kuroda: Some remarks on an open Riemann surface with null boundary, Tôhoku Math. Journ. Ser. 2, 3 (1951), pp.182-186.
[4] T.Kuroda: Notes on an open Riemann suríace, Kōdai Sem. Rep. Nos. 3-4 (1951), pp. 61-63.
[5] A.Mori: On the existence of harmonic functions on a Riemann suriace, To appear in Sci. Rep. Tokyo Univ.
[6] R.Nevanlinna: Quadratisch integrierbare Dirferentiale aur einer Riomannschen Mannigtaltigkeit, Ann. Acad. Sci. Fenn. A.I. 1 (19,41), 34 pp .
[7] R.Nevanilinna: Sur l'oxistence de certaines classes dé dif'ferentiales analytiques, C.K.Paris, 228 (19.49), pp. 2002-2004.
[8] K.I.Virtanon: Hber die Existenz von bes chränkten harmonische Funktionen aut elner Rlemannschen Fläche, Ann. Acad. Sci. Fenn. A. I. 75 (1950), pp.8.

Mathematical Institute, Nagoya University.

