By Yosinao MISONOU and Ziro TAKEDA

There are two kinds of compactification of a complete regular space due to H.Wallman [5] and E. Cech [2].

The Wallman compactification \mathscr{W} is the set of all maximal collections \wp of the lattice \mathscr{L} consisting of all closed subsets F of a completely regular space S and its topology is defined by taking the elements of \mathscr{L} as the basis of the closed sets of \mathscr{M} associating with all maximal collections which contain the elements as coordinates.

On the other hand, the Čech compactification \mathcal{M} is the set of all maximal ideals M of the Banach algebra R consisting of all realvalued and bounded continuous functions x(s) defined on S. (c. f.I.Gelgand and G.Silov [3]). The topology of \mathcal{M} is introduced by the following method, known as Stone-topology: M belongs to the closure of subset \mathcal{O} of \mathcal{M} if and only if M divides the intersection of all M's belonging to \mathcal{O} .

These two compactifications are not equivalent in general since the former gives a compact T_1 -space and the later a compact Hausdorff space. But the relation of them is given by the following theorems due to P.Alexandroff [1] and A.Komatu [4].

Theorem 1. A continuous mapping from \mathcal{W} to \mathcal{M} exists proserving all points of S.

Theorem 2. \mathcal{M} coincides with \mathcal{M} if and only if S is normal.

In this note we give an alternative prcor of them using the method due to Gelrand and Silov.

Proof of Theorem 1. If we put for a closed set F in $\mathbb S$

(1) $1(F) = \{ x \mid s \in F \rightarrow x(s) = 0 \},$

then I(F) is an ideal of R. The join ideal I(\mathcal{P}) of I(F) for all F $\in \mathcal{P}$ is a proper ideal of R since \mathcal{P} has the finite intersection property. Hence by Zorn's Lemma a maximal ideal M divides I(\mathcal{P}). By this definition. M belongs to the closure (in $\mathcal{M}_{\mathcal{L}}$) of F for each F $\in \mathcal{P}$, whence

(2) $H = \{s \mid \varepsilon \ge |x(s)| \text{ for } x \in M, \varepsilon > 0\}$

meets for any $F \in P$, and so H belongs to p, for p is maximal.

If M and M' divide $I(\mathcal{P})$, then an element x of M exists such that $x \equiv l(M')$ and $0 \leq x \leq 1$. Hence

(3) $H' = \{ s \mid x(s) \leq \frac{1}{3} \}, H'' = \{ s \mid x(s) \geq \frac{2}{3} \}$

belong to β with $H' \cap H'' = \not{P}$. This is a contradiction. Hence only one maximal ideal M divide I(β), namely, it defines a mapping M(β) from \mathcal{W} into \mathcal{M} . Evidently, this mapping preserves all points of S.

Next, suppose that f is the set of all F such as $F \in \beta_{\alpha}$ for all $\beta_{\alpha} \in A \subset \mathcal{W}$, and suppose further a maximal collection β contains f, namely, β belongs to the closure $(in \mathcal{W})$ of A. If we put $M(\beta) = M$, $M(\beta_{\alpha}) = M_{\alpha}$ and M does not belong to the closure $(in \mathcal{W})$ of $\{M_{\alpha}\}$, then by the normality of \mathcal{W} there exists an element x in M such that $x \equiv 1(M)$ for all α and $0 \leq x \leq 1$. Hence H" of (3) belongs to f, and so to β , on the other hand H' \cap H" $\equiv \beta$. This is cloarly a contradiction since H' $\epsilon \beta$ and β has the finite intersection property. Therefore this mapping is continuous. Furthermore, as S is dense in \mathcal{W} and also in \mathcal{W} , $M(\beta)$ maps \mathcal{W} onto \mathcal{W} . This completes the proof of Theorem 1.

Proof of Theorem 2. Since a lemma of H. Mallmann [5] states that $\mathcal{D} \mathcal{P}$ is normal if and only if S is normal, it suffices to show the sufficiency. To prove this, it is sufficient to show the oneto-one correspondence of the mapping under the normalily of S. Assume the contrary and suppose that $M(\mathcal{P}) = M(\mathcal{P}') = M$. Then there exists a pair of disjoint closed sets $F \in \mathcal{P}$ and $F' \in \mathcal{P}'$. Hence a element x of R exists by the nomality such that x(s) = 0for $s \in F$ and x(s) = 1 for $s \in F'$. This is a contradiction since by the later excludes x.

(*) Received Nov. 22, 1951.

- [1] P.Alexandroff, Bicompakte Erweiterungen topologischer Räume, (in Russian) Math. Sbornik, 5 (1939) pp. 403-
- 420. [2] E.Čech, On bicompact set, Ann. of Math., 38 (1937)
- Ann. 01 mach., 00 (100) pp. 823-844. [3] 1.Gelfand and G.Silov, Über verschiedene Methode der verschledene Methode der Einführung der Topologie u.s.w., Math. Sbornik 9 (1941) pp. 25-39.
 [4] A.Komstu, Isôkûkan-ron (in Japanese), Tôkyo 1947.
 [5] H.Wallman, Lattices and Topological Spaces Arrol
- Topological Spaces, Annals of Math. 39 (1938) pp. 112-126.

Math. Inst. Tohoku Univ.. Sendai.