```
    In the present paper we call an
"\alpha-f'unction" a Iunction f(x),
continuous in 0\leqslantx
that
\[
f(0)=0, \quad f(1)=1
\]
```

and

$$
0 \leqq f(x) \leq 1 \quad(0<x<1)
$$

Deilnition 1. A Iunction is called nowhere constant, if there exists no interval on which it remains constant.

We now begin with the following
Theorem 1. Let $f(x)$ and $g(x)$ be nowhere constant α-functions. then there exist α-Iunctions
$\varphi(x)$ and $\psi(x)$ such that
$f(y(x))=g(\psi(x))$.
It we consider a subset M of the euclidean plane, defined by $M=\{(x, y) ; f(x)=g(y)$, $0 \leq x, y \leq 1\}$, then Theorem 1 is equivalent to the existence of a continuous curve in M connecting the points $(0,0)$ and $(1,1)$.
T.Minagawa showed me an example (see the figure below), 1llustrating the Theorem 1 is not always true if the given functions are not nowhere constant.

Deilnition 2. We say that a closed interval $[a, b]$ is an " α-interval oi $f(x)$ ", if

$$
\sup _{x \in[a, b]} f(x)-\inf _{x \in[a ; b]} f(x)=1 f(a)-f(b) \mid
$$

We shall first prove the following lemmas A), B), C), concerning nowhere constant $\alpha-1$ unctions. In these lemmas, $f(x)$ denote a nowhere constant $\alpha-$ function.

Lemmas A and B can easily be proved, so we shall give a proof of Lemma C. First we prove it for $\varepsilon=\frac{2}{3}$ - By Lemma B, we can construct two convergent sequences:

$$
\begin{aligned}
& 0=p_{0} \leq p_{1} \leqq p_{2} \leq \cdots \quad \rightarrow \frac{1}{2}, \\
& 1=q_{0} \geq q_{1} \geqq q_{2} \geqq \cdots \quad \frac{1}{2},
\end{aligned}
$$

where all $\left[p_{i-1}, p_{i}\right],\left[q_{i-1}, q_{2}\right]$
are α-intervals of $f(x)$. If there exist positive integers
m, n such that $p_{m}=8 x=\frac{1}{2}$ then the points, 0 s p_{0}, p_{1}, p_{2}, , $p_{m}=\frac{1}{2}-q_{x}, \cdots, q_{z}, q_{1}, q_{0}=1$, are the
required ones. Otherwise, suppose
$p_{m}<\frac{1}{2}$ for $m=1,2, \ldots$, then there exists a positive integer m such that $\frac{1}{3}<p_{m}<\frac{1}{2}$. From Lemma 1 , we can again construct another convergent sequence: $1=q_{0}^{\prime} \geq q_{1}^{\prime} \geq \cdots \rightarrow P_{m}$, where every closed interval $\left[q_{i-1}^{\prime}, q_{i}\right]$ is an α-interval of $f(x)$. Now ne can readily see that there exists a positive integer n such that $q_{n}^{\prime}=p_{m}$, since p_{m} is a maximum or minimurn point of $f(x)$ in $\left[P_{m}, \frac{1}{2}\right]$. Then the points: $0=p_{0}, p_{1}, \ldots, p_{m}=q_{i}^{\prime}, \quad, q_{1}^{\prime}, q_{0}^{\prime}=1$ are the requirea points. Kepeating the above process in each intcrval, we obtain the uesired points for
$\varepsilon=\left(\frac{2}{3}\right)^{2}$, and thus we can, by induction, complete the prool of Lemma C.

Lemma 1. Under the conaition that $f(x)$ and $g(x)$ are both polygonalized - linear on $I=[0,1]$ except a finite number of points Theorem 1 is true.

Lemma 2. If $f(x)$ is polygonalized, then Theorem i is true.

The prool' of Lemma 2 may be omitted, since we shall later derive Theorem l by means ol' Lemma 2 and this lemma itseli can be quite similarly derived irom Lemma 1.

Prcof of Lemma 1. At any point $p \quad$ of $M x\{(x, y) ; f(x)=g(y)$, $0 \leq x, y \leq 1\}$ except at two points $(0,0)$ and $(1,1), M$ has a neighborhood or p which is homeomorphic with an isolated point, or an open line-segment, or a cross point ol two open linesegments. At the points (0,0) and (1,1), M has a neighborhood which is homeomorphic with a hall'- open linesegment (i.e. \{x;
$a \leq x<b\})$ and the point $(0,0)$ or (1,1) corresponds to tne ciosed endpoint a of the halt-open linesagment. Moreover M consists of a ilinite number of line-segments. Hence we can conclude by the unicursal principle that there exists a polygon in M connecting
$(0,0)$ and $(1,1)$. Ne express the polygon oy $(y(t), \psi(t))$; $0 \leq t \leq 1, \varphi(1)=\psi(0)=0, \varphi(1)=\psi(1)=1$. Then $\varphi(x)$ and $\psi(x), 0 \leq x \leq 1$ are parametric functions which are required in Lemma i.

Froot of Theorem 1. We shall construct, lor each positive integer n, a set of $\boldsymbol{\alpha}$-lunctions $\varphi_{n}(x), \psi_{n}(x)$ and countable disjoint open intervals
$\left\{I_{x_{t}}=\left(\alpha_{x_{t}}, \alpha_{n_{E}}^{\prime}\right)\right\}$ of $I=[0,1]$ satisi'ying the following relations:

$$
\begin{equation*}
f\left(\varphi_{n}(x)\right)=g\left(\psi_{n}(x)\right) x \in I-\left(U I_{n}\right)-\lambda, \tag{n.1}
\end{equation*}
$$

$(n, 2) \quad \varphi_{n}(x)=\varphi_{n-1}(x), \psi_{x}(x)=\psi_{n-1}(x) \quad x \in A_{n-1}$;

$$
\begin{equation*}
A_{n}>A_{n-1} ; \tag{n.3}
\end{equation*}
$$

(n.4) $\bar{I}_{x_{l}}=\left[\alpha_{n_{i}}, \alpha_{n_{i}}^{\prime}\right]$ are $\alpha-$ intervals of $\varphi_{m}(x)$ and $\psi_{n}(x) \quad m \geq n$;
(n.5) The intervals $\left[\varphi_{n}\left(\alpha_{n_{i}}\right), \varphi_{n}\left(\alpha_{x_{i}}\right]\right.$ and $\left[\psi_{k}\left(\alpha_{x_{2}}\right), \psi_{n}\left(\alpha_{x_{i}}^{\prime}\right)\right]$, $i=1,2, \ldots$, are $\alpha-$ intorvals spectively;
$(n, 6) \quad\left|\varphi_{x}\left(\alpha_{x_{i}}\right)-\varphi_{n}\left(\alpha_{n_{t}}^{\prime}\right)\right| \leqq \frac{1}{n}$
Put $\varphi_{1}(x)=\psi_{1}(x)=x, x=I$ and
$\left\{I_{l_{i}}\right\}=\{(0,1)\}$, and suppose that
there exist, for any $j \leqq n$, a set of $\varphi_{j}(x), \psi_{j}(x)$ and the countable intervals $\left\{I_{j}\right\}$ satisfying the relations (j.1), (j.2), ..., (j.6) , we then construct a set or $\varphi_{n+1}(x) \psi_{n+1}(x)$ and $\left\{I_{n+1}\right\}$ as rollows: From Lemma C, we can see for any i that there exists a set of points
$\left\{a_{0}, a_{1}, \cdots, a_{k}\right\} \quad$ in the closed interval $\left[\varphi_{n}\left(\alpha_{n_{i}}\right), \varphi_{n}\left(\alpha_{n_{i}}^{\prime}\right)\right]=I_{n_{i}}^{\prime}$ such that

$$
\begin{aligned}
& a_{0}=\varphi_{n}\left(\alpha_{n_{i}}\right), \quad a_{k}=\varphi_{n}\left(\alpha_{n}^{\prime}=1,\right. \\
& \left|a_{m-1}-a_{m}\right| \leqq \frac{1}{n+1}, \quad m=1,2, \ldots, k, \\
& {\left[a_{m-1}, a_{m}\right] \quad \operatorname{are} \text { an } \quad \alpha-} \\
& \text { interval o1 } f(x) \quad, m=1,2, \cdots, k,
\end{aligned}
$$

Ne then construct, for each i, a new polygonalized continuous fiunction $f_{i}(x)$ on $I_{x_{i}}^{\prime}$. $=\left[\varphi_{n}\left(\alpha_{n_{i}}\right), \varphi_{n}\left(\alpha_{n_{i}}\right]\right.$ as 1'OLIOWS:
$f\left(a_{m}\right)=f_{c}\left(a_{m}\right), m=0,1,2, \quad, \quad$.
$f_{t}(x)$ is innear on $I_{n_{t}}^{\prime}$ except at the points $a_{1}, a_{1}, \cdots, a_{k}$. A.s we assume the validity o! Lemma 2 we can iind two continuous functions $\varphi_{x_{i}}(x)$ anc $\psi_{x_{i}}(x)$ on $\bar{I}_{n_{L}}=\left[\alpha_{n_{2}}, \alpha_{n_{2}}^{\prime}\right]$ such tnat

$$
f_{i}\left(\varphi_{n_{i}}(x)\right)=g\left(\psi_{x_{i}}(x)\right), \quad x \in \bar{I}_{n_{i}},
$$

$$
\varphi_{n_{i}}\left(\alpha_{n_{i}}\right)=\varphi_{n}\left(\alpha_{n_{i}}\right), \quad \psi_{n_{i}}\left(\alpha_{n_{i}}\right)=\psi_{n}\left(\alpha_{n_{i}}\right),
$$

$$
\varphi_{n_{i}}\left(\alpha_{n_{i}}^{\prime}\right)=\varphi_{n}\left(\alpha_{x_{i}}^{\prime}\right), \varphi_{n_{2}}\left(\alpha_{n_{i}}^{\prime}\right)=\psi_{n}\left(\alpha_{n_{2}}^{\prime}\right) .
$$

Since a set C_{i} dellined by $C_{i}=\left\{x ; \varphi_{x_{i}}(x)=a_{m}, m=1, \cdots f\right\}$ is a closed subset of $\bar{I}_{n \varepsilon}$, the open set
$\bar{I}_{x_{2}}-C_{r} \quad$ consists ol countable open intervals. Mortover, we can see that these open intervals consist of the following systems of countable open intervals $\left\{\left(\beta_{m}, \beta_{m}^{\prime}\right)\right\}$ and $\left\{\left(\boldsymbol{r}_{\mathrm{m}}, \boldsymbol{r}_{\mathrm{m}}^{\prime}\right)\right\}$ where

$$
\begin{aligned}
& \varphi_{x_{i}}\left(\beta_{n}\right)=\varphi_{x_{i}}\left(\beta_{m}^{\prime}\right)=a_{0}, m=1,1, \cdot, \\
& \varphi_{x_{i}}\left(\gamma_{m}\right)=a_{t}, \varphi_{x_{i}}\left(\gamma_{m}^{\prime}\right)=a_{t \pm 1}, m=1,2, \cdots .
\end{aligned}
$$

Thus we can ininc a point $\boldsymbol{\beta}_{m}^{\prime \prime}$ of the interval ($\beta_{m} \beta_{m}^{\prime}$) and a point a^{\prime} ol the interval ($a_{\Delta}, a_{\Delta \pm 1}$) such that
$f\left(a_{\Delta}^{\prime}\right)=g\left(\psi n_{2}\left(\beta_{m}^{\prime \prime}\right)\right)$,
$\left[a_{1}, a_{\beta}^{\prime}\right]$ is an α-interval of $f(x)$,
$\left[\psi_{n_{i}}\left(\beta_{n}\right), \psi_{n_{i}}\left(\beta_{m}^{\prime \prime}\right)\right],\left[\psi_{n_{i}}\left(\beta_{n}^{\prime \prime}\right), \psi_{n i}\left(\beta_{m}^{\prime}\right)\right]$
are α-intervals of $f(x)$.
Let us put $\left\{I_{n+i_{i}}\right\}$
$=\left\{\left(\gamma_{m}, \gamma_{m}^{\prime}\right),\left(\beta_{m}, \frac{l_{m}+\beta_{m}^{\prime}}{2}\right),\left(\frac{\rho_{m}^{+} \beta_{m}}{2}, \beta_{m}^{\prime}\right)\right\}$,
$m=1,2, \cdots$.
Ne shall construct $\varphi_{n+1}(x), \psi_{x+1}(x)$ as follows:

$$
\varphi_{n+1}(x)=\varphi_{n}(x), \psi_{n+1}(x)=\psi_{n}(x),
$$

$$
x \in A_{n} ;
$$

$\varphi_{n+1}(x)=\varphi_{n_{i}}(x), \psi_{n+1}(x)=\psi_{n}(x)$,

$$
x \in C_{i}, i=1,2, ;
$$

$\varphi_{n+1}\left(\frac{\beta_{m}+\beta_{m}^{\prime}}{2}\right)=a_{\beta}^{\prime}$
$\psi_{n+1}\left(\frac{\beta_{m}+f^{\prime}}{2}\right)=\psi_{n_{i}}\left(\beta_{n}^{\prime \prime}\right)$

$$
x, i=1,2, \ldots ;
$$

$\varphi_{n+1}(x)$ and $\psi_{n+1}(x)$
are linear on the intervals
$\left[\beta_{m}, \frac{\rho_{m}+\beta_{m}^{\prime}}{2}\right],\left[\frac{\rho_{m}+\beta_{m}^{\prime}}{2}, \beta_{m}^{\prime}\right]$ and [$\left.\gamma_{m}, \gamma_{m}^{\prime}\right]$
It can easily be seen that the functions $\varphi_{n+1}(x)$, $\varphi_{n+1}(x)$ and the system of intervals $\left\{I_{n+1}\right\}$ satisiy the conditions $(x+1,1)$, $(n+1,6)$ The continuity of
lows irom that of $\varphi_{n}(x)$ and $\psi_{x}(x)$ and the condition (n.4). Next we shall show the unitorm convergence of two sequen$\operatorname{ces}\left\{\varphi_{n}(x)\right\}$ and $\left\{\psi_{n}(x)\right\}$. The uniform convergence of $\left\{\varphi_{x}(x)\right\}$ foliows immediately from the conditions (n.2), (n.4), (n.6) and tne continuity of each $\varphi_{n}(x)$. To prove the uniform convergence of $\left\{\psi_{x}(x)\right\}$, we shall show that for any $\varepsilon>0 \quad$ there exists a positive integer N such that for $\quad n>N$

$$
\left(n, \sigma^{\prime}\right) \quad\left|\psi_{n}\left(\alpha_{x_{i}}\right)-\psi_{n}\left(\alpha_{x_{2}}^{\prime}\right)\right|<\varepsilon .
$$

By Lemma A there exists a positive number \& such that $|a-b|<\varepsilon$
 irom the uniform continuity or

$$
f(x) \text { we can see that there }
$$ exists a positive integer N such that $\left|f\left(x^{\prime}\right)-f(x)\right|<\delta$ for $\left|x-x^{\prime}\right|<\frac{1}{N}$. From the condition ($n, 6$) we have

$$
\begin{aligned}
&\left|\varphi_{n}\left(\alpha_{n_{i}}\right)-\varphi_{n}\left(\alpha_{n_{i}}^{\prime}\right)\right| \leqq \frac{1}{n}<\frac{1}{N} \\
& \text { for any } \quad n>N \quad, \text { and hence } \\
& \delta>\left|f\left(\varphi_{n}\left(\alpha_{n_{i}}\right)\right)-f\left(\varphi_{n}\left(\alpha_{n_{i}}^{\prime}\right)\right)\right| \\
&=\left|g\left(\psi_{n}\left(\alpha_{n_{i}}\right)\right]-g\left(\psi_{n}\left(\alpha_{n_{i}}\right)\right)\right| \\
&=\sup _{x \in\left[\psi_{n}\left(\alpha_{n_{i}}\right), \psi_{n}\left(\alpha_{n_{i}}^{\prime}\right] \operatorname{xe} x\left[\psi_{n}\left(\alpha_{n_{i}}\right), \psi_{n}\left(\alpha_{n_{i}^{\prime}}^{\prime}\right)\right] .\right.}
\end{aligned}
$$

Thus we can say $\left|\psi_{n}\left(\alpha_{n_{z}}\right)-\psi_{n}\left(\alpha_{n=}^{\prime}\right)\right|<\varepsilon$. Thereiore $\left\{\psi_{n}(x)\right\}$ satistios the condition ($\mathrm{n} . \mathrm{s}^{\prime}$). The conditions (n.2), (n.4), (n.6') and the continuity oi each $\psi_{n}(x)$ guarantee the uniriorm convergence of
$\left\{\psi_{x}(x)\right\}$. Now we denote by $\varphi(x)$ and $\psi(x)$ the limit lunctions of $\left\{\varphi_{n}(x)\right\}$ and $\left\{\psi_{n}(x)\right\}$, then
$\varphi(x)$ and $\psi(x)$ are the required functions. We have completed the prool of 'Theorem 1. We can extend Theorem 1 to the lollowing one:

Theorem 2. Let $f_{1}(x), f_{2}(x), \cdots, f_{2}(x)$ be nowhere constant $\boldsymbol{\alpha}$-functions. Then there exist such α-I'unctions $\varphi_{1}(x), \varphi_{2}(x), \quad, \varphi_{n}(x)$ that

$$
f_{1}\left(\varphi_{1}(x)\right)=f_{2}\left(\varphi_{2}(x)\right)=\cdot=f_{n}\left(\varphi_{n}(x)\right)
$$

$$
\text { ror any } x \in I \quad
$$

Proof. Ey induction. Suppose Theorem 2 is true when the number
of given functions is $x-1$ Then there exist $n-1 \quad \alpha-$ inun- $^{\prime}$ tions $\varphi_{1}^{*}(x), \varphi_{2}^{*}(x), \cdots, \varphi_{n-1}^{*}(x) *$ such that $f_{1}\left(\varphi_{1}^{*}(x)\right)=f_{2}\left(\varphi_{1}^{*}(x)\right)==_{m-1}\left(\varphi_{x-1}^{*}(x)\right)$ for any $x \in I$; Furthermore we can assume that $\dot{\varphi}_{1}^{*}(x), \varphi_{2}^{*}(x), \quad \varphi_{n-1}^{*}(x)$ are nowhere constant functions, because, if otherwise, we can replace them by nowhere constant runctions.
Let $g(x)=f_{1}\left(\varphi_{1}^{*}(x)\right)$, so $g(x)$
is a nowhere constant α-runction.

By Theorem 1 there exist two $\boldsymbol{\alpha}$ iunctions $\varphi(x), \varphi_{n}(x)$ such that
$g(\varphi(x))=f_{x}\left(\varphi_{x}(x)\right) x \in I$ 。Let $\varphi_{0}(x)$ ${ }_{=}^{g}\left(\varphi_{1}(x)(\varphi(x)), \varphi_{2}(x)=\varphi_{2}^{*}(\varphi(x)), \quad \dot{\varphi_{n}}, \varphi_{n-1}(x)=\varphi_{n-1}^{x}(\varphi(x))\right.$, then $\varphi_{1}^{\prime}(x), \varphi_{2}^{2}(x), \cdots, \varphi_{n}^{\prime}(x)$ are the required lunctions.
(*) Keceived Oct. 8, 1951.
Tokyo Institute of rechnology.

