DIFFERENTIAL EQUATIONS WITH INVARIANT PFAFFIAN FORMS

By Toshlya SAITO

1. Let § be a compact n -
dimensional analytic maniiold
without torsion. We consider a
following system of differential
equations,

J4%

97 = )(4(7(1, -, x,‘))

(r)

x
:73 = X" (x'; T xk)
where =%, , are analytic
local coordinates and X, , ...,
X, are one-valued real holomor-
phic functions in £ . General
solutions of this system can be
written down in the following form,

7

ceey An

x, = fl(’/o, ',Ina,f)l L=// -

where

%o=}l(”h'"/x”%°% =0 m
and f, 's are analytic functions
with respect to their arguments.

If we define a transtormation
S+ by

R = (x,,, T, )‘nu))

%= fy (e, o, Ko 8) dml e

’ 7
7

the totality ot such transforma-
tions forms a one-parameter group.
Hence cifrerential equations (1)
can be regarded as detlning a
one-parameter stationary tlow St

in o

We suppose that (1) admits n-t
linearly independent (with respect
to numerical coefficients) inva-
riant Pfaffian forms (in the sense
ol T.Cartan)<
(2) ’wl :KZ Aik (K,IV-.}’X,;) C('»\'vk)

=10 - m-l )

where Aik 's are one-valued real
holomorphic functions in £2
Then we have

n
(3) kZ/q\quE"’, v=( s, ned
=/

Moreover we assume that W, 's
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are exact, l.e,
dw- = o 1= , e
T b 4
ocr, 1n other words,
% Wik _ RAy
X 27Tk,
J
1=, Ml g K=,

Under these assumptions, we
want to study the behavior ol the
trajectories of (1), Our main
result is the Theorem 3 of § 5
which states the necessary and
sutficlent condition for every
trajectory of (1) to be everywhere
dense In §2 . Then we apply this
result to the tlow in n ~dimen-
slonal torold and establish a
sufficient condition for tne ergo-
dicity of S¢ &

2, Let p Dbe a one-dimensional
Betti number ot $2 , and 17 , [},
ceey 3 be its independent
cycles, We put

Since
find n-y
l/"

's are exact, we can
holomorphic functions
y sesy Uy, such that

du, = Hﬁl L=( -,

According to the relation (3),

—c{—i‘— = r=10 - i1
at ’ r
Hence U, 's are integrals of (1)

and the trajectory of (1) is gene-
rally given as an intersection of
n- | hypersurtaces

du, = o .- Uy = O,

’ >

U, 's are, in generai, not one-
valued since they are additive
functions with <«,, , ..., wip
as fundamental periods.

We tirst prove the fcllowing

THEOREM 1. If there exist n-!
resl numbers A ,
not simultaneously zero, such

ey A,



27w

that the ratios between e = const
"t n-y
lewnl, R Z‘A'iwr.f’
e <! defines a closed analytic invariant
submanifold ot S« whose dimension
are all rational numbers (the is not greater than mn-—i .
case S Aaw = o =X A wy =0
is included), <S¢ has an inva- Ir f € n=l | it is evident
riant closed analytic submanifold that the assumption of the Theorem
whose dimension is not greater 1s always satlistied. So we have
than y -1 °
COROLLARY. If~ p <$m—r | Sy
Procfe I A, , coe, An-g has an invariant closed analytic
can be sc chosen that submanifold whose dimension is
not greater than w-« °
Z’A‘w“:- - =Z7\L¢0;I‘,=O)
3« THEOREM 2, If there exist
- n-t real numbers A, s seey
the runction Z XY is evi- An- , not simultaneously zero,
dently ons-valued since its fun- such that the set
2
damental periods T Cxr o m)
et
. = - n-=1i "n-
J(‘n%m N ST ¢ E{P;E’\AH(F>=" :Z> AP

=o }

all vanish. As u; 's are integrals

of (1), sc is = a.y . Hence is not empty, S+ 1leaves invari-
the hypersuriace defined by ant a closed analytic submanifold
whose dimension is not greater
T oA u, = constL than »n -1 .
Prcof. If the assumption of
is a closed analytic invariant the Theorem 1s satisiied, I (A, ---
suomanifold whose dimension 1is -, A.,)1s a non-empty closed analytic
not greater than wn-r . submaniiold whose dimension 1s
not greater than. m-1 . We will
Except this case, we may suppose, show that T (x\ ---, *,.,) 1is an
without loss of generality, that invariant manitcld of Sy . For
that purpose, it swuffices to prove
that RIS
Z )‘L wey * 0 . -
?%‘E:x-Afk= e, k=i, o™
As s
Zi_*_:"_': ket o p on Lo A, .
Acwir s ) :
Zkﬂ\Kzz )),(XAA\k—Z X ==
are all raticnal, we can rind i )
integers m, , ...y Mmp such
that
. then, by the formula (4) of § 1,
gij;:ii — e ke .- f V.
S AWy - ;’T) ’ e = Z)‘ X RAALE
") Xk
Then the tunction
" 27\\“(21{\] ) ?: AJ?x
U= ZAL Y, ’
2wy The second term of the above for-
is an additive function with fun- mula evidently vanishes on
danmental periods Ta, o A because we have
m A @
— gzx“m'i: z = m Z‘%iA‘-j:O
ZA-“’U 2:1 Wy ‘ i
My eee, T being integers, on [(n, -, 2.,y . The first term
. also vanishes according to (3) of

a tion
unc % 1. Therefore

ATTA W d z: A « n
— A‘ ik '.=.Ol =|, ‘”,
is one-valued on SZ « Since at 9 ‘
w 1s an integral of (1), so is

exp (2meu) o Hence the hypersurface on I (a - Aau) .



4, To simplify the statement,
wo say that S: 1is non-singular
if the assumption of the Theorem
2 1s not satisfied. Otherwise it
is said to be singular,

If St 1is non-singular, lor
any point P of £ , there
exists a uniquely determined
hypersurface containing P on
which

is satisfied. We denote by F:(PJ
the connected component o1 this
suriace determined by P . In
the same way, we can also uniquely
define

(F;f\ Fj/\ ""AF.L) LPJ

as a connected component of
F.tPI1 A FjLPIn-- AELPI determined by
P °

Obviously, F; LP] )
(F;n F’»)EP] » (F‘I\ an Fk)[pJ »
.+s, Are all invariant sets of
Sty ¢ Especlally, (FiaFan ---
--AFR.)(P1 1s a trajectory passing
through P .

For the non-singular flow St ’
we now prove the following wn-1
Lemmas,

LEMMA 1 Let P, @ be any
two points of €2 which can be
joined by an arc C of finite
length such that

g'WL =0,

4
Then we can join P and @ by
an arc ¢ 1lying on F LPJ and

homologous to C

LENMA 1*. Let P be an arbi-
trary point of £ and @ be a
point on F [PJ] . It P and

Q can be joined by an arc ¢
ot finite length lying on F, [PJ
such that

(e,
[«

then P and Q can be joined by
an arc ¢ lying on (FRAR)IP]
and hcmologous to ¢ o

n-|
LEMMA 1 . Let P be an
arbitrary point of §2 and Q be
8 point on (FA Fon --- AF.)LPT &
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and @ can be joined by
of finite length lying
~ Fag)[P] such that

Ir P
an arc ¢
on (FiaFn ---

g m-n-l = °

c

then P and Q be joilned by an

arc c C (ﬁanf\"'nF,‘..)EPJ homo-
logeous to ¢ .« In other words,

the trajectory passing through p

contains @ .

Proot of the LEMMA 1'. As we
consider only the arc of finite
length, we omit the words "of fi-
nite length" for simplicity's sake.
So, hereafter, the word "arc"
always means "arc of finite length"

Since 2 is a compact analytic
manifold, we can introduce in
a metric o«(PR)20, P,Q e £ , in
such a way that the topology de-
termined by this metric is equiva-

lent to the original one. We first
notice that for any P we can
find a positive number ¢&,(P) such

that our Lemma is valid in a sphere
KLP, e(P) ={@; 4(PR)< &P},

Strictly speaking, ir A, B €

K [(P; ¢(p)]_can be connected by an
arc ¥ = AB contained in

K [P; 6Pl in such a way that

(’w,=0)

then A _and B can be joined by
an arc ¥ entirely contained iIn

FIATA KL[P; £,¢(P>3 and homo-
logous to ¥ o

In tact, if tnis is not the
case, the derivative of % in
any direction must be zero at P .
But this contradicts with our
assumption of the non-singularity.

Q being compact,

IM)( e,(E) = § > °
Pe

Theret'ore our Lemma is valid in
any sphere of racius ¢, .

Now let A be an arbitrary
point on € , and we consider a
function

fh) = ( .,

¢cPA)

where C (MN) 1s an arc of ¢
between two points ™M , N on
C . GEZvidently

2

$pr= {(@)=o



Suppose that the Lemma nas been

proved fror the case when §(A)
increases from P to ™ , re-
mains constant from ™M to N ,
and then decreases trom N to @

where M and N are two (not ne-
cessarily dirfferent) points oncC .
Then we can prove the Lemma for
the case when

fFAY> i = fa)

for every A between P and @
In ract, In this case §{(A) has a
finlte number or maxima and minima
on C . Let

"> om,

e DMy >0

be these extremal values, The set

1 = [A; 'f‘A)z'"z.}

is mace up of a finlte number of
ares, ¢ (A/A,) » CCA3A0

C(Axy Ax)
€C
arcs fA)

cony
1] A, s eeey Ax
. On each of these
possesses the pro-
perty stated above. So we can
connect A4 and Az , Aj
A“ y oceoy A and Ax
the curves Ca s ooy Cp
each contained In FrA71-=FRTAI ,
F.LA3] = F [AuT B F, CAxal
= F LA ° If we replace ¢ (A,A),
¢ (A  Ax) by ¢y,
respectively, we obtaln a
and a

and
by

o ey

veoy eeey

Ce
new arc ¢’ Jolning P
for which we have

)
If we consider on ¢  a func-

tion
f,(A) = S @,
c’(PAd

extremal values of 4 (A) are

my > My e > my> e

Then we consider the set

U=[A; $@rm;]

and repeat the same procedure,
Repeating such a process v-1
times, we tinally arrive at the
curve ¢ on which a func-

tion

S’ (v=1>

(A) = f w,
¢ %pAdy

possesses the property stated
ebove, Hence P and @ can be

o
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joined by an arc <€ contained in
F, CPJ » As 1s eviaent irom
the procedure we have adopted,

€ 1is homologous to ¢ .

In the same way wc can easlily
show that our Lemma holcs when

Fcry < $p) = f(ay

tor every A between P and
Q . Combining these results
we can prove the Lerma Il'or general

cases. So we have only to show

that our Lemma is true when §(A)
increases irom P to ™M , re-
mains constant from M to N ,
and decreases frem N to @Q .

In this case,
g ‘m’. = 0
)
ror any arc L on CmN)

Ce(mpn) is itself ccntained in
F,LM] = FLNJ .

A, viey, Am have no
common zero points because of the
non=-singularity of S¢ . So the
tunction w, never takes an ex-
tremal value. Hence, for any
point P in ¢2 , a positive
number 8§ (P)
that for any real number « ,
Ix(< § (P),there always exists a

point @ ~contained In e, &1
for which

Q

| ===,

P

where the integration 1s carried
out along the arc contained in
KLP, &/47 . Since € 1is
compact,

luf € (P) =8 >0
Pe&

We can divide the arcs C (mPpy ,

C(NQ) by a finlte:number of
points
M=F, Pg) e, P“/ PKN=P;
N =Ql' Qﬂ) =, QK,QKM‘:Q’/

in such a way that
Py = §cQj)
}(PJ)_ i'(PJH) = {(Qj-)- f(Qj.,,) = S,
1$(< Si’

A SRS

Hence

can be so determined



d(Q}Qy-)(% N J=°,1, o, Kel,
Next we divide the arc (€ (MN)
by the points
=(<,) Ki, -+, KV, Kye, = N

d(KjK'#»)<§—:l j:o}i ey

and conslder the spheres

SJ-= k[Kj)' %‘] feo 1, Ve,

2 ’ 2

Then from what we have stated
above, we can find in each-5;. a

point 8, and an arc Y; Jjoin-
ing Ky and B; 1in such a way
that

S’m":g

Y.

In particular, we may suppose
that

Bo= P. BV“'=Q"
=C(MR% Y, =CiNg,),
Since the radius of Sj 1s &y,
and
Ea
d(kjﬁﬂ)< 3
we can construct a sphere Wﬁ whose

radius is & and containing B, ,

B, 2 SN Ken ¥
i1 in its 5nterior. Then the
arc
-Yi ’C(Kjkj*')*ij\
connects Bj and Bj,» 1in TG
and

f'w +j' w, *jw,=-§+o¢$=o
Kk Ty,

Therelore, I'rom the fact stated

at the beginning ot this proof, we
can join B; and By, by an
arc ¢ contained in F,EB 1A

WG . Since

B,=P B, =@

'

we can join P
arc

and Q, by an

O v S+ .+ g

which 1s contained in F [R]1 and
obviously homologous to ¢ (R@,) .
Since the length of this arc is
tinite, we can repeat the same

discussion replacing ¢ (mw) by
g+ 6 « --.+ g, 5 and connect P,
and Q, by an arc contained in

FLRD . Froceeding in
this way, we can flnally join P
and @ Dby an arc T contained in

F tp and homologous to ¢

Prool of the LEMMA 1*. Since
S 1s non-singular, FL[pJ and
F. LP] are never tangent to
each other lor any point B or
. Theretore the derivative
of u, at P in the direction
tangential to F L[PJ and normal
to ( Fia RYIP] is different from
zero ror any point P . So we
can find a positive number ¢g,(p)
such that it for an arc

AB C ELPIA KLP, €]

we have
S w = o0
—_ 2
AR
A and B can be joined by an

arc contained in (F.R)IPI . KLP; &ple
Since €2 1is compact,

)

lm; i’,(?) = € Yo,
Pef

Once such a number £, can be
found, the remaining part of the
proof is quite similar to that of
the LEMMA 1*, So we do not repeat
the rather lengthy proof here.

Proceeding in this way, we can
sEccessively prove the Lemmas 1
1, o0 ey " .

As is evident irom the proof
above, our Lemmas are also valid
if P=@ . 8o we have

Corollary of the LEMMA 1¥. If
C 1is a simple closed curve on

(Finfan - AFe)LPJ such that
S Wy =o,
¢
where P is a point on ¢ , then

we_can find a simple closed curve
< lying on  (Fafin--na F)IP]
and homologous to ¢

5. THEOREM 3. For every tra-
Jectory ol (1) to be everywhere
aense in it is necessary
and suflficient that St 1is non-
singular and the assumption o1 the
Theorem 1 does not hold.

Proof. By Theorems I and 2,



the necessity of the condition is

obvious. So we have only to prove
the suttriciencye.
Let P and @ ©be two arbl-

trary points in € and V  be an
arbitrary neighborhood oif & . We

connect P and Q@ by an arbltrary
arc C, and put

( ur‘ = O('

C

As S, 1is non-singular, Av

cey Aim can never be simul-
taneously zero. 30 1w, never
takes an extremal value, Therefore

there exists a positive number &
such that for any number §& ,

(&1 < & , we can find an arc
da’ , contained in V for
which
[ =-e
Qaa’

Since the assumption of the
Theorem 1 does not hold, at least

one ol the ratlos between w., ,

ceey Wip must be irrational.
So we can find $ integers wm, ,
cees oMy such that

P

Zomy wgq = me-o el <S,.

i

Thus for an arc C. ~ ¢ +LmT,

(A ~8 means A 1is homologous
to B ) joining P and Q@ , we
have

Sw' =-5-a(‘1-a(l=-g

Then from the ract just proved

above, we can find an arc QQ’
in vy such that

(s,

QI

If we put

C‘, + cﬁ’ = C,”
we heave
1St being non-singular, Lemma
1 is valid. So @’ 1is contained
in F, CP1

We then join P  and @’ by

an arbitrary arc €. lying on

F, tP1 » and put
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Since FoLa’ and F. [Q']
are not tangent to each other at
@’ Dbecause of the non-singularity

ot S¢ , we can find a positive
number §,  such that lor any
g€ 5, el < S, there exists
an arc @’@” contained in Ya
Ff [Q’] for which
- ,‘m'z = &,
Q'
If we replace €. by an arc
¢, 1lyingon F [P} ,

S W, = « +£m.w-
C’ 2 2 & i ai
L

where m, , e.e, mp are inte-~
gers satisfying a relation

2 miw; =
1=

)

Conversely, for any p integers
m, , «.o wm, satisfying (5),
we can fin. an arc ¢, 1lying on

F,LP1 and

C; ~ ¢ v Iy,

In tact, let us first construct a
closed curve C (not necessarily

on F IPJ ) containing P and
homologous to 3, m,(; o Then,
we have

(o« 2 mon =,

¢

So, by the corollary of the Lemma 1",
we can find a closed curve g 1ly-

ing on F I[Pl and homologous to
¢ + So, if we put
) ~
C’z =C+C,
we have

C:.’ ~ ¢+ CJ. N-"Z."“ri "'Cn._

Let m, , ..., mp be the inte-
gers satisfying (5) Without loss
of generality, we may suppose that

w, ¥ 0.

So, we have

b
m_-_..
' @i LZ':I.

and
'
Z i oy =--— S'_,'m w *Z"" “ai
iz (a2

P
= Z"‘"i (wzi‘

w,
: ),
(2 "



Since the assumption of the
Theorem 1 does not hold, at least
one ol the rutios between

Way

w’f‘ -Aw,f) A=z A2

Wo =AW,  .--
’ ’ wy

must be en irrational number,
However, as
w -7\4.)“:0

21 )

at least one of the ratios between
w“~X%% n.)w”-wa

must be an irrational number. So
we can choose p integers m, ,

ceey M in such a way that
4 4
'._z; g Wy i% my Wy - Ais)

, ='°(z‘£, l5‘<gz,
3>, ™o, =o.,
i=l
7
Theretore there exists an arc C,
~ Cys Z wm G Joining P and
Q on F LP) for which

g ‘sza("—dz-i_ = ~¢
J
CZ

Then from what we have_shown above,
we can find an arc @Q’Q@* con-

.

tained in F @1,V for which
fn,m =t
a’a”
It we put
/= ¢ + Qa’
2 T2 ’

n
¢, 1is contained in F[PI =F Q]
and

’

Sc,.uﬁ =0.

2
Thus, according to the Lerma 1% N
P and Q” can be joined by an
arc contained in (FAR)IPI

Repeating such a process n-1
times, we can t'inally show that
there exists a point Q™" in

V which can be joined with P
by tne curve (FianFin --- A Fn)UPI .
This means that the trajectory
passing through P interesects
with Vv . Since P , Q@ , and
V have been chesen arbitrarily,
every trajectory or (1) must be
everywhere dense in € , and the
proot’ of the Theorem 3 is complete.

I it is known that St has no
invariant closed analytic sub-
manijold whose dimension is not

greater than m-1 > St must
be non-singular and the assumption
ot the Theorem 1 must not hold as
a consequence ol Theorem 1 and
Theorem 2. So the Theorem 3 can
also be stated in the rollowing
rorm,

THEOREM 3'., For every trajec-
tory of (1) to be everywhere dense
in  , it is necessary and sul-
ticient that S; has no invariant
closed analytic submanifrld whose
dimension is not greater than

n-~-1 .

6., Wwe have thus established the
criterion for every trajectory to
be everywhere dense under the as-
sumption that (1) has mn-t 1inva-
riant exact Praitian forms. For
such a tlow, it 1is very desirable
to establish the ergodicity. Un-
tortunately we could not solve
this preblem in general cases,
However, if the manirold in question
is of a comparatively simple topo-
logicad character, we can expect to
go a little further in this direc-
tien.

As a simpiest example, we will
treat the flow oi the above stated
type in m -dimensional toroid.

In the following sections, we will
show that we can establish the
ergocicity of the f{low if it admits
an analytic surface of section.

Hereafter $4 1is supposed to be
an n -dimensional toroid. There-
fore its one-dimensional Betti
number 4 must be equal to n .

7. an analytic (n-1) -
dimensional closed submanitold S
is said to be a surtace of section
of S, 1if following conditions
are satistied,

(1) no trajectory ot S¢ is
tangent to § s

(2) tor any point P of € ,
tre trajectory starting tfrom P

cuts S after a tfinite £t -
interval,
LEMMA 2. If S¢ has a surlace

ol section, we can construct in
a l'amily of suriaces ol sec-
tion

{ S ; esact}

with fcllowing properties,

(1,
peints in common it

S(%) and S8¢g) have no
«xp

(2) tor any point. P 1in Q we



can r'ind 8§ («)
which contains P

ol this tamily

Proof'. By assumption S; has
a surtace of section. Let tnis
be called S<(e> , C(Consider the
trajectory starting frcm an arbi-
trary point P on S<(e) . From
the condition (2) of the surtace
ot section, this trajectory returns
to S(e) after the finite ¢ -
interval T (P) . Let S§<X) be an
analytic hypersurtace det'ined by

S ={Q; Q=S,7pmP,
PeS(e), o= coust, }

We can easily show that Sf¢%) 1is
a surtface of section. Varying «
tftrom © to 1 , we obtain a
family or surfaces ol section with
desired properties,

In whet rollows, we restrict
our attention to the tlow with a
surrace of section, and for the
t'low of this typs we prove the fol=~
lowing,

THEOREM 4, If St 1s non-
singular and the asaumption of the

Theorem 1 does not hold, S¢ 1ia
ergodic.
8. For the proot aof the Theorem,

we first prove

LEMMA 3. Let TI be an T -
dimensional toroid whose points
can be represented by the coordi-
nates

(w!‘ ., wY),
ogw <4, i1=1 -, T,
We consider in T a mapping ¥

B = [wrk]) Gen o,

where the notation [«1 means
a value o' ®* reduced modulo 1
and ¥, 's are real constants

such that the relation
[2mY,]1 =0

)

i, es, My o imtegers
implies
m, = - - = Mm, =0,
If A 1s a measurable subset
of W with positive Lebesgue
measure
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SA go, e d,

ana invariant under ¥ except
the set ol measure zero, the cha-
racteristic function of A must
be equal to 1 almost everywhere,

Proot'. Let ; be the totality
of complex-valued functions Lebes-
gue measurable and square summable

on TI . is evidently a
Hilbert space with the inner product

<f,;)=f fjdw dwy f gek
n
and the norm

fek.

8 linear trans-

= 4,1y,

We define in 5
tormation U by

U fCwi, =, W)
- F(Luen, o, DR e%),

U 1is evidently a unituary trans-
tormation, and the function

2w (m,w, s tmowg)

m., "')1'1,.: (nfeje’rsl

2

is an eigenfunction of U
sponding to an eigenvalue

corre=-

27 (¥, + o+ Wy ¥y

¢

Since the totality of exp{zmi(muw;
+ - +mu} forms a complete ortho-
normal system in 4 , there can
be no other eigentunctions,

Let X4 Dbe a characteristic
tunction of A , 1l.e.
X, (P) =1 i PeA,
=0 5 gtle'mse.
Then X4 belongs to g/ and we
have
UX'A = X.A % 0 )

(where the eguality sign must be
interpreted in the sense of the
strong topology in % ), which
shows that X4 is an eigenfunc-

tion of U Dbelonging to the
eigenvalue 1, Hence
_oooame{mw et My e
X'A- Y
)
where
[ Z‘M;X}I =0,



But tfrom the assumption ol the

Lemma, the latter relation
implies

m, = =m,=0,
Therefore

in the sense of the strong topo-
logy in § . Consequently Xa
must be equal to 1 almost every-
where on T B

9. Proof or the THEOREM 4. As
St is supposed to have a sur-
I'ace of section, we can construct
a family of surfaces of section
{ Sy, ogx<i} with the pro-
perties (1) and (2) stated in the
Lemma 2., As is evident trom the
method of construction o1 this
ramily stated in the proof o1l the
Lemma 2, every S§(«) is homeo-

rorphic to Sc> , and €
s homeomorphic to the topological
product of S (e) and the circle
osx<d . Since R is an n -
dimensional toroid, every S(«)
rmust be homeomorphic to an ¢(n-1) -
dimensional toroid, Theretore we
may suppose, without loss ol gene-
rality, [ y seey Tmay form
the one-dimensional homology base
or §¢) . Then, i1 we regard

o, y vesy Wnoy as Pfaftian
l'orms on $¢o) , their periods on
Sc¢e) are
w e w izl n-i

By assumption o1 the Theorem,
S¢ does not satisty the assump-

tion of the Theorem 1. Hence
W, “ra "t wl,"l-l
Wzy Wiz - W onv X0
Wy, Wnoza *° Wr-ymot

In tact, if this 1s not the case,
we can I'ind m-1 real numbers
Aty ceey Ama not simul-
taneously zero such that
n-i
Lawig=0 K=t - m-t

V=

)

contrary to our assumption.

2

Consequently we can 1ind (n-1)

real numbers A s k=t .. m-1
such that
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A Ay
Mz A2zt Avaiz

v Ame
i Wy Wip T Wy

War Wiz -+ Wz pey

At et A,’,‘., v Apeg - Wty @3+ Doy 10t

]

Ir we put
n-i

T o= 2 Ak Bk it e met
K=t

we have

gTK} =0 f

r‘-( J
Snn‘= 1,

Let A, B be two pcints on §(o)
and ¢ be any arc joining A
and B . Then

where m; is an integer and
o< w; <1 . Obviously w; 1is
uniquely determined by A and
8 , and lncepencent of C .,

So let us write
B
(o] = .,
A

Let us correspond to every
point P on S<(e¢) an ordered
set of m-1 real numbers

(wi; T, W)
?
w, = [5 W(],
R
where P is an arbitrarily cnosen

r'ixed point on S<¢e) . This is
a bicontinuous mapping of Sco)
onto the subset of an (n-i;) -~
dimensional toroid TT

M={cw, ~, @)

, oS w <t

i=1,-~,"-<j_
Moreover thls correspondence is

cne-to-one. To show this, it is
swticient to prove that if PxP, ,

[, -, [
R ",

s
can never be gimultanecusly zero.

Suppose that

[fx] = - = (fr]=e

f



Pe P . Then it we
and P Dby an arbi-
of finite length

for some
connect P
trary curve C

lying on S¢() ,
g T = my is), e, Mo
¢ )
where M; 's are all integers. It
we replace ( by a curve
n-t )
¢~ C'E:'M‘n' ¢’c s
we have
= .. = Ty =0,
gc:r' SC' =0
As S¢ 1s assumed to be non-singu-
lar, Lemmas 1%, ..., 1™ are all
valid. Therefore P, and P can

be_Joined by an arc of trajectory
C which is homologous to ¢’

Let us then consider the tfunction
«¢(P) defined as rollows,

X(P) =, if PeSw,

« 1is not a holomorphic function
because of its discontinuity at

S¢) . To avoid this, we have
only to put

S(x+rmy = S(")) m: in‘[’ejev’

and regard «(P)
valued function

as a many-

X (P) =+m  if Pe S(dem)

Evidently the differential do
is one-valued in spite of the
many-valuedness of « , Since

%X increases when P nmoves
along the trajectory in the increa-
sing sense of t ,

S d« % o,
¢

Also, ¢’
we have

being contained in S(o) ,

S dot = 0
CI

Hence

Scu’c”“ %o,

’
on tne other hand, as ¢ is

homologous to

¢-C ~o

So we must have

- 112 -

S dot =0
¢-T

Thus we have arrivec at tne con-

tradiction.

Consequently the correspondence
P = (w,, -, %))

is 2 homeomorphism ot Sc¢e) ontc

a subset or the (n-1) -dimensicnal
toroid T . However, since S(e)
itselil is en (m-1) ~-dimensicnal
torold, this correspondence must
be a homeomorphism of S(¢> onto

whole TT . Thus, in place of
(%,"u x,) s We can choose

(o, Wy, o, Wiy as a coordinate
system in £ by putting

P = <°‘/w“, "';W'n-:\ ) i
P=Stgra,
P, = (o, o, ) € SCo)

where T(R) is a function which
we have used in the proof of the
Lemma 2,

Let P= (a("ur,’--~’w."~,)
be an arbitrary point on S«(«) .
The trajectory starting from P
returns to S+ = S(x) at
some other point P’

FQ (d+()wﬁ e, W)

3

We define an automorphism ¥  of

S(x) by
)y = P :
and put
Y= w'ow  i=p e, me

As T; 's are inveriant forms,

¥i 's are constants independent
of P . In ract, let P zand @
be two dirferent points on S¢«) ,

and
P’=\'k<P>,
?
Q= Y,

Let C, , C, C, , C4 Dbe the
arcs on S(x) Jjoinin eP’ , pa’,
R'a , QP , , respecti-
vely, Then (¢ =¢ +¢, +C3+C¢+ i3 a
closed curve on S«(«) . Therefore

[fred=e, o, omt

9

As Tt; 's are invariant Prait'lan
forms,

TRARTTS A



or,

‘.lej + [gc“m)—“g t=l, -, Mg
Consequently
ESINTN
= T, 9= “ee M-
S R R
Hence X; 's are constants inde-
pendent ot P .

Thus ¥ induces on T
ping 2

a map-
dw, = [w v ] il mon

From these facts, we can see
that

dt dw, - - dwn,

is invariant by the transtormation
St .« The tunction T(P) can
be considered as a positive definite
holomorphic function of wy ,
w;., » and we have

v ey

dt = Towy - wp.)do + “Z%—E dwy

’

So, St has an invariant measure

dm = (QPAd +‘¥2:%%%du&)du&~-du%ﬂ

3
= T det dwy - dwy,

As was shown by J. von Neumann
and G.D,Birkhorf, the ergodicity
is equivalent to the metrical
transitivity for the r'low with an
invariant measure.® Se, tor
the proof of our Theorem, we have
only to show that every m -measur-
able set or positive m -measure
invariant by S¢+ must be equal to

itselr except the set of mea-
sure zero,

i By Theorem 3, every trajectory
of (1) must be everywhere dense in

2 . Hence the set

3
{‘P(P)j kK=o tl'tz)-“} P 55(*)}

must be everywhere dense on S (%),
Therelore the set

{([w*km%-~, DQ”+EMﬂD}
k:o,:\liz,'—‘}
must be everywhere dense on TJI

whence we can conclude that the
relation

-
L ‘E M;‘li} =e,

’

m;, ... m ot
1J 5 n-y Lnfejevs)

implies

w, = = “"Vl"_‘:' Q.

Then, by the Lemma 3, it M is a
-invariant subset or TT with

positive Lebesgue measure, the

characteristic tunction oi M  must

be almost everywhere equal to 1

on TT .

Let A be an S, -invariant

m -measurable subset of §2 with
positive m -measure. Then A, S«
is a ¥ ~invariant subset oI S(x)
with positive
for aimost all « , which corre-
sponas on JT  to a ¥ -invariant
set with positive Lebesgue measure,
So, l'rem what we have shown above,
the characteristic function ca

A~ St  must be saimost everywhere
equal to 1 on S<x) with respect
tc the measure duw, s e AWy
t'or almost all « . Hence the
characteristic function of A must
be equal to 1 almost everywhere cn
3 'with respect to m -measure.
This shows that A 1is equal to
except the set ol " -measure zero.
Thus we have completed the prooi.

Anstey AW oo AW,

Corresponding to Theorem 2!,
Theorem 4 can also be stated in
the 1'ollowing lorm,

THEOREM 4'. II' S¢ leaves in-
variant no closed analytic sub-
manitold whose dimension is not
greater than =»n-1 St is
ergodic,

Also, if we use the Theorem 3,
we have

THEOKEM 4". If every trajectory
or S;¢ 1s everywhere dense in
Q , Sy 1s ergodic.

10, In this section we will
give several examples ol the system
ol ditferential equations to which
our result is applicable.

EXAMPLE 1. A measure-preserving
flow on the torus,

Let S? be a torus whose points
can be represented by two angular
cooruinates o< %, % < 27, and
we consider an analytic 1low Sy
del'inec by

o9 o x

o = X, (%, %)
dX; _ (%, %X2)
at Xz ] .

We suppose that St admits an
integral invariant %)



Spg f (x, x,) dx, d%x,

where P 1s a positive deiinite
ne.omorphic tfuwaction on o
in tnis case, we have

«)
6 XL UXe =0
h °x, %,

Theretore i1 we consider a Ptatiian
rorm

W =

‘o)(z d"( - fxt AXy

we nave

dwr = o
>

and
PX X = XX, = o,

Hence @ 1s an exact invariant
Pfafiien {orm, and the theorems
hithertc established are applicable.

In this case P =2 , and the
periods o1 w are

aTC Tt
_f’oxldxl and j sz d4x,

If the Fourier
and pX,

respectively.
expansions ol pX,
are given by

iCmx, +7%)

f)(l :Za,,,,,e

2

i (mx,e

2
we have, by the relation (6),

M Qg + 'hé,,,.,, =0,

m,mn =0, ti tz)-“
Hence
a =
me =9, @on"o)
fw man = k[ ta -
3 ) )

Thereflore

QT
dx
J( le 2
2 Iz:LW
Anyy A (Mx,+nXy)
= 27mQa, *t [ > — -
2 00 nio LM € X =0
= AT Q¢ ,
2w
S £ X, 4%
o x, =27
R [ < [ L(mx+ Vll':.)]
= AmE, Tt mko LM X, =0
=AM, .
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Consequently the periods of @
-2ma,, and 2N 4beo

are
respectively.

For the assumption of the Theo-
rem 1 not to hold, it is necessary
and sulf'icient that

~aw au/ = <
18,

is an irrational number,
singularity oi Ss

Qo

Lo

Non-
means that

X, and pXa. have no common
zero points. DBut, since p is
positive definite on £ , this
implies that x, and X, have

no cormon zeroc points.

Thus, according to our results
hitherto cbtained, every trajectory
o'’ S¢ 1s everywhere dense in
if and only if X, and X have
no common zero points and @ee/ beo
is an irrational number.

(The truth is that this state-
ment can be replaced by a sharper
one:

If %X, , %X, , and f all
have continuous first derivatives,

St 1is ergodic when and only
when X, and X. have no common
zero points and &, /4, 1is an
irrational number.

The proci oi this statement has_,
been given elsewhere by the author.f

EXAMPLE 2. A Separable Hamil-
tonian system near a rormally stable
equilibrium point,

Let us consider a Hamiltinian
system of m degrees of freedom,
4% o 2H
(7) dt 3fi > i=l, o, M,
afi _ _aH
dt az’i )
where H 1s a real-valued function
of %: ’ Fﬁ- 9 ety ‘Zu ) fn

nolomorphic in the neighborhood or
the origin. We suppose that the
system is separable and the origin
is its equilibrium point. Then we
can write

Ho= H, @) v o+ Hay (o, B
H; 9., £

. 2 2 —_
=_2.“_(0;',1‘*'2(1‘1%‘?‘+Q‘3h-)*’H’;
b

1= "

, Ty T,

where H; 's are power series in
% » P:¢ , lacking the terms
of Oth, 1lst, and 2nd degree, ab-
solutely convergent in the neigh-
borhood of' ¢ =p =¢ . The equa-



tions (7 can then be expressed
as

a9, . Bp:
J.:a“$+aqh+?f

dt Fi >
(8,1) —
dH;
L=l --,m
The equilibrium point
t=h= o = gemh=e

is saic to be lormally stavle ir
vne characteristic roots o1 the
matrlx

Az

[o] N
M

A' _ Qia Q;5
. =
=Gy ~Qy

are all purely imaginaryf” In
this case, it is obvious that the
characteristic roots or each A.
are also purely imaginary, Hence
@ =Pk =o0 is a tormally stable
equilibrium point oI the difreren-
tial equations (8,1) 1or each i .

)

(8,1) has a one-valued integral

Hi = const.

holomorphic in the neighborhood of
. =p, =0 - Therefore the m -

dimensional hypersurface T (c,---Cn)

del'ined by

Hyo=¢, Ho=sc ---, Hy= Cn

is an integral surface ol the system
(7). Since the characteristic
roots of each Ai are purely ima-
ginary, the formula
H, = const.

represents a family ctf simple closed
curves on (¢;,P)-plane envelcpping
the origin. Therclore 7T (¢ --- )
is homeomorphic to an m -dimensional
toroid in the neighborhood of the
origin. Hereal'ter we only consider
the flow Sp defined by (7) ¢n a
toroid W (¢ --- ¢) for scme fixed
non-vanisk:ing values of ¢, ,

C“ °

ceoy

£ 2]
New 1t was proved by Uré that

il we put

11°

€=y LH | son g

o= TH s 0,

@i = fﬂn-"f; )
where ¥: 1s un integral of thne
system of diilerential equaticns
dg; M
dt 29, ,
af. 2,
at afe 2

(%, b)Y = (3.,7:) is a one-~to-one
analytic transformation in the
neighborhood ol 9. = f =¢ and the
curve

H, =¢

is transtormed into a civcle

E; =m Si'n 6‘)

7= dch cos 0

So, as a coordinate system on
(¢ --- Cx) , We may use
(e, -, %)trus delined.
Y

In these new variables, S
is def'ined by

Jdo: X
FralE R
(%) ,

= — (3F 3H,

j‘.‘(&) IO%‘(B . ‘2? -
m ﬁt) cre)
N 1(
=1 "

It is also proved in Ura's paper
that £, (¢;) is a holcmorphic
function in the neighbornocd of

9 =P =0 and never becomes
zero except at this point.f'’?
Hence the function

g
J(e (CH)

is also holomorphic on T (¢ - )

lor the non-vunishing values o.
c, So (9, has
n-~j invariant Praffian r'crms

with holcmorphic ccefticients,

s ceey Cn °

de, R
W = —— ——
" f e f.(8) 2
T = q6, d6,

fe)  £(s) °



dOny qd 6x

W, = |~ e
" fn.,(an-/) ](m [on) ’
dE',:: dw, = = dT,., =0,

Thereiore the Theorem 3 is appli-
cable. Since f; 's never take
the value zero on T (¢ -+ tn) |

St is evidently non-singular,
For the one-dimensional homology
base, we may choose

T; T8, = 6= -0 = @,=0

o 6 =98= " =8.79,
o
Y:‘ . 9'= 61= - - eﬂ—l .
If we put
an .
46; a; =i -, N,
}(6) v, Pl
[ D

periods of W, t's are given by the
lfoliowing matrix,

Wy, Wig Tt @iy &, ~4, 9 ¢ o
Wy, Wy, " Wyn _ o a, “94-- 0o o
Wty Wyaryp =" W m ¢ o o --8,7-a,
where
N U |
= 5 T )
Wik = f o

I ?okel, ., N,
Hence for the assumption of the
Theorem 1 not to hold, for any

n—1 real numbers AL, eeey

An.., , 8t least one of the ratios
bestween
May (11'A1)a-x) R

~ An- Bn ’

Amei —Ana) Qn‘ci
must be an irrational number,
Since Ay 's# are not simulta-~

neously zero, and &; 's cannot be
equal to zero because of the lact

[ -
—— own CCI -t c“)
oo %o m ,

we may suppose

A s a, ¥ o,

Then, if these ratios are all
rational,

Aooay A-x a, Aoy = Ame2 @y,
Apy @ny  Agy n y o Ang an

must oe all rational numbers.

This means that there exist mn-2
real numbers x, , ..., ¥, sSuch
that
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= Q.
YI= x‘i‘_ .- - Yn-z"'xn-z n-t
Ay An
Q.
Voo = (1= % = %= o=, ) Je
Gn
are alli rational. Then
Y
Yn_lzg’i—‘(-‘*E'*.”*I:‘;Z)ahja—"-'
Q, a, Qyoz n ,
or,
Jl + Y. + --- 4 Iﬁ: = l
a, q, [- S Ay -

Consequently m integers m,
, not simultaneously

b
ceey My

zero, can be so chosen that

m m
——‘-+ - - +—-’-"“-=0.
a, Ay

Conversely, 1f the above relation
is satisfied for the integers

mi 4, see, My , not simulta-
neously zero, we can ind mn~/

real numbers a, , ...y Ano

such that
TR TR ¥ SR Y- 1Y -
Ape Cn Anat An
Ana —)‘h-l RQyi~i
An~y am

are all rational numbers, and the
assumption of the Theorem 1 is
satlisfied,

Hence, by Theorem 3, every
trajectory of (7) is everywhere

dense 1In 71 C¢, --. ¢y) 1f and only
if
i I S L
a.,,“a) ) @n

are linearly incommensurable for
the integer coefficients.

As f,(8,) never becomes zero
on T ¢c, ---cn) , & hypersurface

6, =o

is a surface of section or St .
Therefore Theorem 4 is alsc appli-
cable, and S, 1is ergodic ir

i

> @n

2

|
Qa, » >

are linearly incormensurable with
respect to integer coeriicients.
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