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l Let Ω be a compact ΎL -
dimensional analytic maniiold
without torsion. We consider a
following system of differential
equations,

7T' = X. <*.,-.*>>•>,

where %
{
 , <>..,

 γ
*. are analytic

local coordinates and X, , • ••,
X

κ
 are one-valued real holomor-

phic functions in Ω, General
solutions of this system can be
written down in the following form,

where

and /
t

 f
fl are analytic functions

with respect to their arguments*

If we define a transformation

St by

P - *
t
 P. ,

p = e*. - * o ?
0
 = (χ,

t
 .-

#
 *„.)

are exact, i
o
e

o

or, in other words,

i ~ l -, n - /
;
 j l< = l

y
 • •

 J
 rv

Under these assumptions, we
want to study the behavior of the
trajectories of (1) Our main
result is the Theorem 3 of § 5
which states the necessary and
sufficient condition for every
trajectory of (1) to be everywhere
dense in β * Then we apply this
result to the flow in n -dimen-
sional toroid and establish a
sufficient condition for trie ergo-
dicity of .S

t

2, Let f> be a one-dlinensional
Betti number of £2 , and f~l , Γ

z y

.. , Γp be its independent
cycleso We put

Since Όr
χ

 f
s are exact, we can

find n-/ holomorphic functions
w, , ..., u

n w
 such that

the totality of such transforma-
tions forms a one-parameter group.
Hence differential equations (1)
can be regarded as defining a
one-parameter stationary flow -S"t
in ςi

We suppose that (1) admits n-ί
linearly independent (with respect
to numerical coefficients) inva-
riant Pfaffian forms (in the sense
or F«Cartan)

c
;

?

According to the relation (3),

Hence u
ι
 fa are integrals of (1)

and the trajectory of fl) is gene-
rally given as an intersection of
ΎI-\ hypersurfaces

v= I, -, n-i
 }

where Aik
 f

s are one-valued real
holomorphic functions in £2 ,
Then we have

(3)

Moreover we assume that '
ar
,
 !
s

w
ι
 τ

s are, in general, not one-
valued since they are additive
functions with <^>

lf
 , ,

a o >
 cυ^

as fundamental periods*

We first prove the following

THEOREM 1. If there exist n-- (
real numbers λ, , ...,

 λ
n-

(
 .

not simultaneously zero, such



that the ratios between

Σ λ t ω t , ( - - , Σ, λ . eo t j ,

are all rational numbers (the
c a s e ^ λ ^ w

c ί
 = ---- - J Σ l λ . w y ^ o

is included), S± has an inva-
riant closed analytic submanifold
whose dimension is not greater
than Ti-i o

Proof. If λ, , . <>,, λ,,,,

can be so chosen that

the function Σ
 λ
 ι

 u
ι is evi-

dently one-valued since its fun-
damental periods

all vanish. As "
 !
s are integrals

of fl), so is r λ
t
 u

{ #
 Hence

the hypersuriace defined by

is a closed analytic invariant
suDiaanifold whose dimension is
not greater than -n-t .

Except this case, we may suppose,
without loss of generality, that

defines a closed analytic invariant
submanifold of S± whose dimension
is not greater than -n-/

If f $ >*-( , it is evident
that the assumption of the Theorem
is always satisfied. So we have

COROLLARYo I f f> ί »-< , 5
t

has an invariant closed analytic
submaniίold whose dimension is
not greater than M-(

 O

0 4 THEOREM 2 If. there exist
n-r real numbers λ,

 f
 ...,

A
n
-

( $
 not simultaneously zero,

such that the set

is not empty, St leaves invari-
ant a closed analytic submanifold
whose dimension is not greater
than vι-t

Proof
β
 If the assumption of

the Theorem is satisfied, ic*.,---
", λ

H
.,̂  is a non-empty closed analytic

submanifσld whose dimension is
not greater than- "*-* ΛQ will
show that la',;..,-; λ

M
.

r
) is an

invariant manifold o% S
t
 For

that purpose, it suffices to prove
that *

s
 "̂

 v
-

As

- -
 f
 p

are all rational, we can find f>
integers m, ,•*<>, ^ such
that

Then the function

yγι,

is an additive function with fun-

damental periods

being integers,

a function

is one-valued on 2-
 β

 Since
u is an integral of (1), so is
e*fOiriu) o Hence the hypersurface

then, by the formula (4) of § 1,

The second term of the above for-

mula evidently vanishes on

I λ̂ι •••
 λ
v. ,) * because we have

j* J

on Γ^^ •• , λv,.,)
 β
 The first term

also vanishes according, to (3) of

% l Therefore

I cκ
t
 •-• ,>
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4. To simplify the statement,
WQ say that -S

t
 is non-singular

if the assumption of the Theorem
2 is not satisfied* Otherwise it
is said to be singular©

I£ S
t
 is non-singular, for

any point P of £2 , there
exists a uniquely determined
hypersurface containing p on
which

dli =. O

is satisfied. We denote by T=
t
tPJ

the connected component or this
surface determined by P In
the same way, we can also uniquely
define

as a connected component of
F.CP3

Λ
 F J L P J Λ - ΛFXCPJ determined by

P

Obviously, Fi LPJ
j ,

 i j F l

*. , are all invariant sets of
S

t
 o Especially, C "F

1Λ
 F

x
 r\ -•-

~
Λ
R,_,)CP1 is a trajectory passing

through P

For the non-singular flow S
t f

we now prove the following,n- i
Lemmas.

LEMMA l: Let F, 0. be any
two points of Ω which can be
joined by an arc C of finite
length such that

Then we can
an arc f
homologous

join
lying
to C

P
on

and ί3L by
and

LEMMA 1*Ό Let F be an arbi
trary point of Ω. and α be a
point on F, ΓPJ If P and

Q can be joined by an arc C
of finite length lying on p

t
 CpJ

such that

then F ̂ and *•*• can be joined by
an arc c lying on (F, ̂
and homologous to £

LEMMA 1 o Let P be an
a r b i t r a r y po int of £2 and & be
a po in t on CF1Λ F ι Λ ---Λ Fn_aUPJ

If P and Q. can be joined by
an arc £ of finite length lying
o n
 ( F i Λ F

x Λ
-

 Λ
F

W
-

4
)LP3

 3 u c h t h a t

then P and Gί be joined by an
arc c^ C (F,Λ FIΛ --Λ F

n
,,) CP3 homo-

logous to c In other words,
the trajectory passing through p
contains Q,

 β

Proof of the LEMMA I
1
. As we

consider only the arc of finite
length, we omit the tfords "of fi-
nite length

11
 for simplicity's sake.

So, hereafter, the word "arc
w

always means
 w
arc of finite length"„

Since ύό is a compact analytic
manifold, we can introduce in Ω
a metric d (p,&) >o, V, CL € Q , in
such a way that the topology de-
termined by this metric is equiva-
lent to the original one

β
 We first

notice that for any ? we can
find a positive number ε

α
ίP) such

that our Lemma is valid in a sphere

Strictly speaking, if A, B e
K CP; e,(P)J can be connected by an
arc t

 s
 AB contained in

k CP; ε,<T>;j
 i n

 such a way that

TXT,

then A ^
a n < i

 ^ can be joined by
an arc 7 entirely contained in
F,tM* KCF; e,cp>:J and homo-

logous to y o

In fact, tf tniβ is not the
case, the derivative of **-i in
any direction must be zero at P
Eut this contradicts with our
assumption of the non-slngularlty

Ω being compact,

Therefore our Lemma is valid in
any sphere of radius £,

Now let A
point on C
function

be an arbitrary
and we consider a

f</υ - f

where £(MN) i s an arc of ^
between two points M , H on

C . Evidently

- o
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Suppose that the Lemma nas been
proved for the case when f CA)
increases Γrom P to M , re-
mains constant from M to N ,
and then decreases Γrom >l to GL
where M and N are two (not ne-
cessarily different; points on C
Then we can prove the Lemma for
the case when

fCA) > fίp)

for every A between B and Q
In fact, in this case }(A) has a
finite number or maxima and minima
on C * Let

be these extremal values. The set

= [A,
is maσe up of a finite number of

arcs, ίc/ί./l,) , CCAj4θ , ...,

C ί A A~} > A» # « > At<

arcs f("Λ> possesses the pro-
perty stated above. So we can
connect f\± and rt

z
 , A3 and

A* , . o, AK., and Ax by
the curves C\ , 0 . 0 , C&
each contained in F, cA.l

 β
 F. tA

2
:i ,

F.CΛ33 * P, π/Ui , .»., P, CAκ-,1
- F CAκ3 °

 I f w e r β
P

l a c θ
 ^CΛ.Aa),

..0, CC/W-. AK) by C
4
* , ...,

Cλ respectively, we obtain a
new arc c' joining ? and a
for which we have

joined Dy an arc Z contained in
F* CPJ As is eviαent from
the procedure we have adopted,

cf is homologous to £

In the same way wo can easily
show that our Lemma holes when

f CA)

for every Λ between P and

Q, o Combining these results

we can prove the Lemma for general

cases. So we have only to show

that our Lemma is true when f(A")

increases rrom P to M , re-

mains constant from M to IV
 ;

and decreases fron r< to Q

In this case,

for any arc t on dfMN) , Hence

C ( M N ) is itself contained in

F, CMJ - τ=. t
 N
^

Aι,
 ;
 . , Λ|yv have no

common zero points because of the
non-singularity of £* , So the
function u, never takes an ex-
tremal valueo Hence, for any
point P in Q , a positive
number &1<P) can be so determined
that for any real number °i ,
M < ^CP), there always exists a
point Q, contained in Ic C P 5/1
for which

 J f

•ur

If we consider on t' a func-
tion

extremal values of ί'<A) are

Then we consider the set

I'- [ A 5 ί'<A>>>*
3
]

where the integration is carried
out along the arc contained in
kLP, t./z j

 β
 Since Q is

compact,

i
±
 (P) * S, > 0

We can divide the arcs C
CCw Q ) by a finite-number of'

points

M .?., P
4
, •-- , V Fκ

+
, =P.

and repeat the same procedure
β

Repeating such a process v-i
times, we finally arrive at the
curve £ <

v
~'> on which a func-

tion

possesses the property stated
above. Hence P and Gl can be

in such a way that

H Pj ) - ί CQj )

- 136 -



Next we divide the arc C ( M M )

by the points

and consider the spheres

Sj k [ κ
3
 j £• ], j.

Then from what we have stated
above, wo can Γind in each -Sj... a
point βj and an arc V; join-
ing κ and 8: in sucn
that

 3

d an arc V; j i n
8: in sucn a way

discussion replacing C(MN) by
cr

0
 f 07 • ... 4- <3r

v
 , and connect "p̂

and Q
λ
 by an arc contained in

F, ί-P
x
] , Proceeding in

this way, we can finally join P
and 0. by an arc 'c contained in
jΓ ̂ pj and homologous to C

Proof of the LEMMA 1 » Since
S* is non-singular, F, ipi and
F
2
 CPD are never tangent to

each other ior any point P of
Q . Therefore the derivative

of v*
x
 at P in the direction

tangential to R £P3 and normal
to C

 F
»* ήi^CPT is different from

zero for any point P . So we
can find a positive number £

x
(p')

such that if for an arc

A8 C

we have

In particular, we may suppose
that

P..

l
 = c

Since the radius of S- is *>/
z

and

we can construct a sphere ~Vj whose
radius is ε, and containing 6; ,

arc
f
, in i t s interior. Then the

i
/I and B can be joined by an

arc contained in (
Since Ω is compact,

>

Once such a number S* can be
found^ tne remaining part of the
proof is quite similar to that of
the LEMMA I

1
* So we do not repeat

the rather lengthy proof here*

Proceeding in this way, we can

successively prove the Lemmas I
3
,

1 , o , 1

connects 8j
and

and

j Έ, + J m( + j t t r |

in V-

<rcκ
5
κ

i t / )

Therefore, from the fact stated
at the beginning oi this proof, we
can join Bj and 63,1 by an
arc (T- contained in p

(
 CB ]

Λ

Tj . Since
 ;

we can join T± and Q t by an
arc

which is contained in F, ZP,1 and
obviously homologous to C CP,Q.,)
Since the length of this arc is
finite, we can repeat the same

As is evident from the proof
above, our Lemmas are also valid
if P = 0. . So we have

Corollary of the LEMMA I* * If

C is a simple closed curve on

(F
|A
 F

tΛ
 ^F

k
.,)CPJ

 s u c h t h a t

where ? is a point on <L , then
wθ^can find a simple closed curve

C lying on ( F, Λ F
a Λ
 -•-

 Λ
 F

κ
) EP3

and homologous to c *

5 THEOREM 3. For every tra-
jectory oi (1) to be everywhere
αense in Q , it is necessary
and sufficient that ^t is non-
singular and the assumption oi the
Theorem 1 does not hold

Proof o By Theorems 1" and 2,
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the necessity oΓ the condition is

obviouso So we have only to prove

the suί'ficiencyo

Let P and 0. be two arbi-
trary points in Q and V be an
arbitrary neighborhood oί O-

 e
 vVe

connect P and Q, by an arbitrary
arc C, and put

Since F, Cα']

are not tangent to each other at

Q' because of the non-singularity
of Sf , we can find a positive
number ζ

2
 such that lor any

i , \ti
m
< ̂ 2 there exists

an arc α'Q
/y
 contained in W *

f
{
 CQ.'3 £or which

As 5
t
 is non-singular, An ,

.. ., Airt can never be simul-
taneously zero 3o u, never
takes an extremal value. Therefore
there exists a positive number Ŝ
such that for any number ε ,
(£|< SΓ, , we can find an arc

<sΓo/ , contained in V for
which

ί
αδ'

= ε.

Since the assumption of the
Theorem 1 does not hold, at least
one oi* the ratios between <*>tt ,
«.., cθ/̂  must be irrational.
So we can find \> integers w., ,
..., yn. such thatn.

Ui

Thus for an arc d <^> (?, +• £ >«iΓ
v

( /I ~> β means A is homologous
to & ) joining p and Q, , we
have

α'α"

If we replace C* by an arc

C'
χ
 lying on F, I?}

where are inte-
gers satisfying a relation

Conversely, for any /̂  integers
**., , •.. m^ satisfying (5),

we can fin-, an arc C
λ
' lying on

F, CPJ and

In fact, let us first construct a
closed curve C (not necessarily
on Fitpi ) containing p and
homologous to j.

 W i
Γ { Then,

we have

Then from the fact just proved
above, we can find an arc Q Q '
in V" such that

So, by the corollary of the Lemma I
1
,

we can find a closed curve J ly-
ing on R CP] and homologous to
C • So, if we put

cσ, -

/ r Q Q' r C,"

If we put

we have

^ S
t
 being non-singular, Lemma

1 is valid. So Q' is contained
in F, cpj

We then join ? and θ/ by

an arbitrary arc C
4
 lying on

f CP3 *
 a n d

 P
u t

we have

q' ̂  c • c
x

Let >»α, , •••, >«f be the inte-
gers satisfying (5) Without loss
of generality, we may suppose that

So, we have

37, &*••""

and
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Since the assumption of the
Theorem 1 does not hold, at least
one of the ratios between

must be an irrational number
β

However
>
 as

at least one of the ratios between

must be an irrational number* So

we can choose f integers -m, ,

.. ., yrif in such a way that

t P

- ε J Ul <SZ,

S O.

Therefore there exists an arc C
x

<** C
x
 + L >«i Π joining P and

Q' on F, CPJ for which

Then from what we have^shown above,
we can find an arc Q' Q " con-
tained in p, CQ'J

 Λ
 y for which

If we put

< - < • α'α',

C
2
 is contained in F, CN - F, Cα'j ,

and

2.
Thus, a c c o r d i n g t o the Lemma 1 ,

P and Q" can be jo ined by an
a r c c o n t a i n e d i n (F, Λ i \ ) t p J

Repeating such a process τι-t
times, we can finally show that
there exists a point Q

CΛ
""

f)
 in

Ύ which can be joined with~P
by tne curve (F.ΛTΪIΛ --- r\ F̂ -,)tPJ .
This means that the trajectory
passing through p interesects
with V" . Since V , Q. , and
V have been chosen arbitrarily,

every trajectory of (1) must be
everywhere dense in Q , and the
proof of the Theorem 3 is complete.

If it is known that St has no
invariant closed analytic sub-
man ii old whose dimension is not

greater than -n-l , .St must
be non-singular and the assumption
of the Theorem 1 must not hold as
a consequence or Theorem 1 and
Theorem 2* So the Theorem 3 can
also be stated in the following
i'orrru

THEOREM 3*. For every trajec-
tory of (1) to be everywhere dense
in Ω , it is necessary and suf-
ficient that S

t
 has no invariant

closed analytic submanifcld whose
dimension is not greater than
yι - ί m

6 we have thus established the
criterion for every trajectory to
be everywhere dense under the as-
sumption that (1) has n-i inva-
riant exact pfaffian forms» For
such a flow, it is very desirable
to establish the ergodicity Un-
fortunately we could not solve
this problem in general cases

0

However, if the manifold in question
is of a comparatively simple topo-
logical character, we can expect to
go a little further in this direc-
tion,,

As a simplest example, we will
treat the flow of the above stated
type in n -dimensional toroid*
In the following sections, we will
show that we can establish the
ergodicity of the flow if it admits
an analytic surface of section*

Hereafter Ω is supposed to be
an n. -dimensional toroid There-
fore, its one-dimensional Betti
number f must be equal to ΎI «

7. An analytic (n-j) -
dimensional closed submanifold 3
is said to be a surface of section
of ^ if following conditions
are satisfied,

{It no trajectory of 3-t is

tangent to 5 ,

(2) for any point P of Q ,
the trajectory starting from P
cuts 5 after a finite X ~
intervalo

LEIvikA 2. If St &
a s
 a surface

of section, we can construct in
Q a X'amily of surfaces oί sec-
tion

with following properties,

(1> 3 («) and 3 <"p; have no

points in common if * * p ,

(2) ior any point. P in Ω



can i'ind .S («)
which contains

01' this family

Proof. By assumption S* has
a suriace of section. Let tnis
be called S<*> . Consider the
trajectory starting from an arbi-
trary point p on $<©) . Prom
the condition (2) of the surface
of section, this trajectory returns
to S («) after the finite t -
interval T<P) , Let $<<*) be an
analytic hypersurface defined by

P< S fθ,

p

We can easily show that S<°<) is
a surface of section. Varying <*
from o to 1 , we obtain a
family of surfaces of section with
desired properties*

In what follows, we restrict
our attention to the flow with a
surface of section, and for the
flow of this type we prove the fol-
lowing,

THEOREM 4 If Sf ia non-
singular and the assumption of the
Theorem 1 does not hold, -$t

 i a

θΓgodic

8o For the proof at the Theorem,
we first prove

LEMMA δ. Let TT be an T
dimensional torυid whose points
can be represented by the coordi
nates

ana invariant under 3? except
the set of measure zero, the cha-
racteristic function of A must
be equal to 1 almost everywhere

β

Proof. Let £ be the totality
of complex-valued functions Lebes-
gue measurable and square summable
on TT £ is evidently a
Hubert space with the inner product

We define in £
formation U by

1 7 / Cwfj •••,

a linear trans-

1/ is evidently a unitary trans-
formation, and the function

is an eigenfunction of U" corre-
sponding to an eigenvalue

Since the totality of eχf>{ xπ» (n>,̂
* ... +w

r
v

r
 j} forms a complete ortho-

normal system in £ , there can
be no other eigenfunctions

c

Let \
A

function of
be a characteristic
A , i

o
e»

o £

We consider in TΓ a mapping

where the notation C*3 means
a value of * reduced modulo 1

 }

and Y
v

 !
s are real constants

such that the relation

implies

;
 o.

Then \ £ belongs to *y and we
have

(where the equality sign must be
interpreted in the sense of the
strong topology in J. ), which
shows that K,A is an eigenf unc-
tion of U belonging to the
eigenvalue 1

#
 Hence

If A is a measurable subset
of ΓT with positive Lebesgue
measure

where
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But iron the assumption of the

Lemma, the latter relation

implies

~m
t
 - .. - o.

Therefore

in the sense oΓ the strong topo-
logy in §. . Consequently X A
must be equal to 1 almost every-
where on TΓ «

9. Proof or the THEOREM 4. As
St is supposed to have a sur-

face of section, we can construct
a family of surfaces of section
{ S<«)

 ;
 o £ <x < i } with the pro-

perties (1) and (2) stated in the
Lemma 2

O
 As is evident from the

method of construction of this
family stated in the proof or the
Lemma 2, every SC*) is homeo-

norphic to Sfo) , and Ω

Ls homeomorphic to the topological
product of S Coy and the circle
o s « < i

 o
 Since Q is an n, -

dimensional toroid, every S (o<;
must be homeomorphic to an (n- /> -
dimensional toroid. Therefore we
may suppose, without loss of gene-
rality, Γr , •••, IV, form
the one-dimensional homology base
of See-)

 o
 Then, if we regard

ΌT, , •.*, τδ-7,-, as Pfaffian
forms on SCo) , their periods on

are

If we put

we have

if i * < ,

V - '•
Let Kj B be two points on SCβ)

and C be any arc joining A
and B . Then

where m^ is an integer and
o .< w

{
 < l * Obviously VJ^ is

uniquely determined by A and
& , and independent of C

So let us write

Let U3 correspond to every
point V on S Co") an ordered
set of n-l real numbers

By assumption or the Theorem,
S

t
 does not satisfy the assump-

tion oϊ the Theorem 1. Hence

where P» is an arbitrarily cnosen
fixed point on JS(o) . This is
a blcontinuous mapping of _S(<>)
onto the subset of an C w-o -
dimensional toroid TT

In fact, if this is not the case,
we can find -n- 1 real numbers

λ
i , o.«, λ>,-, not simul-

taneously zero such that

contrary to our assumption*

Consequently we can find C n-O*
real numbers λ

 κK
 , i, k »^-,>i-l

such that

, --
;
 π-( J

Moreover this correspondence is
one-to-one. To show this, it is
suificient to prove that iί'P*P

β

can never be simultaneously zero.

Suppose that
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for some P * P<> . Then if we
connect P* and P by an arbi-
trary curve C of finite length
lying on S(°) ,

where
 y n

ι
 f
s are all integers,

we replace C by a curve
IΓ

C- S c < 0

we have

As St is assumed to be non-singu-
lar, Lemmas I

4
, . . , I"

11
"*

1
 are all

valid* Therefore P
β
 and P can

be joined by an arc of trajectory
'C which is homologous to c'

Let us then consider the function
<*CP) defined as follows,

<< is not a holomorphic function
because of its discontinuity at

S <o) . To avoid this, we have
only to put

Thus we have arrivec at tne con-
tradiction*

Consequently the correspondence

P -> (vtr
Λ
 •-• j '"A,-.)

is a homeomorphisπ of -Sc<>) oixtc
a subset of the (*»-') -dimensional
toroid TT • However, since 5Ce)
itseli is en C'n-O -dimensional
toroid, this correspondence must
be a homeomorphisrn of S

ί β
* onto

whole TT Thus, in place of
(x, -•• x n) , we can choose
(βt'vr, /.., uΓ,,.,)

 a
^ ^ coordinate

system in ci by putting

where T^R) is a function which
we have used in the proof of the
Lemma 2

β

Let P («, -"«,-•• J *"•*,-,)
be an arbitrary point on 5C <>
The trajectory starting from P
returns to S<rf + O = S(«) at
some other point P'

as a many-and regard <(P)

valued function

Evidently the differential <̂<*
is one-valued in spite of the
many-valuedness of <tf

 #
 Since

* increases when p moves
along the trajectory in the increa-
sing sense of t ,

{

Also, C being contained in 5(o)
we have

C
Hence

-'/«/ T'

On tne other hand, as C
homologous to 2*

is

We define an automorphism "^ of
S <«) by

and put

As TĈ
 !
s are invβriant forms,

T{\.
 τ
 s are constants independent

of P o In fact, let p and Q
be two different points on S(°O ,
and

P'

Let (!,
arcs on 3

 ,

joining
S(*)

αfl , Qp
vely. Then c = C, * c

2

closed curve on S<*)

^^ be the
pp j , p'α',
respecti-

c3 + cΨ is a
Therefore

So we must have
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As *TΓi
 !
s are invariant Pfaifian

forms,

] P
y



implies

Consequently

151,

Hence *{,
 f
s are constants inde-

pendent oΓ p «

Thus
ping <£

induces on Tί a map-

Prom these facts, we can see
that

is invariant by the transformation
St . The function TCpJ) can

be considered as a positive definite
holomorphic function of w

t f
 ...,

u^.
f
 , and we have

dt = T(w< ... vr^)c| ί + « I ~j- ««/-
 #

So, Sf has an invariant measure

As was shown by J, von Neumann
and G D SirkhoiT, the ergodicity
is equivalent to the metrical
transitivity for the flow with an
invariant measure

 c
^ So, for

the proof of our Theorem, we have
only to show that every Ή, -measur-
able set of positive m* -measure
invariant by St must be equal to
Ω itselr except the set of mea-

sure zero.

By Theorem 3, every trajectory

of (1) must be everywhere dense in

Ω Hence the set

must be everywhere dense on -S (°O
Therefore the set

,, , ^

K so, tl , ±1, --- }

must be everywhere dense on TT
whence wo can conclude that the
relation

Then, by the Lemma 3, if M is a
ϊ -invariant subset of TT with
positive Lebesgue measure, the
characteristic function of PΊ must
be almost everywhere equal to 1
on TT

Let A be an St -invariant
vn, -measurable subset of Ω with
positive n -measure . Then AΛS<°<)
is a ^ -invariant subset of S c«o
with positive SA + S(«)

 <uΓι
 '"

 4ur
^-i

for aimost all « , which covre-
sponαs on TT to a $ -invariant
set rtith positive Lebesgue measure<,
So, from what we nave snown above,
the characteristic iunction ox

A ̂  $<<*') must be almost everywhere
equal to 1 on $<«> with respect
to the measure dw, ----- βtw*.,
for almost all <*

 #
 Hence the

characteristic function of A must
be equal to 1 almost everywhere en
Ω with respect to >n. -measure*

This shows that A is equal to Ω
except the set of ̂ -measure zero

o

Thus ΛΘ have completed the proofo

Corresponding to Theorem 3',
Theorem 4 can also be stated in
the following Γorrn

0

THEOREM 4*. If St leaves in-
variant no closed analytic SUD-
manifold whose dimension is not
greater than n. - l , S± *

LS

ergodic*

Also, if we use the Theorem 3,
we have

THEOREM 4"o If every trajectory

of 3t -̂
s
 everywhere cense in

ζl , Sx, ί
 3
 ergodic

0

lO In tnis section we will
give several examples oΓ the system
of differential equations to which
our result is applicable*

EXAMPLE lo A measure-preserving
flow on the torus

0

Let o<? be a torus whose points
can be represented by two angular
coordinates o ̂  * < , *-* < xπ.

 }
 and

we consider an analytic llow _St
defineα by

( o(x,

We suppose that St
integral invariant

admits an
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if \
}
x

x
) dx

(
 .

where P is a positive deiinite
h^-^ΐporphic function on £2
in tni s case, we have

Consequently the periods of *** are

- 2π Λ
ίO
 and 27L-4o

β
 respectively.

For the assumption of the Theo-
rem 1 not to hold, it is necessary
and sufficient that

Therefore ii we consider a Pfaffian

form

we nave

ai ΌT = o

and

is an irrational number. Non-
singularity of S-k means that

f X, and f Xx have no common
zero points But, since f is
positive definite on Q , this
implies that "X", and X

a
 have

no coπmon zero points *

Thus, according to our results
hitherto obtained, every trajectory
of St is everywhere dense in Q
if and only if XT, and v

z
 have

no common zero points and «
 ίβ
/b»o

is an irrational number,

Hence Or is an exact invariant
Pfaffian form, and the theorems
hitherto established are applicable*

In this case f> = Z. , and the
periods 01 -ay are

-fix,*** J P
respectively If the Fourier
expansions of fX'

i
 and pXj.

are given by

we have, by the relation (6),

(The truth is that this state-
ment can be replaced by a sharper
one:

If X, , V
2
 , and f all

have continuous first derivatives,

St is ergodic when and only
when x^ and X* have no common
zero points and Λ

ftβ
 /4-

0 O
 is an

irrational number*

The proof 01 this statement has
c

been gisen elsewhere by the author*/

EXAMPLE 2. A separable Hamil-
tonian system near a formally stable
equilibrium point,,

Let us consider a Hamiltinian
system of ΎL degrees of freedom,

i Us - ΊάL

* Z

Hence

mo ~ O

fay V>

Therefore

' on ~
 v
 ^

where H is a real-valued function
of $>. , Ps. , .,., %» , /n
nolomorphie in the neighborhood of
the origin

β
 We suppose that the

system is separable and the origin
is its equilibrium point

β
 Then we

can write

where Hi
 !

s are power series in

lί , fi , lacking the terms
of Oth, 1st, and 2nd degree, ab-
solutely convergent in the neigh-
borhood of %

κ
 = f

t
 =• c , The equa-
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tions (7) can then be expressed

as

(It)

wίiere ft is an integral of tne
system of differential equations

The equilibrium point

is saiα to be Γormally staule iΓ
tne characteristic roots 01 the
matrix

dt

at

2

n, >

ίtί, K) -> f *
k
, •?£ ) ia a one-to-one

analytic transformation in the

neighborhood of ^
L
 = f. -a and the

= <\

is transiormϋd into a circle

•(.: -α
iX

(
*are all purely imaginary

β

(
* In

this case, it is obvious that the
characteristic roots of each /W
are also purely imaginary. Hence
*U - fc - o is a Γormally stable

equilibrium point of the difl'eren-
tial equations (θ,i) lor each i

(8,i) has a one-valued integral

H
t

const.

holomorphic in the neighborhood of
^ s f»

c
 * o > Therefore the *L -

dimensional hypersurface TT^ - O
defined by

is an integral surface or the system
(7), Since the characteristic
roots of each (\ι are purely ima-
ginary, the formula

H
;
 =r const*

represents a family of simple closed
curves on ft;, ft)-plane envelopping
the origino Therefore TΓ Cc, --- < Ό
is homeomorphic to an n -dimensional
toroid in the neighborhood of the
origino Hereafter we only consider
the flow 3

t
 defined by (7) on a

toroid TΓ Cc, •-- c
w
 ) for some fixed

non-vanishing values of c, , ..<>,

So, as a coordinate system on

J[ ( c> ••• c>t ) > w e m a y u s e
Cβ, ••• $,)tjtϊus d e i i n e d .

In these new variables, -Ŝ.
is defined by

Ms

ϊί lίί*

ί r /

It is also proved in U r a ^ paper
that /, cβ

t
 ) is a holomorphic

function in the noighbornood of

?; =• p
;
 s= o and never becomes

zero except at this point
β

c//:>

Hence the function

i

is also holomorphic on TTί^ - c«
for the non-vanishing values ox

C; , o . . , c
n β

 so (9; has
Ή - / invariant Pfaffian forms

with holooorphic coefficients,

1
 ice,)

4e
L

ίίi

C

New it was proved by Ura

if we put

that
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Therefore the Theorem 3 is appli-
cable. Since f

i

 f
s never take

the value zero on If (
c
< * ••

 c
») ,

•St is evidently non-singular
For the one-dimensional homology
base, we may choose

are all rational. Then

r;

If we put

Consequently τι integers *«, ,

• ••, m
n
 , not simultaneously

zero, can be so chosen that

periods oΓ "Oΰ-^ t s are given by the

following matrix,

where

- LTCΓ-
^ ... , u.

Hence for the assumption of the
Theorem 1 not to hold, for any
7v -1 real numbers λ, , •••,

λ,,., , at least one of the ratios
between

Conversely, if the above relation
is satisfied for the integers
w, , o <> , Wn t not simulta-

neously zero, we can find tι-(
real numbers Λ

/
 , ..., λ

M
_,

such that

γι
"' "" W-J

are all rational numbers, and the
assumption of the Theorem 1 is
satisfied

Hence, by Theorem 3, every
trajectory of (7) is everywhere
dense in ]j Cc

t
 -.. c

M
) if and only

if

must be an irrational number.

Since *•{,
 f
& are not simulta-

neously zero, and <*v, 's cannot be
equal to zero because of the fact

are linearly incommensurable for
the integer coefficients*

As f(Cβ,) never becomes zero
on 7T<c, ---cw) , a hypersurface

wa may suppose is a surface of section of St
Therefore Theorem 4 is also appli
cable, and St

 i s
 ergodic if

Then, if these ratios are all
rational,

λ
M-l
 a«

 ;
 λ

n
_, a

n
 >

mast oe all rational numbers.
This means that there exist n-i
real numbers χ, , ..

β
, τ^_

λ
 such

that

are linearly incommensurable with
respect to integer coeΓiicients*
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(*) Received September 27, 1951.
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