1. Let Ω be a compact n dimensional analytic manilold without torsion. We consider a following system of differential equations,

$$
\text { (1) }\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=X_{1}\left(x_{1}, \cdots, x_{n}\right) \\
\cdots \cdots \\
\frac{d x_{n}}{d t}=X_{n}\left(x_{1}, \cdots, x_{n}\right)
\end{array}\right.
$$

where $x_{1}, \ldots . x_{n}$ are analytic
local coordinates and x, ,...,
x_{n} are one-valued real holomorphic functions in Ω. General solutions of this system can be written down in the following form,

$$
x_{1}=f_{1}\left(x_{10}, \cdots, x_{n 0}, t\right), \quad \imath=1, \cdots, n,
$$

where

$$
x_{i 0}=f_{2}\left(x_{10}, \cdots, x_{n 0}, 0\right), i=1, \cdots, n,
$$

and f_{2} 's are analytic functions with respect to their arguments.

If we define a transtormation S_{t} by

$$
\begin{aligned}
& P=S_{t} P_{0}, \\
& P=\left(x_{1}, \cdots, x_{n}\right), \quad P_{0}=\left(x_{11}, \cdots, x_{n 0}\right), \\
& x_{i}=f_{i}\left(x_{10}, \cdots, x_{n 0}, t\right), \quad i=1, \cdots, n,
\end{aligned}
$$

the totality of such transformations forms a one-parameter group. Hence cifierential equations (l) can be regarded as detining a one-parameter stationary ilow S_{t} in Ω 。

We suppose that (1) admits $n-1$ linearly independent (with respect to numerical coefficients) invariant Pfaffian forms (in the sense of E.Cartan) ${ }^{(1)}$
(2) $\omega_{2}=\sum_{k=1}^{n} A_{i k}\left(x_{1}, \cdots, x_{n}\right) d x_{k}$,

$$
i=1, \cdots, n-1 \text {, }
$$

where $A_{i k}$'s are one-valued real holomorphic functions in Ω Then we have
(3) $\sum_{k=1}^{n} A_{1 k} X_{k} \equiv 0, \quad l=1, \cdots, n-1^{(2)}$

Moreover we assume that W_{2} 's
are exact, $1 . e$.

$$
d w_{i}=0, \quad i=1, \cdots, n-1,
$$

or, in other words,

$$
\begin{aligned}
& \text { (4) } \quad \frac{\partial A_{i k}}{\partial x_{j}}=\frac{\partial A_{i j}}{\partial x_{k}}, \\
& i=1, \cdots, n-1, \quad, k=1, \cdots, n
\end{aligned}
$$

Under these assumptions, we want to study the behavior O1 the trajectories of (1). Our main result is the Theorem 3 of § 5 which states the necessary and sufficient condition for every trajectory of (l) to be everywhere dense in Ω. Then we apply this result to the flow in n-dimensional toroid and establish a sufficient condition for the ergodicity of S_{t} 。
2. Let p be a one-dimensional Betti number of Ω, and Γ_{1}, Γ_{2}, \ldots, Γ_{p} be its independent cycles. We put

$$
\begin{aligned}
& \int_{\Gamma_{k}} \pi_{i}=\omega_{i k}, \\
& i=1, \cdots, n-1, \quad k=1, \cdots, p
\end{aligned}
$$

Since ω_{2} 's are exact, we can find $n-1$ holomorphic functions
u_{1}, \ldots, u_{n-1} such that

$$
d u_{i}=w_{i}, \quad i=1, \cdots, n-1
$$

According to the relation (3),

$$
\frac{d u_{2}}{d t}=0, \quad 2=1, \cdots, n-1
$$

Hence u_{2} 's are integrals of (1) and the trajectory of (1) is generally given as an intersection of
$n-1$ hypersurfaces

$$
d u_{1}=0, \quad \cdots, \quad d u_{n_{-1}}=0
$$

u_{2} 's are, in generai, not onevalued since they are additive functions with $\omega_{21}, \ldots, \omega_{i p}$ as fundamental periods.

We first prove the following
1HEOREM 1. If there exist $n-1$ real numbers $\lambda_{1}, \ldots, \lambda_{n-1}$, not simultaneously zero, such
that the ratios between

$$
\sum_{i=1}^{n-1} \lambda_{i} \omega_{i}, \quad \cdots, \sum_{i=1}^{n-1} \lambda_{i} \omega_{i p}
$$

are all rational numbers (the case $\sum \lambda_{0} \omega_{n}=\cdots=\sum \lambda_{1} \omega_{i p}=0$ is included), S_{t} has on invariant closed analytic submanifold whose dimension is not greater than $n-1$.

Procif. If $\lambda, \quad, \ldots, \lambda_{n-1}$ can be so chosen that

$$
\sum \lambda_{1} \omega_{i 1}=\cdots=\sum \lambda_{l} \omega_{i p}=0
$$

the iunction $\sum_{i=1}^{n-1} \lambda_{2} u_{1}$ is evidently one-valued since its fundamental periods

$$
\int_{\Gamma_{k}} \sum_{i=1}^{n-1} \lambda_{i} w_{i}, \quad k=1, \cdots, p
$$

all vanish. As u_{i} 's are integrals of (l), sc is $\Sigma \lambda_{2} u_{i}$. Hence the hypersuriace defined by

$$
\sum \lambda_{2} u_{2}=\text { const. }
$$

is a closed analytic invariant submanifold whose dimension is not greater than $n-1$.

Except this case, we may suppose, without loss of generality, that

$$
\sum \lambda_{2} \omega_{i 1} \neq 0
$$

As

$$
\frac{\sum \lambda_{1} \omega_{1} k}{\sum \lambda_{1} \omega_{i} 1}, \quad k=1, \cdots, p
$$

are ajl rational, we can iind p integers m, \quad, \ldots, m_{p} such that

$$
\frac{\sum \lambda_{1} \omega_{i k}}{\sum \lambda_{i} \omega_{11}}=\frac{m_{k}}{m_{1}}, k=1, \cdots, p .
$$

Then the tunction

$$
u=\frac{m_{1}}{\sum \lambda_{1} \omega_{i 1}} \sum \lambda_{2} u_{2}
$$

is an additive function with fundamental perlods

$$
\begin{aligned}
& \frac{m_{1}}{\sum \lambda_{1} \omega_{i,}} \int_{\Gamma_{k}}^{\sum \lambda_{1} \widetilde{w}_{i}=m_{1} \frac{\sum \lambda_{i} \omega_{i k}}{\sum \lambda_{1} \omega_{i,}}=m_{k} .} \\
& \text { a function } \quad m_{p} \quad \text { being integers, }
\end{aligned}
$$

$$
e^{2 \pi i u}
$$

is one-valued on Ω. Since u is an integral of (1), so is $\exp (2 \pi \cdot u)$. Hence the hypersurfiace

$$
e^{2 \pi i n}=\text { const. }
$$

defines a closed analytic invariant submanifold of S_{t} whose dimension is not greater than $n-1$.

If $\quad \beta \leqslant n-1$, it is evident that the assumption of the Theorem is always satistiled. So we have

COROLLARY。 If ${ }^{-} p \leqslant n-1, S_{t}$ has an invariant closed analytic submanifold whose dimension is not greater than $n-1$.

> 3. THEOREM 2. If there exist $n-1$ real numbers λ_{1}, ,.,
> λ_{n-1} not simultaneously zero, such that the set

$$
I\left(\lambda_{1}, \cdots, \lambda_{n-1}\right)
$$

$$
\begin{aligned}
\equiv\left\{p ; \sum_{i=1}^{n-1} \lambda_{i} A_{i 1}(p)=\cdots\right. & =\sum_{i=1}^{n-1} \lambda_{i} A_{i n}(p) \\
& =0\}
\end{aligned}
$$

is not empty, S_{t} leaves invariant a closed analytic submanifold whose dimension is not greater than $n-1$.

Proof. If the assumption of the Theorem is satisíied, $I\left(\lambda_{1}, \cdots\right.$ \because, λ_{n-1}) is a non-empty closed analytic submanifold whose dimension is not greater than $n-1$. Ne will show that $I\left(\lambda_{1}, \ldots, \lambda_{n-1}\right)$ is an invariant manifold of S_{t} - For that purpose, it shifilces to prove that

$$
\begin{aligned}
& \quad \frac{d}{d t} \sum_{i=1}^{n-1} \lambda_{1} A_{i k}=0, \quad k=1, \cdots, n \\
& \text { on } I\left(\lambda_{1}, \cdots, \lambda_{n-1}\right) \quad . \\
& \frac{d}{d t} \sum_{i} \lambda_{i} A_{i k}=\sum_{j} X_{j} \frac{\partial}{\partial x_{j}} \sum_{i} \lambda_{1} A_{1 k}=\sum_{i, j} \lambda_{i} X_{j} \frac{\partial A_{i k}}{\partial x_{j}},
\end{aligned}
$$

then, by the formula (4) of $\oint 1$,

$$
\begin{aligned}
& =\sum_{i, j} \lambda_{1} X_{j} \frac{\partial A_{1 j}}{\partial x_{k}} \\
& =\sum_{i} \lambda_{i} \frac{\partial}{\partial x_{k}}\left(\sum_{j} A_{i j} X_{j}\right)-\sum_{i, j} \lambda_{i} A_{i j} \frac{\partial X_{j}}{\partial x_{k}}
\end{aligned}
$$

The second term of the above formula evidently vanishes on $I\left(\lambda_{1}, \cdots, \lambda_{n-1}\right)$, because we have

$$
\sum_{i} \lambda_{i} A_{i j}=0
$$

on $I\left(\lambda_{1}, \cdots, \lambda_{n-1}\right)$. The iirst term also vanishes according to (3) of § 1. Therefore

$$
\frac{d}{d t} \sum_{1} \lambda, A_{i k}=0, k=1, \cdots, n
$$

on $I\left(\lambda_{1}, \cdots, \lambda_{n-1}\right)$

4．To simplify the statement， wo say that S_{t} is non－singular if the assumption of the Theorem 2 is not satisfied．Otherwise it is said to be singular．

If S_{t} is non－singular，ior any point P of Ω ，there exists a uniquely determined hypersurface containing P on whi ch

$$
d u_{2}=0
$$

is satisfied．We denote by $F_{i}[P]$ the connected component oi this suri＇ace determined by P ．In the same way，we can also uniquely define

$$
\left(F_{i} \wedge F_{j} \wedge \cdots, F_{l}\right)[P]
$$

as a connected component of $F_{i}^{[P]}{ }_{\cap_{0}} F_{j}[P]_{\cap} \cdots{ }_{n} F_{l}[P]$ determined by

Obviously，F_{i}［P］，
$\left(F_{i} \cap F_{j}\right)[P], \quad\left(F_{i} \cap F_{j} \cap F_{k}\right)[P]$
．．．．，are all invariant sets of
S_{t} ．Especially，（ $F_{1 \cap} F_{2} \cap \cdots$
$\left.\because \cap F_{n-1}\right)[P]$ is a trajectory passing through P ．

For the non－singular flow S_{t} ， we now prove the following $n-1$ Lemmas．

LEMMA 1：Let P, Q be any two points of Ω which can be joined by an arc C of finite length such that

$$
\int_{C} w_{1}=0 .
$$

Then we can join P and Q by an arc \widetilde{C} lying on $F_{1}[P]$ and homologous to C ．

LEMMA 1^{2} ．Let P be an arbi－ trary point of Ω and Q be a point on $F_{1}[P]$ ．If P and

Q can be joined by an arc C of finite length lying on $F_{1}[P]$ such that

$$
\int_{c} w_{2}=0,
$$

then P and Q can be joined by an arc \widetilde{C} lying on $\left(F_{1} \cap F_{2}\right)[P]$ and homologous to

LEMMA 1^{n-1} ．Let P be an arbitrary point of Ω and Q be a．point on $\left(F_{1} \cap F_{2} \wedge \cdots \wedge F_{n-2}\right)[P]$ ．

If P and Q can be joined by an arc C of inite length lying on $\left(F_{1} \cap F_{2} \cap \cdots, F_{n-2}\right)[P]$ such that

$$
\int_{c} w_{n-1}=r
$$

then P and Q be joined by an arc $\widetilde{C} \subset\left(F_{1}, F_{2}, \ldots, F_{n-1}\right)[P]$ homo－ logous to C ．In other words， the trajectory passing through P contains Q 。

Prool of the LEMMA 1^{1} ．As we consider only the arc of finite lenjth，we omit the words＂of fi－ nite length＂for simplicity＇s sake． So，hereafter，the word＂arc＂ always means＂arc of finite length＂。

Since Ω is a compact analytic manifold，we can introduce in Ω a metric $\alpha(P, Q) \geqslant 0, P, Q \in \Omega$ ，in such a way that the topology de－ termined by this metric is equiva－ lent to the original one。 We first notice that for any P we can find a positive number $\varepsilon_{1}(P)$ such that our Lemma is valid in a sphere $K\left[P, \varepsilon_{1}(P)\right]=\left\{Q ; d(P, Q)<\varepsilon_{1}(P)\right\}$.

Strictly speaking，ir $A, B \in$
$K\left[P ; \varepsilon_{1}(P)\right]$ can be connected by an arc $\gamma=\widehat{A B} \quad$ contained in
$K\left[P ; \varepsilon_{1}(P)\right]$ in such a way that

$$
\int_{\gamma} w_{1}=0,
$$

then A and B can be joined by an arc $\tilde{\gamma}$ entirely contained in
$F_{1}[A] \cap K\left[P ; \varepsilon_{1}(P)\right]$ and homo－ logous to γ ．

In inct，if tnis is not the case，the derivative of u_{1} in any direction must be zero at P Eut this contradicts with our assumption of the non－singularity．
Ω being compact，

$$
\lim _{P \in \Omega} \varepsilon_{1}(P)=\varepsilon_{1}>0
$$

Theretiore our Lemma is valid in any sphere of radius ε_{1} ．

Now let A be an arbitrary point on C ，and we consider a runction

$$
f(A)=\int_{C(P A)} \omega_{1}
$$

where $C(M N)$ is an arc of C between two points M, N on C Evidently

$$
f(Q)=f(Q)=0
$$

Suppose that the Lemma nas been proved for the case when $f(A)$ increases from P to M, remains constant from M to N, and then decreases from N to Q where M and N are two (not necessarily different) points on C. Then we can prove the Lemma for the case when

$$
f(A)>f(P)=f(Q)
$$

for every A between P and Q. In ract, in this case $f(A)$ has a finite number oi maxima and minima on C. Let

$$
m_{1}>m_{2}>\cdots>m_{v}>0
$$

be these extremal values. The set

$$
I=\left[A ; f(A) \geqslant m_{2}\right]
$$

is mace up of a finite number of arcs, $C\left(A_{1} A_{2}\right), C\left(A_{3} A_{4}\right), \ldots$, $C\left(A_{k-1} A_{k}\right), A_{1}, \cdots, A_{k}$ $\left.\in C^{C-1} A_{k}\right)$. On each of these $\operatorname{arcs} f(A)$ possesses the property stated above. So we can connect A_{1} and A_{2}, A_{3} and
$A_{4}, \ldots, \quad A_{k-1}$ and A_{k} by
the curves C_{1}, \ldots, C_{l} each contained in $F_{1}\left[A_{1}\right]=F_{1}\left[A_{2}\right]$, $F_{1}\left[A_{3}\right]=F_{1}\left[A_{4}\right] \quad, \ldots, F_{1}\left[A_{K-1}\right]$ $=F_{1}\left[A_{K}\right] \quad 0$ If we replace $C\left(A_{1} A_{2}\right)$,
 new arc C ' joining P and Q for which we have

$$
\int_{C^{\prime}} w_{1}=0 .
$$

If we consider on C^{\prime} a function

$$
f^{\prime}(A)=\int_{C^{\prime}(P A)} \Psi_{1}
$$

extremal values of $f^{\prime}(A)$ are

$$
m_{2}>m_{3}>\cdots>m_{v}>0
$$

Then we consider the set

$$
I^{\prime}=\left[A ; f^{\prime}(A) \geqslant m_{3}\right]
$$

and repeat the same procedure. Repeating such a process $\nu-1$ times, we rinally arrive at the curve $C^{(\nu-1)}$ on which a function

$$
f^{(\nu-1)}(A)=\int_{C^{(\nu-1)}(P A)^{\pi_{1}}}
$$

possesses the property stated above. Hence P and Q can be
joined by an arc \widetilde{c} contained in
$F_{1}[P]$ - As is eviaent irom
the procedure we have adopted,
$\widetilde{\mathrm{C}}$ is homologous to C.
In the same way we can easily
show that our Lemma holas when

$$
f(A)<f(P)=f(Q)
$$

for every A between P and
Q - Combining these results we can prove the Lemma tor jeneral cases. So we have only to show that our Lemma is true when $f(A)$ increases irom P to M, remains constant from M to N, and decreases from N to Q.

In this case,

$$
\int_{I} \varpi_{1}=0,
$$

for any arc $[$ on $C(M N)$. Hence $C(M N)$ is itself contained in $F_{1}[M]=F_{1}[N] \quad$ -
$A_{11}, \ldots, A_{1 n}$ have no common zero points because of the non-singularity of S_{t} 。 So the function u, never takes an extremal value。 Hence, for any point P in Ω, a positive number $\delta_{1}(P)$ can be so determined that for any real number α, $|\alpha|<\delta_{1}(P)$, there always exists a point Q contained in $K\left[P, \varepsilon_{1 / 2}\right]$ for which

$$
\int_{p}^{Q} w_{1}=\alpha,
$$

where the integration is carried out along the arc contained in $K\left[P, \varepsilon_{1} / 2\right]$. Since \& is compact,

$$
\operatorname{lif}_{p \in \delta} \delta_{1}(p)=\delta_{1}>0
$$

We can divide the arcs $(\mathrm{C}(\mathrm{MP})$, $C(N Q)$ by a finite'number of points

$$
\begin{array}{ll}
M=P_{0}, & P_{1}, \cdots, \\
N=P_{k}, & P_{k+1}=P
\end{array}, Q_{1}, \cdots, Q_{k}, Q_{k+1}=Q, ~ l
$$

in such a way that

$$
\begin{aligned}
& f\left(P_{j}\right)=f\left(Q_{j}\right), \\
& f\left(P_{j}\right)-f\left(P_{j+1}\right)=f\left(Q_{j}\right)-f\left(Q_{j+1}\right)=\delta, \\
& \mid \delta\left(<\delta_{1},\right. \\
& \alpha\left(P_{j} P_{j+1}\right)<\frac{\varepsilon_{1}}{2},
\end{aligned}
$$

$$
d\left(Q_{j} Q_{j+1}\right)<\frac{\varepsilon_{1}}{2}, \quad j=0,1, \cdots, k+1
$$

Next we divide the arc C（MN） by the points

$$
\begin{aligned}
& M=K_{0}, K_{1}, \cdots, K_{\nu}, K_{\nu+1}=N, \\
& d\left(K_{j} K_{j+1}\right)<\frac{\varepsilon_{1}}{2}, j=0,1, \cdots, \nu
\end{aligned}
$$

and consider the spheres

$$
S_{j}=k\left[K_{j} ; \frac{\varepsilon_{1}}{2}\right], j=0,1, \cdots, v+1
$$

Then from what we have stated above，wo can ind in each S_{j} ．a point B_{j} and an arc γ_{j} join－ ing K_{j} and B_{j} in such a way

$$
\int_{\gamma_{j}} \pi_{i}=\delta
$$

In particular，we may suppose that

$$
\begin{array}{ll}
B_{0}=P_{1}, & B_{v+1}=Q_{1} \\
\gamma_{0}=C\left(M P_{1}\right), & \gamma_{v+1}=C\left(N Q_{1}\right)
\end{array}
$$

Since the radius of S_{j} is $\varepsilon_{1 / 2}$ and

$$
d\left(K_{j} K_{j+1}\right)<\frac{\varepsilon_{1}}{2}
$$

we can construct a sphere ∇_{j} whose radius is ε_{1} and containing B_{j} ，
B_{j+1} in $C\left(K_{j} K_{j+1}\right)$ ，γ_{j+1} ，interior．Then the arc

$$
-\gamma_{j}+C\left(K_{j} K_{j+1}\right)+\gamma_{j+1}
$$

connects B_{j} and B_{j+1} in ∇_{j} and

$$
\int_{-\gamma_{j}} w_{w_{1}}+\int_{C\left(x_{j} k_{j+1}\right)} w_{\gamma_{j+1}}+\omega_{1}=-\delta+0+\delta=0
$$

Therefore，from the fact stated at the beginning of this proof，we can join B_{j} and B_{j+1} by an $\underset{\nabla_{j}}{\operatorname{arc}} \sigma_{j}$ contained in $F,\left[B_{j}\right] \cap$

$$
B_{0}=P_{1}, \quad B_{\nu+1}=Q_{1},
$$

we can join P_{1} and Q_{1} by an arc

$$
\sigma_{0}+\sigma_{1}+\cdots+\sigma_{v}
$$

which is contained in $F_{1}\left[P_{1}\right]$ and obviously homologous to $C\left(P_{1} Q_{1}\right)$ Since the length of this arc is finite，we can repeat the same
discussion replacing $C(M N)$ by $\sigma_{0}+\sigma_{1}+\cdots+\sigma_{v}$ ，and connect P_{2} and Q_{2} by an arc contained in
$F_{1}\left[P_{2}\right]$ ．Froceeding in this way，we can finally join P and Q by an arc \widetilde{c} contained in $F_{1}[P]$ and homologous to C ．

Proof of the LEMMA 1^{2} 。 Since S_{t} is non－singular，$F_{1}[p]$ and
$F_{2}[P]$ are never tangent to
each other lor any point E or
Ω ．Therefore the derivative of u_{2} at P in the direction tangential to $F_{1}[P]$ and normal to $\left(F_{1} \cap F_{2}\right)[P]$ is dififerent from zero ror any point P ．So we can find a positive number $\varepsilon_{2}(p)$ such that it for an arc

$$
\widehat{A B} \subset F_{1}[p] \cap K\left[p, \varepsilon_{2}(p)\right]
$$

we have

$$
\int_{\overparen{A B}} \pi_{2}=0
$$

A and B can be joined by an arc contained in $\left(F_{1} F_{2}\right)[P] \wedge K\left[P ; \varepsilon_{2}(P)\right]$ 。 Since Ω is compact，

$$
\lim _{p \in \delta_{0}} \varepsilon_{2}(p)=\varepsilon_{2}>0
$$

Once such a number ε_{2} can be found，the remaining purt of the proof is quite similar to that of the LEMMA 1^{1} ．So we do not repeat the rather lengthy proof here．

Proceeding in this way，we can successively prove the Lemmas l^{3} ， $1^{4}, \ldots, 1^{n-1}$ ．

As is evident irom the proof above，our Lemmas are also valid if $P=Q$ ．So we have

Corollary of the LEMMA 1^{k} 。 If C is a simple closed curve on （ $F_{1} F_{2} \cap \cdots, F_{k-1}$ ）［P］such that

$$
\int_{c} w_{\mathrm{k}}=0,
$$

where P is a point on C ，then we can find a simple closed curve \widetilde{c} lying on（ $F_{1} \cap F_{2} \cap \cdots \cap F_{k}$ ）［P］ and homologous to C ．

5．THEOREM 3．For every tra－ jectory of（1）to be overywhere aense in Ω ，it is necessary and sufficient that S_{t} is non－ singular and the assumption of the Theorem 1 does not hold．

Proof＇。 By Theorems I and 2 ，
the necessity of the condition is obvious. So we have only to prove the sutiliciency.

Let P and Q be two arbstracy points in Ω and ∇ be an arbitrary neighborhood of Q. We connect P and Q by an arbitrary arc C, and put

$$
\int_{C_{1}} \pi_{1}=\alpha_{1}
$$

As S_{t} is non-singular, A_{11} taneously zero. So u, never takes an extrema value. Therefore there exists a positive number δ_{1} such that for any number ε
$|\varepsilon|<\delta_{1}$, we can find an arc
श्र', contained in ∇ for which

$$
\int_{\widehat{\partial Q^{\prime}}} w_{1}=\varepsilon .
$$

Since the assumption of the Theorem l does not hold, at least one of the ratios between $\omega_{1 \prime}$..., $\omega_{1 p}$ must be irrational. So we can find p integers m_{1}, ..., mp such that

$$
\sum_{i=1}^{p} m_{i} \omega_{1 i}=-\varepsilon-\alpha_{1},|\varepsilon|<\delta_{1} .
$$

Thus for an arc $C_{1}{ }^{\prime} \sim C_{1}+\sum m_{i} \Gamma_{2}$ ($A \sim B$ means A is homologous to B) joining P and Q, we have

$$
\int_{c_{1}^{\prime}} \infty_{1}=-\varepsilon-\alpha_{1}+\alpha_{1}=-\varepsilon
$$

Then from the fact just proved above, we can find an arc $\overparen{Q} Q^{\prime}$ in ∇ such that

$$
\int_{\widehat{Q Q^{\prime}}} \omega_{1}=\varepsilon .
$$

If we put

$$
C_{1}^{\prime}+\overparen{Q Q}{ }^{\prime}=C_{1}^{\prime \prime}
$$

we hove

$$
\int_{c_{1}^{\prime \prime}} w_{1}=0
$$

${ }_{1} S_{t}$ being non-singular, Lemma in $F_{1}[P]$

We then join P and Q^{\prime} by an arbitrary arc C_{2} lying on $F_{1}[P]$, and put

$$
\int_{C_{2}} w_{2}=\alpha_{2} .
$$

Since $F_{1}\left[Q^{\prime}\right]$ and $F_{2}\left[Q^{\prime}\right]$
are not tangent to each other at Q^{\prime} because of the non-singularity of S_{t}, we can ind a positive number ' δ_{2} such that for any $\varepsilon,|\varepsilon|<\delta_{2}$ there exists an arc $\Omega^{\prime} Q^{\prime \prime}$ contained in ∇n $F_{1}\left[Q^{\prime}\right]$ for which

$$
\int_{{Q^{\prime} Q^{\prime \prime}}^{w_{2}}=\varepsilon . ~ . ~ . ~}^{\text {. }}
$$

If we replace C_{2} by an arc
C_{2}^{\prime} lying on $F_{1}[P]$,

$$
\int_{C_{2}^{\prime}} \varpi_{2}=\alpha_{2}+\sum_{i=1}^{p} m_{i} \omega_{2 i}
$$

where m_{1}, \ldots, m_{p} are intergers satisfying a relation

$$
\text { (5) } \quad \sum_{i=1}^{p} m_{i} \omega_{1 i}=0
$$

Conversely, for any p integers m, ,... m_{p} satisfying (5), we can fin: an arc C_{2}^{\prime} lying on $F_{1}[P]$ and

$$
C_{2}^{\prime} \sim C_{2}+\sum m_{i} \Gamma_{i}
$$

In fact, let us first construct a closed curve C (not necessarily on $F_{1}[P]$) containing P and homologous to $\Sigma m_{i} \Gamma_{i}$ - Then, we have

$$
\int_{c} w_{1}=\sum m_{i} \omega_{1 i}=0 .
$$

So, by the corollary of the Lemma 1^{1}, we can find a closed curve \tilde{C} lving on $F_{1}[P]$ and homologous to

C . So, if we put

$$
c_{2}^{\prime}=\tilde{c}+c_{2},
$$

we have

$$
C_{2}^{\prime} \sim C+C_{2} \sim \sum m_{i} \Gamma_{i}+C_{2}
$$

Let m_{1}, \ldots, m_{p} be the intergers satisfying (5). Without loss of generality, we may suppose that $\omega_{1,} \neq 0$.

So, we have

$$
m_{1}=-\frac{1}{\omega_{11}} \sum_{i=2}^{p} m_{i} \omega_{1 i}
$$

and

$$
\begin{aligned}
\sum_{i=1}^{p} m_{i} \omega_{2 i} & =-\frac{\omega_{21}}{\omega_{11}} \sum_{i=2}^{p} m_{i} \omega_{1 i}+\sum_{i=2}^{p} m_{i} \omega_{2 i} \\
& =\sum_{i=2}^{p} m_{i}\left(\omega_{2 i}-\frac{\omega_{21}}{\omega_{11}} \omega_{1 i}\right) .
\end{aligned}
$$

Since the assumption of the Pheorem 1 does not hold, at least one oi the ratios between

$$
\omega_{21}-\lambda \omega_{11}, \cdots, \omega_{2 p}-\lambda \omega_{1 p}, \lambda=\frac{\omega_{21}}{\omega_{11}}
$$

must be en irrational number.
However, as

$$
\omega_{21}-\lambda \omega_{11}=0,
$$

at least one of the ratios between

$$
\omega_{22}-\lambda \omega_{12}, \cdots, \omega_{2 p}-\lambda \omega_{1 p}
$$

must be an irrational number. So we can choose p integers m_{1}, ..., m_{p} in such a way that

$$
\begin{aligned}
\sum_{i=1}^{p} m_{i} \omega_{2 i} & =\sum_{i=2}^{p} m_{i}\left(\omega_{2 i}-\lambda \omega_{1 i}\right) \\
& =-\alpha_{2}-\varepsilon, \quad|\varepsilon|<\delta_{2} \\
\sum_{i=1}^{p} m_{i} \omega_{1 i} & =\dot{0} .
\end{aligned}
$$

Theretore there exists an arc C_{2}^{\prime} $\sim_{Q}, C_{2}+\sum_{F_{1}[P j} m_{i} \Gamma_{i}$ joining P and

$$
\int_{C_{2}^{\prime}} w_{2}=\alpha_{2}-\alpha_{2}-\varepsilon=-\varepsilon .
$$

Then Irom what we have shown above, we can find an arc $Q^{\prime} Q^{\prime \prime}$ contained in $F_{1}\left[Q^{\prime}\right] \cap \nabla$ for which

$$
\int_{Q^{\prime} Q^{\prime \prime}} \tilde{W}_{2}=\varepsilon .
$$

If we put

$$
C_{2}^{\prime \prime}=C_{2}^{\prime}+\widetilde{Q^{\prime} Q^{\prime \prime}}
$$

$C_{2}^{\prime \prime}$
and is contained in $F_{1}[P]=F_{1}\left[Q^{\prime}\right]$,

$$
\int_{C_{2}^{\prime \prime}} w_{2}=0 .
$$

Thus, according to the Lemma 1^{2}, P and $Q^{\prime \prime}$ can be joined by an arc contained in $\left(F_{1} \cap F_{2}\right)[P]$

Repeating such a process $n-1$ times, we can iinally show that there exists a point $Q^{(n-1)}$ in
∇ which can be joined with P by the curve ($\left.F_{1} \cap F_{2} \cap \cdots \cap F_{n-1}\right)[P]$. This means that the trajectory passing through P interesects with V. Since P, Q, and ∇ have been chosen arbitrarily, every trajectory or (l) must be everywhere dense in Ω, and the proof of the Theorem 3 is complete.

If it is known that S_{t} has no invariant closed analytic submaniloid whose dinension is not
greater than $n-1$, S_{t} must be non-singular and the assumption of the l'heorem 1 must not hold as a consequence ol Theorem 1 and Theorem 2. So the Theorem 3 can also be stated in the rollowing iorm.

THEOREM 31. For every trajectory of (I) to be everywhere dense in Ω, it is necessary and suificient that S_{t} has no invariant closed analytic submaniferld whose dimension is not greater than $n-1$
6. We have thus established the criterion for every trajectory to be everywhere dense under the assumption that (1) has $n-1$ invariant exact flatilian forms. For such a t'low, it is very desirable to establish the ergodicity. Unfortunately we could not solve this problem in general cases. However, if the manifold in question is of a comparatively simple topological character, we can expect to go a little further in this direction.

As a simplest exarnple, we will treat the flow of the above stated type in n-dimensional toroid. In the rollowing sections, we will show that we can establish the ergocicity of the llow if it admits an analytic surface of section.

Hereatter Ω is supposed to be an n-dimensional toroid. Therefore its one-dimensional Betti number p must be equal to n.

7 . an analytic ($n-1$) -
dimensional closed submanilold S is said to be a surtace of section of S_{t} if iollowing conditions are satisfied,
(l) no trajectory of S_{t} is tangent to S,
(2) for any point P of Ω tre trajectory starting from P cuts S arter a Iinite t intervai.

LEMMA 2. If S_{t} has a suriace of section, we can construct in a family of surtiaces of section

$$
\{S(\alpha) ; \quad 0 \leq \alpha<1\}
$$

with following properties,
($1, S(\alpha)$ and $S(\beta)$ have no noints in common if $\alpha \neq \beta$,
(2) lor any point. P in δ we
can l'ind $S(\alpha)$ oi this family which contains P

Prooi'. By assumption S_{t} has a suriace of section. Let this be called $S(0)$. Consider the trajectory starting frcm an arbitrary point P on $S(0)$. From the condition (2) of the suriace of section, this trajectory returns to $S(0)$ after the finite t interval $T(P)$. Let $S(\alpha)$ be an analytic hypersurtiace delined by

$$
\begin{aligned}
S(\alpha)= & \left\{Q ; Q=S_{\alpha T(P)} P,\right. \\
& P \in S(0), \quad \alpha=\text { const. }\}
\end{aligned}
$$

We can easily show that $S(\alpha)$ is a suriace of section. Varying α from 0 to 1 , we obtain a family of surfaces of section with desired properties.

In what iollows, we restrict our attention to the flow with a surtace of section, and for the t'low of this type we prove the following,

THEOREM 4. If S_{t} is nonsingular and the assumption of the Theorem 1 does not hold, S_{t} is ergodic.
8. For the prool of the Theorem, we first prove

LEMMA 3. Let Π be an r dimensional toroid whose points can be represented by the coordinates

$$
\begin{aligned}
& \left(w_{1}, \cdots, w_{r}\right) \\
& 0 \leqslant w_{i}<1, \quad i=1, \cdots, r .
\end{aligned}
$$

We consider in Π a mapping Φ

$$
\Phi w_{i}=\left[w_{i}+\gamma_{i}\right], \quad i=1, \cdots, r,
$$

where the notation $[\alpha]$ means a value of α reduced modulo 1 , and γ_{1} 's are real constants such that the relation

$$
\begin{aligned}
& {\left[\Sigma m_{i} \gamma_{i}\right]=0,} \\
& m_{1}, \cdots, m_{r}: \text { integers, }
\end{aligned}
$$

implies

$$
m_{1}=\cdots=m_{r}=0
$$

[^0]$$
\int_{A} d w_{1} \cdots d w_{r}
$$
ana invariant under Φ except the set of measure zero, the characteristic function of A must be equal to 1 almost everywhere.

Proot. Let y be the totality of complex-valued functions Lebesgue measurable and square summable on π - f is evidently a Hilbert space with the inner product

$$
(f, g)=\int_{\pi} f \bar{g} d w_{1} \cdots d w_{r}, f, g \in g
$$

and the norm

$$
\|f\|=\sqrt{(f, f)}, \quad f \in \xi .
$$

We define in y a linear transformation U by

$$
u f\left(w_{1}, \cdots, w_{r}\right)
$$

$$
=f\left(\left[w_{1}+\gamma_{1}\right], \cdots,\left[w_{r}+\gamma_{r}\right]\right) .
$$

U is evidently a unitary transformation, and the runction

$$
e^{2 \pi i\left(m_{1} w_{1}+\cdots+m_{r} w_{r}\right)}, m_{1}, \cdots, m_{r}: \text { integers, }
$$

is an eigentunction of U corresponding to an eigenvalue

$$
e^{2 \pi i\left(m_{1} \gamma_{1}+\cdots+m_{r} \gamma_{r}\right)}
$$

Since the totality of $\exp \left\{2 \pi i\left(m_{1} w_{1}\right.\right.$ $\left.+\cdots+m_{r} w_{r}\right)$ forms a complete orthonormal system in f, there can be no other eigentiunctions.

Let X_{A} be a characteristic function of A, ioe.

$$
\begin{aligned}
x_{A}(P) & =1, \text { if } P \in A, \\
& =0, \text { otherwise. }
\end{aligned}
$$

Then X_{A} belongs to f and we

$$
U x_{A}=x_{A} \neq 0
$$

(where the equality sign must be interpreted in the sense of the strong topology in \neq, , which shows that x_{A} is an eigentunction of U belonging to the eigenvalue 1. Hence

$$
X_{A}=e^{2 \pi<\left\langle m_{1} w_{1}+\cdots+m_{2} w_{r}\right\rangle}
$$

where

$$
\left[\sum m_{i} \gamma_{i}\right]=0 .
$$

But from the assumption of the Lemma, the latter relation implies

$$
m_{1}=\cdots=m_{r}=0 .
$$

Therefore

$$
x_{A}=1
$$

in the sense of the strong topology in f. Consequently x_{A} must be equal to 1 almost everywhere on π

By assumption of the Theorem, S_{t} does not satisfy the assumption of the Theorem 1. Hence

$$
\left|\begin{array}{cccc}
\omega_{11} & \omega_{12} & \cdots & \omega_{1, n-1} \\
\omega_{21} & \omega_{22} & \cdots & \omega_{2, n-1} \\
\cdots & \cdots & \cdots & \cdots \\
\omega_{n-1,} & \omega_{n-2,2} & \cdots & \omega_{n-1, n-1}
\end{array}\right| \neq 0
$$

In fact, if this is not the case, we can rind $n-1$ real numbers $\lambda_{1}, \ldots, \lambda_{n-1}$ not simultaneously zero such that

$$
\sum_{i=1}^{n-1} \lambda_{i} \omega_{i k}=0, k=1, \cdots, n-1
$$

contrary to our assumption.

$$
\begin{aligned}
& \text { Consequently we can lind }(n-1)^{2} \\
& \text { real numbers } \lambda_{i k} \quad, \quad i, k=1, \cdots, n-1 \\
& \text { such that }
\end{aligned}
$$

$$
\left(\begin{array}{cccc}
\lambda_{11} & \lambda_{21} & \cdots & \lambda_{n-1,4} \\
\lambda_{12} & \lambda_{22} & \cdots & \lambda_{n-1,2} \\
\cdots & \cdots & \cdots & \lambda_{n-1, n-1}
\end{array}\right)\left(\begin{array}{cccc}
\omega_{1,} & \omega_{12} & \cdots & \omega_{1, n-1} \\
\omega_{21} & \omega_{22} & \cdots & \omega_{2, n-1} \\
\cdots & \cdots & \cdots & \\
\lambda_{1, n-1} & \lambda_{2, n-1} & \cdots & \lambda_{n-1,} \\
\omega_{n-1,2} & \cdots & \omega_{n-1, n-1}
\end{array}\right)
$$

$$
=\left(\begin{array}{llll}
1 & & 0 & \\
& 1 & & \\
& 0 & & 1
\end{array}\right) .
$$

If' we put

$$
\pi_{i}=\sum_{k=1}^{n-1} \lambda_{i k} w_{k}, \quad i=1, \cdots, n-1
$$

we have

$$
\begin{aligned}
& \int_{\Gamma_{k}} \pi_{i}=0, \quad \text { if } \quad i \neq k, \\
& \int_{\Gamma_{i}} \pi_{i}=1 .
\end{aligned}
$$

Let A, B be two points on $S(0)$ and C be any arc joining A and B. Then

$$
\int_{C} \pi_{i}=w_{i}+m_{i},
$$

where m_{i} is an integer and
$0 \leqslant w_{i}<1$. Obviously w_{i} is
uniquely determined by A and
B, and indepencient of C.
So let us write

$$
\left[\int_{A}^{B} \pi_{i}\right]=w_{v}
$$

Let us correspond to every point P on $S(0)$ an ordered set of $n-1$ real numbers

$$
\begin{aligned}
& \left(w_{1}, \cdots, w_{n-1}\right), \\
& w_{i}=\left[\int_{P_{0}}^{p} \pi_{i}\right],
\end{aligned}
$$

where P_{0} is an arbitrarily criosen rixed point on $S(0)$. This is a bicontinuous mapping of $S(0)$ onto the subset of an ($n-1$) dimensional toroid Π

$$
\begin{gathered}
\Pi=\left\{\left(w_{1}, \cdots, w_{n-1}\right) ; 0 \leqslant w_{i}<1\right. \\
i=1, \cdots, n-1\}
\end{gathered}
$$

Moreover this correspondence is one-to-one. To show this, it is suificient to prove that if $P \neq P_{0}$,

$$
\left[\int_{P_{0}}^{p} \pi_{1}\right], \cdots,\left[\int_{P_{0}}^{p} \pi_{n-1}\right]
$$

can never be simultaneously zero.
Suppose that

$$
\left[\int_{P_{0}}^{p} \pi_{1}\right]=\cdots=\left[\int_{P_{0}}^{p} \pi_{n-1}\right]=0
$$

for some $P * P_{0}$. Then if we connect P_{0} and P by an arbitrary curve C of finite length lying on $S(0)$,

$$
\int_{C} \pi_{i}=m_{i}, \quad i=1, \cdots, n-1
$$

where m_{i} 's are all integers. If' we replace C by a curve

$$
C^{\prime} \sim C-\sum_{i=1}^{n-1} m_{i} \Gamma_{i}, c^{\prime} \subset S(0),
$$

we have

$$
\int_{C}, \pi_{1}=\cdots=\int_{C^{\prime}} \pi_{n-1}=0 .
$$

As S_{t} is assumed to be non-singular, Lemmas $1^{1}, \ldots .1^{n-1}$ are all valid. Thereiore P_{0} and P can be joined by an arc ol trajectory $\widetilde{\mathbb{C}}$ which is homologous to C '. Let us then consider the function $\alpha(P)$ defined as rollows,

$$
\alpha(P)=\alpha, \quad \text { if } \quad P \in S(\alpha) \text {. }
$$

α is not a holomorphic function because of its discontinuity at $S(0)$ - To avoid this, we have only to put

$$
S(\alpha+m)=S(\alpha), m: \text { integer },
$$

and regard $\alpha(P)$ as a manyvalued function

$$
\alpha(P)=\alpha+m \text {, if } P \in S(\alpha+m)
$$

Evidently the difierential $d \alpha$ is one-valued in spite of the many-valuedness of α. Since
α increases when P moves along the trajectory in the increasing sense ol t,

$$
\int_{\widetilde{\mathcal{C}}} d \alpha \neq 0 .
$$

Also, C^{\prime} being contained in $S(0)$, we have

$$
\int_{C^{\prime}} d \alpha=0 .
$$

Hence

$$
\int_{C^{\prime}-\tilde{C}} \alpha \alpha \neq 0 .
$$

Un the other hand, as C^{\prime} is homologous to \widetilde{C}

$$
c^{\prime}-\tilde{c} \sim 0
$$

So we must have

$$
\int_{c^{\prime}-\tilde{c}} d \alpha=0
$$

Thus we have arrivec at the contradiction.

Consequently the correspondence

$$
P \rightarrow\left(w_{1}, \cdots, w_{n-1}\right)
$$

is a homeomorphism of $S(0)$ ont a subset of the $(n-1)$-dimensicnal toroid π. However, since $S(0)$ itsell is on $(n-1)$-dimensional torold, this correspondence must be a homeomorphism of $S(0)$ onto whole Π. Thus, in place ot $\left(x_{1}, \ldots, x_{n}\right)$, we can choose ($\alpha, w_{1}, \cdots, w_{n-1}$) as a coordinate system in ${ }^{(\alpha)}$ by putting

$$
\begin{aligned}
& P=\left(\alpha, w_{1}, \cdots, w_{n-1}\right), \text { if } \\
& P=S[\alpha] T\left(P_{0}\right) P_{0}, \\
& P_{0}=\left(w_{1}, \cdots, w_{n-1}\right) \in S(0),
\end{aligned}
$$

where $T\left(P_{0}\right)$ is a function which we have used in the prool of the Lemma 2.

Let $P=\left(\alpha, w_{1}, \cdots, w_{n-1}\right)$ be an arbitrary point on $S(\alpha)$. The trajectory starting from P returns to $S(\alpha+1)=S(\alpha)$ at some other point P^{\prime}

$$
P^{\prime}=\left(\alpha+1, w_{1}^{\prime}, \cdots, w_{n-1}^{\prime}\right) .
$$

We define an autoraorphism Ψ of $S(\alpha)$ by

$$
\Psi(p)=p^{\prime}
$$

and put

$$
\gamma_{i}=w_{i}^{\prime}-w_{i}, \quad i=1, \cdots, n-1 .
$$

As π_{i} 's are inveriant forms,
γ_{i} 's are constants independent of P - In lact, let P and Q be two different points on $S(\alpha)$, and

$$
\begin{aligned}
& P^{\prime}=\Psi(P) \\
& Q^{\prime}=\Psi(Q)
\end{aligned}
$$

Let $C_{1}, C_{2}, C_{3}, C_{4}$ be the arcs on $S(\alpha)$ joining $P P^{\prime}, P^{\prime} Q^{\prime}$, $Q^{\prime} Q, Q P$, , respectively. 'Then $C^{\prime}=c_{1}+c_{2}+c_{3}+c_{4}$ is a closed curve on $S(\alpha)$. Therefore

$$
\left[\int_{C} \pi_{i}\right]=0, \quad i=1, \cdots, n-1
$$

As π_{i} 's are invariant Piailian forms,

$$
\left[\int_{P}^{Q} \pi_{i}\right]=\left[\int_{P^{\prime}}^{Q^{\prime}} \pi_{i}\right], \quad i=1, \cdots, n-1,
$$

or,

$$
\left[\int_{C_{2}} \pi_{i}\right]+\left[\int_{C_{4}} \pi_{i}\right]=0, i=1, \cdots, n-1
$$

Consequently

$$
\left[\int_{P}^{P^{\prime}} \pi_{1}\right]=\left[\int_{Q}^{Q^{\prime}} \pi_{1}\right], \quad i=1, \cdots, n-1 .
$$

Hence γ_{i} 's are constants independent of P -

Thus Ψ induces on Π a mapping $\bar{\Phi}$

$$
\Phi w_{i}=\left[w_{i}+\gamma_{i}\right], \quad i=1, \cdots, n-1 .
$$

From these facts, we can see that

$$
d t d w_{1} \cdots d w_{n-1}
$$

is invariant by the transtiormation
S_{t}. The function $T(P)$ can be consiaered as a positive definite holomorphic runction of w_{1}, \ldots,
w_{n-1}, and we have

$$
d t=T\left(w_{1} \ldots w_{n-1}\right) d \alpha+\alpha \sum \frac{\partial T}{\partial w_{i}} d w_{i}
$$

So, S_{t} has an invariant measure

$$
\begin{aligned}
d m & =\left(T d \alpha+\alpha \sum \frac{\partial T}{\partial w_{i}} d w_{i}\right) d w_{1} \cdots d w_{n-1} \\
& =T d \alpha d w_{1} \cdots d w_{n-1}^{(3)}
\end{aligned}
$$

As was shown by J. von Neumann and G.D. Sirkholit the ergodicity is equivalent to the metrical transitivity for the flow with an invariant measure.(4) So, I'or the proof of our Theorem, we have only to show that every m-measurable set or positive m-measure invariant by S_{t} must be equal to Ω itself except the set or measure zero.

By Theorem 3, every trajectory of (1) must be everywhere dense in

Q . Hence the set

$$
\left\{\Psi^{k}(P) ; k=0, \pm 1, \pm 2, \cdots, P \in S(\alpha)\right\}
$$

must be everywhere dense on $S(\alpha)$. Theretore the set

$$
\begin{gathered}
\left\{\left(\left[w_{1}+k \gamma,\right], \cdots,\left[w_{n-1}+k \gamma_{m-1}\right]\right),\right. \\
k=0, \pm 1, \pm 2, \cdots\}
\end{gathered}
$$

must be everywhere dense on Π, whence wo can conclude that the relation

$$
\begin{aligned}
& {\left[\sum_{i=1}^{n-1} m_{i} \gamma_{i}\right]=0,} \\
& m_{1}, \cdots, m_{n-1}: \text { integers },
\end{aligned}
$$

implies

$$
m_{1}=\cdots=m_{n_{-1}}=0
$$

Then, by the Lemma 3, iif M is a T -invariant subset or Π with positive Lebesgue measure, the characteristic iunction oi M must be aimost everywhere equal to 1 on Π.

Let A be an S_{t}-invariant m-measurable subset of Ω with positive m-measure. Then $A_{n} S(\alpha)$ is a Ψ-invariant subset of $S(\alpha)$ with positive $\int_{A_{A} s(\alpha)} d w_{1} \cdots d w_{n-1}$ for a post all α, which corresponas on π to a $\overline{\text { I }}$-invariant set with positive Lebesgue measure. So, from what we have snown gbove, the characteristic iunction os
$A \cap S(\alpha)$ must be gimost everywhere equal to l on $S(\alpha)$ with respect to the measure $d w_{1} \ldots . . d w_{n-1}$ for aimost all α. Hence the characteristic function of A must be equal to l almost everywhere on Ω with respect to m-mersure. This shows that A is equal to Ω except the set of m-measure zero. Thus we have completed the prooi'.

Corresponding to Theorem ${ }^{2}$ ', Theorem 4 can also be stated in the iollowing lorm.

THEOREM 4'. I1' S_{t} leaves invariant no closed analytic submanitold whose dimension is not greater than $n-1, S_{t}$ is ergodic.

Also, if we use the Theorem 3 , we have

THEOREM 4"。 If every trajectory or S_{t} is everywhere ciense in $\Omega{ }^{t}, S_{t}$ is ergodic.
10. In this section we will give several examples of the system oi dilferential equations to which our result is applicable.

EXAMPLE 1 . A measure-preserving flow on the torus.

Let Ω be a torus whose points can be represented by two angular cooruinates $0 \leqslant x_{1}, x_{2}<2 \pi$, and we consider an analyuic 1 low S_{t} delinea by

$$
\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=X_{1}\left(x_{1}, x_{2}\right) \\
\frac{d x_{2}}{d t}=X_{2}\left(x_{1}, x_{2}\right)
\end{array}\right.
$$

We suppose that S_{t} admits an integral invariant (5)

$$
\iint \rho\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$

where p is a positive deiinite humorphic lunction on Ω 。 In tnis case, we nave

$$
\text { (6) } \quad \frac{\partial \rho x_{1}}{\partial x_{1}}+\frac{\partial \rho x_{2}}{\partial x_{2}}=0 \text { (6) }
$$

Thereiore il we consider a Platitian lorm

$$
w=\rho X_{2} d x_{1}-\rho X_{1} d x_{2}
$$

we nave

$$
\alpha \partial \sigma=0
$$

and

$$
\rho x_{2} \cdot x_{1}-\rho x_{1} \cdot x_{2} \equiv 0
$$

Hence to is an exact invariant Pfafiian iomm, and the theorems hitherto established are applicable.

$$
\begin{aligned}
& \text { In this case } p=2 \text {, and the } \\
& \text { periods oi wre } \\
& -\int_{0}^{2 \pi} \rho X_{1} d x_{2} \text { and } \int_{0}^{2 \pi} \rho X_{2} d x_{1} \\
& \text { respectivelyo if the Fourier } \\
& \text { expansions oi } \rho X_{1} \text { and } \rho X_{2} \\
& \text { are given by } \\
& \rho X_{1}=\sum a_{m n} e^{i\left(m x_{1}+n x_{2}\right)} \\
& \rho X_{2}=\sum b_{m n} e^{i\left(m x_{i}+n x_{2}\right)}
\end{aligned}
$$

we have, by the relation (6),

$$
\begin{aligned}
m a_{m n}+n b_{m n} & =0 \\
m, n & =0, \pm 1, \pm 2, \cdots
\end{aligned}
$$

Hence

$$
\begin{aligned}
& a_{m 0}=0, \quad b_{0 n}=0 \\
& \quad \text { for } m, n= \pm 1, \pm 2, \cdots
\end{aligned}
$$

Therelore

$$
\begin{aligned}
& \int_{0}^{2 \pi} p x_{1} d x_{2} \\
= & 2 \pi a_{00}+\left[\sum_{n \neq 0} \frac{a_{m n}}{i n} e^{i\left(m x_{1}+n x_{2}\right)}\right]_{x_{2}=0}^{x_{2}=2 \pi} \\
= & 2 \pi a_{c 0}, \\
& \int_{0}^{2 \pi} p x_{2} a x_{1} \\
= & 2 \pi b_{00}+\left[\sum_{m \neq 0} \frac{b_{m n}}{i m} e^{i\left(m x_{1}+n x_{2}\right)}\right]_{x_{1}=0}^{x_{1}=2 \pi} \\
= & 2 \pi b_{00} .
\end{aligned}
$$

Consequently the periods of to are
$-2 \pi a_{00}$ and $2 \pi b_{00}$ respectively.
For the assumption of the Theorem 1 not to hold, it is necessary and suificient that

$$
-2 \pi a_{00} / 2 \pi b_{00}=-a_{00} / b_{00}
$$

is an irrational number. Nonsingularity oi S_{t} means that
ρX_{1} and $p X_{2}$ have no common zero points. Eut, since p is positive definite on Ω, this implies that x_{1} and x_{2} have no cormon zero points.

Thus, according to our results hitherto cbtained, evory trajectory of S_{t} is everywhere dense in Ω if and only if x_{1} and x_{2} have no common zero points and $a_{00} / b \ldots$ is an irrational number.
(The truth is that this statement can be replaced by a sharper one:

If x_{1}, x_{2}, and ρ all have continuous first derivatives,
S_{t} is ergodic when and only when x_{1} and x_{2} have no common zero points and a_{00} / b_{0} is an irrational number.

The proci oi this statement has been given elsewhere by the author: ${ }^{(7)}$

EXAMPLE 2. A separable Hamiltonian system near a formally stable equilibrium point.

Let us consider a Hamiltinian system of n degrees of freedom, (7) $\left\{\begin{array}{l}\frac{d q_{i}}{d t}=\frac{\partial H^{\prime}}{\partial p_{i}}, \\ \frac{d p_{i}}{d t}=-\frac{\partial H_{i}^{\prime}}{\partial q_{i}},\end{array} \quad i=1, \cdots, n\right.$,
where H is a real-valued function of $q_{1}, p_{1}, \ldots, q_{n}, p_{n}$ nolomorphic in the neighborhood of the origin. we suppose that the system is separable and the origin is its equilibrium point. Then we can write

$$
\begin{gathered}
H=H_{1}\left(q_{1}, p_{1}\right)+\cdots+H_{n}\left(i n, p_{n}\right) \\
H_{i}\left(q_{1}, p_{1}\right) \\
=\frac{1}{2}\left(a_{i 1} q_{1}^{2}+2 a_{12} q_{1} p_{1}+a_{13} p_{i}^{2}\right)+\bar{H}_{i}, \\
i=1, \cdots, n,
\end{gathered}
$$

where \vec{H}_{i} 's are power series in
q_{\imath}, p_{i}, lacking the terms of Oth, lst, and 2nd degree, absolutely convergent in the neighborhood of $q_{1}=p_{i}=c$. The equa-
tions (7) can then be expressed as
$(8,2)\left\{\begin{array}{l}\frac{d q_{i}}{d t}=a_{i 2} q_{1}+a_{13} p_{i}+\frac{\partial \bar{H}_{i}}{\partial p_{i}}, \\ \frac{d p_{i}}{d t}=-a_{i 1} q_{1}-a_{12} p_{i}-\frac{\partial \bar{H}_{i}}{\partial q_{i}} .\end{array}\right.$

$$
i=1, \cdots, n .
$$

The equilibrium point

$$
q_{1}=p_{1}=\cdots=q_{n}=p_{n}=0
$$

is saia to be lorrally staule il ine characteristic roots ol the matrix

$$
\begin{aligned}
& \left(\begin{array}{ccc}
A_{1} & & 0 \\
& A_{2} & \\
& 0 & \ddots \\
& & \\
A_{n}
\end{array}\right), \\
& A_{i}=\left(\begin{array}{cc}
a_{i 2} & a_{i 3} \\
-a_{i 1} & -a_{12}
\end{array}\right),
\end{aligned}
$$

are all purely imaginaryo ${ }^{(8)}$ In this case, it is obvious that the characteristic roots of each A_{2} are also purely imaginary. Hence
$q_{i}=p_{i}=0$ is a tormally stable equilibrium point 0 the differential equations ($8, i$) ior each i.
$(8, i)$ has a ore-valued integral

$$
H_{i}=\text { const. }
$$

holomorphic in the neighborhood of
$q_{i}=p_{i}=0$. Therefore the $n-$ dimensional hypersurface $\Pi\left(c_{1} \cdots c_{n}\right)$ delined by

$$
H_{1}=c_{1}, H_{2}=c_{2}, \cdots, H_{n}=c_{n}
$$

is an integral surface ol the system (7). Since the characteristic roots of each A_{i} are purely imaginary, the formula

$$
H_{i}=\text { const. }
$$

represents a family of simple closed curves on (q_{i}, p_{i})-plane envelopping the origin. Therefore $\pi\left(c_{1} \cdots c_{n}\right)$ is homeomorphic to an n-dimensional toroid in the neighborhood of the origin. Hereatter we only consider the flow S_{t} detined by (7) on a toroid $\Pi\left(c_{1} \ldots c_{n}\right)$ for some fixed non-vanisting values of c_{1}, \ldots,
c_{n} -
Now it was proved by Ura ${ }^{(9)}$ that if we put

$$
\begin{aligned}
& \xi_{i}=\sqrt{\left|H_{i}\right|} \sin \theta_{i} \\
& \eta_{i}=\sqrt{\left|H_{i}\right|} \cos \theta_{i} \\
& \theta_{i}=\tan ^{-1} \varphi_{i}
\end{aligned}
$$

where φ_{i} is an integrai of the systera of dilierential equations

$$
\left\{\begin{array}{l}
\frac{d q_{i}}{d t}=\frac{\partial H_{i}}{\partial q_{i}}, \\
\frac{d p_{1}}{d t}=\frac{\partial H_{1}}{\partial p_{i}},
\end{array}\right.
$$

$\left(q_{i}, p_{i}\right) \rightarrow\left(\xi_{1}, \eta_{i}\right)$ is a one-tomone analytic transiormation in the nelfhborhood of $q_{i}=p_{i}=0$ and the curve

$$
H_{2}=c_{2}
$$

is transtormed into a circle

$$
\begin{aligned}
& \xi_{2}=\sqrt{\left|c_{1}\right|} \sin \theta_{1} \\
& \eta_{i}=\sqrt{\left|c_{1}\right|} \cos \theta_{i} .
\end{aligned}
$$

So, as a coordinate system on
$\Pi\left(c_{1} \cdots c_{n}\right)$, we may use
$\left(\theta_{1}, \cdots, \theta_{n}\right)$ thius delined.
In these new variables, S_{t} is defined by
(9) $\left\{\begin{aligned} \frac{\alpha \theta_{i}}{d t}= & f_{1}\left(\theta_{i}\right), \\ f_{i}\left(\theta_{i}\right)= & \frac{1}{1+\varphi_{i}^{2}}\left(\frac{\partial \varphi_{i}}{\partial q_{i}} \frac{\partial H_{i}}{\partial p_{i}}-\right. \\ & \left.\frac{\partial \varphi_{i}}{\partial p_{i}} \frac{\partial H_{i}}{\partial q_{i}}\right)\end{aligned}\right.$

$$
i=1, \cdot n
$$

It is also proved in Ura's paper that $f_{1}\left(\theta_{i}\right)$ is a holomorphic function in the neighbornood of
$q_{i}=p_{i}=0 \quad$ and never becomes zero except at this point." ${ }^{\prime \prime}$ Hence the function

$$
\frac{1}{f_{i}\left(\theta_{i}\right)}
$$

is also holomorphic on $\Pi\left(c_{1} \cdots c_{n}\right)$ for the non-vanishing vaiues of
$c_{1}, \ldots . c_{n}$. So (9) has $n-1$ invariant plafician lorms with holomorphic coefticients,

$$
\begin{aligned}
& \omega_{1}=\frac{d \theta_{1}}{f_{1}\left(\theta_{1}\right)}-\frac{d \theta_{2}}{f_{2}\left(\theta_{2}\right)}, \\
& \tau_{2}=\frac{d \theta_{2}}{f_{2}\left(\theta_{2}\right)}-\frac{d \theta_{3}}{f_{3}\left(\theta_{3}\right)},
\end{aligned}
$$

$$
\begin{aligned}
& w_{n-1}=\frac{d \theta_{n-1}}{f_{n-1}\left(\theta_{n-1}\right)}-\frac{d \theta_{n}}{f_{n}\left(\theta_{n}\right)}, \\
& d w_{1}=d w_{2}=\cdots=d w_{n-1}=0 .
\end{aligned}
$$

Therefore the Theorem 3 is applicable. Since f_{i} 's never take the value zero on $\Pi\left(c, \cdots c_{n}\right)$, S_{t} is evidently non-singular. For the one-dimensional homology base, we may choose

$$
\begin{aligned}
& \Gamma_{1}: \theta_{2}=\theta_{3}=\cdots=\theta_{n}=0 \\
& \Gamma_{2}: \theta_{1}=\theta_{3}=\cdots=\theta_{n}=0 \\
& \cdots-\cdots=\theta_{n-1}=0
\end{aligned}
$$

If we put

$$
\int_{0}^{2 \pi} \frac{d \theta_{i}}{f_{i}\left(\theta_{i}\right)}=a_{i}, \quad i=1, \cdots, n
$$

periods of w_{i} 's are given by the foliowing matrix,

$$
\left(\begin{array}{cccc}
\omega_{1,} & \omega_{12} & \cdots & \omega_{1 n} \\
\omega_{21} & \omega_{22} & \cdots & \omega_{2 n} \\
\cdots & \cdots & & \\
\omega_{n-1} & \omega_{n-1,2} & \cdots & \omega_{n-1, n}
\end{array}\right)=\left[\begin{array}{cccccc}
a_{1} & -a_{2} & 0 & \cdots & 0 & 0 \\
0 & a_{2} & -a_{3} & \cdots & 0 & 0 \\
\cdots & \cdots & - & & \\
0 & 0 & 0 & \cdots & a_{n-1} & -a_{n}
\end{array}\right]
$$

where

$$
\omega_{i k}=\int_{\Gamma_{k}} w_{i}, \begin{aligned}
& i=1, \cdots, n-1 \\
& k=1, \cdots, n
\end{aligned}
$$

Hence for the assumption of the Theorem I not to hold, for any $n-1$ real numbers λ_{1}, \ldots,
λ_{n-1}, at least one of the ratios between

$$
\begin{aligned}
& \lambda_{1} a_{1},\left(\lambda_{2}-\lambda_{1}\right) a_{2}, \cdots, \\
& \left(\lambda_{n-1}-\lambda_{n-2}\right) a_{n-1},-\lambda_{n-1} a_{n},
\end{aligned}
$$

must be an irrational number.
Since λ_{i} is are not simultaneousily zero, and a_{i} 's cannot be equal to zero because of the lact

$$
\frac{1}{f_{i}\left(\theta_{i}\right)} \neq 0 \text { on } \Pi\left(c_{1} \cdots c_{n}\right)
$$

we may suppose

$$
\lambda_{n-1} a_{n} \neq 0 .
$$

Then, if these ratios are all rational,

$$
\frac{\lambda_{1}}{\lambda_{n-1}} \frac{a_{1}}{a_{n}}, \frac{\lambda_{2}-\lambda_{1}}{\lambda_{n-1}} \frac{a_{2}}{a_{n}}, \cdots, \frac{\lambda_{n-1}-\lambda_{n-2}}{\lambda_{n-1}} \frac{a_{n-1}}{a_{n}}
$$

must de ald rational numbers. This means that there exist $n-2$ resl numbers x_{1}, \ldots, x_{n-2} such that

$$
\begin{aligned}
& r_{1}=x_{1} \frac{a_{1}}{a_{n}}, \cdots, r_{n-2}=x_{n-2} \frac{a_{n-2}}{a_{n}}, \\
& r_{n-1}=\left(1-x_{1}-x_{2}-\cdots-x_{n-2}\right) \frac{a_{1 n-1}}{a_{n}}
\end{aligned}
$$

are all rational. Then

$$
r_{n-1}=\left\{1-\left(\frac{r_{1}}{a_{1}}+\frac{r_{2}}{a_{2}}+\cdots+\frac{r_{n-2}}{a_{n-2}}\right) a_{n}\right\} \frac{a_{n-1}}{a_{n}},
$$

or,

$$
\frac{r_{1}}{a_{1}}+\frac{r_{2}}{a_{2}}+\cdots+\frac{r_{n-1}}{a_{n-1}}=\frac{1}{a_{n}}
$$

Consequently n integers m,, m_{n}, not simultaneously zero, can be so chosen that

$$
\frac{m_{1}}{a_{1}}+\cdots+\frac{m_{n}}{a_{n}}=0 .
$$

Conversely, if the above relation is satisfied for the integers m_{i}, \ldots, m_{n}, not simultaneousiy zero, we can find $n-1$ real numbers $\lambda_{1}, \ldots, \lambda_{n-1}$ such that

$$
\begin{aligned}
& \frac{\lambda_{1}}{\lambda_{n-1}} \cdot \frac{a_{1}}{a_{n}}, \frac{\lambda_{2}-\lambda_{1}}{\lambda_{n-1}} \cdot \frac{a_{2}}{a_{n}}, \cdots \\
& \frac{\lambda_{n-1}-\lambda_{n-2}}{\lambda_{n-1}} \cdot \frac{a_{n-1}}{a_{n}}
\end{aligned}
$$

are all rational numbers, and the assumption of the Theorem 1 is satisfied.

Hence, by Theorem 3, every trajectory of (7) is everywhere dense in $\Pi\left(c_{1}, \ldots c_{n}\right)$ if and only if

$$
\frac{1}{a_{1}}, \frac{1}{a_{2}}, \cdots, \frac{1}{a_{n}}
$$

are linearly incommensurable for the integer coefficients.

As $f_{1}\left(\theta_{1}\right)$ never becomes zero on $\Pi\left(c_{1} \cdots c_{n}\right)$, a hypersuriace

$$
\theta_{1}=0
$$

is a surface of section of S_{t} Therefore Theorem 4 is also applicable, and S_{t} is ergodic if.

$$
\frac{1}{a_{1}}, \frac{1}{a_{2}}, \cdots, \frac{1}{a_{n}}
$$

are linearly incommensurabie with respect to integer coelificients.
(*) Received Septembor 27, 1951.
(1) E.Cartan: Leçons sur les invariants intégraux, Paris (1922), Chap. III.
(i) Generally speaking, an invariant Piailian form can be expressed as
$\sigma=\sum_{i} A_{1}\left(x_{1} \cdots x_{n} t\right) d x_{i}+A\left(x_{1} \cdots x_{n} t\right) d t$ where
$\sum A_{i} X_{1}+A \equiv 0$.
Consequently, if

$$
A \equiv 0 \text {, }
$$

we must have

$$
\sum A_{i} X_{i} \equiv 0
$$ Cr. E.cartan, loc.cit. Chap. JII.

(3) $\int d m$ is an integral invariant in the sense of Poincare, and is not an integral invariant in Cartan's sense. Cf. E.Cartan, loc.cit. Chap. IIJ.
(4) J.von Neumann: Proof of the quas!-ergodic hypothesis, Proc.Nat.Acad.Sc. Vol. 18, No.l, (1932), pp.70-82.
C.D.Eirkholf: Proof of a recurrence theorem for strongly transitive systems, Proc. Nat.Acad.Sc., Vol.17, No.1z, (1931), pp.650-655, and Proof oi the ergodic theorem, Proc.Nat.Acad.Sc., Vol.17, No. 1̌, (1931), pp. 656-660.
(5) This is an inteeral invariant in the sense of Poincaré. Ci. E.Cartan, loc.cit. Chap.III.
(6) E.Cartan: loc.cit. Chap. XI。 The function P is usually cailed the last multiplier of Jacobi.
(7) Forthcoming in Journ.Math.Soc. Japan.
(ε) G.D.Eirkhoff: Dynamical Systems, New York (1927), Chap. III and Chap. IV.
(9) T.Ura: On solutions near a formally stable equilibrium point, Jap.Journ.Astr., Vol.1, No.1, (1949), pp.5967.
(10) T.Ura: loc.cit., § 3.
(11) I。Ura: loc.cit., §4.

Department of Mathematics, Tokyo Instituto ol Technology.

[^0]: If A is a mersurable subset of π with positive Lebesgue measure

