ON THE STRONG LAW OF LARGE NUMBERS

By T. KAWATA and M. UDAGAWA

Let X, , X2 s seoy X 5 oo
be a sequence of independent random
variables and let the mean of Xn ,

E(XW)=0 , n=1,2,..+. If
Sil__ X'+X;+-lﬂ- "'Xﬂ.
" - n

converges to zero with probability
1, we say that the sequence { X}
obeys the strong law of large num-
bers.

O

Suft'icient conditions for the
vality of the strong law of large
numbers were given by various au-
thors. Recently H.D.Brunkhas
glven the extension of the Kolmo-
goroff's sufficient condition (®)
when each random variable Xy, have
higher moments than the second
order and hes proved that:

T E(X..)-:O) (n=1,2,---2)
2q) qt1
(2) 2;_ b V/n

converges for some positive integer
v , then the sequence {X,} obeys
the strong law, where
bRV = E(X¥). neti2,.---
More generally he has shown the
following thecrem,

Let {pn} be a sequence of posi-

tive constants, increasing to in-
fInTty such that

3 k/m';mf(Pnﬂ—P“-)=k>°,
n-> co

Eﬂ“’" PIN-I/P-‘<K) (n=1,2;--~‘§

for some positive constant R ,
then _if

E(Xn)=0
ald 5 Z.. b,izq’)/Pj’H

converges Ior some positive integer
qr » then

(n=1,2,-...-)

Sn - X+ XL"""*'XN

6 =
) P"' Pn
converges to zero with probability
1.

We shall give simple proofs and
slight generalizations of these
theorems appealing to an inequality
theorem of Marcinkiewicz and Zyg-
mund ()(*) and to a theorem due to one
of the authors(5)which is quoted as:

Lemma 1. For any positive & ,
let

M Bfey Suy-e}a -8,
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Sal€)>0 , (m—ro0)
and suppose that for any £>o0

@ 265 (8 <oo,
k=1 2
Then the sequence { Xa} obeys the

strong law of large numbers.

We restate the theorem, in which
qr does not need to be an integer.

E(X.) =0 (n=1,2.)

Theorem 1. If

and .
o0 (qr)
Z bi%
(‘D —q‘f-i
nz| n=z

converges for some real q, ,{ =2,
then the sequence {Xw} obeys the
strong law of large numbers, where

b= E(1Xnal¥),n=t,2500. «
Proof of Theorem 1. Let

‘PIL{ ,Snl>"-£} :Sn(s),

Then by Lemma 1, it 1is sufficient
to prove

> SrlE)<aoo, for anyy 20,
k=1 2
If we put ¢ =2n , then ~ 21 .

By a theorem of Marcinkiewicz and
Zygmund (3);

ECISI™) ¢ AtE(m‘+x:+---+x:)"))

is an
where AqYabsolute constant which
depends only on qr .

By Holder's inequality
E ( (X2 X2+ X2)7)
< nn/m’z"‘“ bz
R= Rk >
Eale=1.
Thus Tcheby cheff inequality shows

RilS.)znef
£ (ne) B (1547%)

(2n)

2 Ay tre) ¥ b
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Hence
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Hence by the hypothesls of Theorem
1, the last term is convergent.
Thus our theorem 1s proved.

Next, to get the more general
theorem of H.D.Brunk, we shall ex-
tend Lemma 1 as follows:

Let {Pn} be a monotone increa-

ng o sequence of positive numbers.

properties.

(A); There exist absolute con-
stants &, , and a_

sequence {1y} of positive
ntegers such that

/<o g Pray <
/9,,‘-@.

Theorem 2. Let X,, X;, +--

be a seguence of independent g_gg_g
variab;es and let the mean of X,

ElX.)= veosose
Under he ass ption (A), let

FliSal >eR} = 8.8,

J;(E)""o, a9 n —»oo,
and sup_gose that for any £ >0

ZS () < e0.

iny
Then
@) —ilz—l_L_.X b ;""Xﬂ

converges to zero with probabllity

The proof of this theorem is
quitely similar as that of the
Lemma 1. Instead of evaluation of
the probability of |§;(t)[< €i

(n€is€2n) 1in tha proof of
Lerma 1, we only have to consider
the probability of 1S.1 Egz

(Npy<i §Nnk) - So we' omitt
the details. We shall wish to this
occasion to express our thanks to
Dr. K.Kunisawa for his discussion
of Theorem 2.

Theorem 3. Let £ [Xa]=0 |,
NnN=12.¢00
assumption (A) holds,
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where zjhss me real numbers
22, Cob g n absolute con-

stant. I sequence (6) con-
verges to ith Erobability 1.

Proof. As in the proof of Theo-
rem 1, we have

ELISY = E[1S.17] (g=22.220)
< AE[(EX%)]

Y
:/4g’7 g; bk,
l /

wtp =1,

Hence
R i18al > RE} sAg(B‘f*“ &Z bwz)

which is 2
-8, - o0

Sn (61 SA E 0D Z‘ b

= /4’ £ -2 '3‘3 g Iiﬂ bk
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Hence
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by the condition (11), which does
not exceed

ua 5,5"2’ ‘é‘uf by

( Bg is a constant
depending only on%
and € ).

By assumption (A), we have

13) Z’ f B“'SAZZ‘ b,./ 2

‘5/4%5 ‘h‘/jaft

A being a constant depending on
a, B. Thus by (12), (13) and
the hypothesis (10), we have

ZJ(£)<M

i=q]

Thus by Theorem 2, we get the proof
of Theorem 3.

Theorem 4. Le £?[X;J o,
n=/2,; and n} be a
monotone 1ncreasi;g sequence satis-

Lying




04) Lom inf ¢ Bu~R)=h>0
n-+o0

8 P""/R £ R,(n=k2.),

i

w 2 bn/Pué

converges for some real 2 such
that @ 22 , then the sequence
(6) converges to zero with probabi-
lity 1.

;

Proof. Without loss of genera-
lity, we may assume

(17) RIOI‘PN 7h)

for every n -
From (15), there exists a subse-

quence  {7;} of integers and
constants &, p such that

8 /< & Pn;,,/P 8.
"

On the other hand, from (17),

h>nh,
that 1s

nsh./{' (n=r2-)
Hence

nER , (j=ra),
Thus .

5 % o

;%; Fay'ﬁl 7 < 7f¥;%§ jfgzﬁ

From (18), the last term

< ,
il

where C 1is a constant which does
not depend on 7M; . Thus by
Theorem 3, we get the proof.

When f% rapidly increasing
compared with 1, theassumption (16)
is replaced by a milder one, that
is, we get the following result.
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Theorem 5. Suppose that the
assumption (A) holds and

@ (B e
= L]

for some real §>2 . If the
sequence

. 4 g @
wé) x; b
R:" é n

is bounded, then the sequence (6)
converges to zero with probability
1. 4s a special case of p, , if
g";—nc » N=|}2. ese., Where
is a constant which depends
only on s then clearly the as-
sumption (B) is satisfied.

Proof. In the similar manner
as in the proof of Theorem 3,

> -¢ & - a; (3)
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