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Sufficient conditions for the
vality of the strong law of large
numbers were given by various au-
thors o Recently H.D Brunk^has
given the extension of the Kolmo-
goroff's sufficient condition (
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when each random variable X*, have
higher moments than the second
order and has proved that:
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More generally he has shown the
following theorem.

Let 1\>YK) be_ a_ sequence of posi-
tive constants, increasing txp in-
finity such that
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for some positive constant R,
then if

converges for some positive integer
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and suppose that for any £ > o

00

fc-i *
Then the sequence -ί XnV obeys the
strong law of large numbers.

We restate the theorem, in which
<fy does not need to be an integer.

and
Theorem 1_. I£ £f Xnl l> V')
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q ^ X« ̂  obeys the
strong law of large numbers. where

Proof of Theorem 1. Let

Then by Lemma 1, it is sufficient
to prove
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If we put % = 2.O, , then Λ, ̂ 1
By a theorem of Marcinkiewicz and
Zygmund i
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where /̂  TΛabsolute constant which
depends only on ^- ,

By Holder s inequality

Thus Tcheby ohθfί Inequality shows
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converges to zero with probability

We shall give simple proofs and
slight generalizations of these
theorems appealing to an inequality
theorem of Marcinkiewicz and Zyg-
mund (*)(*•) and to a theorem due to one
of the authorsC

5
)which is quoted as:
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Hence by the hypothesis of Theorem
1, the last term is convergent.
Thus our theorem is proved*

Next, to get the more general
theorem of H DoBrunk, we shall ex-
tend Lemma 1 as ίollows:

Let ( Ϋ* \ be â  monotone increa-
sing sequence of positive numbers.
And we shall assume the following
properties,

(A); There exist absolute con-
stants Ci , β , and a
sequence { Π;) of positive
integers^ such that

/<<** ftw iβ

Theorem. 2. Let X, , X
4
, .,,

be a sequence of independent random
variables and let the mean of ){ ,

ElX)
he assumption ( A ) , let

and suppose that for any £ > 0

converges to zero with probability
1.

The proof of this theorem is
quitely similar as that of the
Lemma L Instead of evaluation of
the probability of |i'

l
(t)|<6i

(n^i^Zn) in thα proof of
Lemma 1, we only have to consider
the probability of |^,|<ff>

(HMΊ< i &ϊlκ) *
 S o

 we* omitt
the details. We shall wish to this
occasion to express our thanks to
Dr. K.Kunisawa for his discussion
of Theorem 2.

Theorem 3. Let
γ% s /. Z' Suppose tfoat the

assumption (A) holds.

and

(10
-(4*o

where ? Is some real numbers
j> 2, C being an absolute con-
stant. Then the sequence (6) con-
verges to zero with probability 1.

Proof. As in the proof of Theo-
rem 1, we have

Hence

ill)

which is

Hence

(V

by the condition (11), which does
not exceed

(U)

( βf is a constant
depending only on£
and C ).

By assumption (A), we have

A being a constant depending on
a , β. Thus by (12), (13) and

the hypothesis (10), we have

Jί
Thus by Theorem 2, we get the proof
of Theorem 3,

Theorem 4c Let £ (X
W
J = 0 ,

n=/.2, , and |jb
n
ι £a a

monotone increasing; sequence satis-
fying
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converges for some real V such

that φ£Z , then the sequence

(6) converges to zero with probabi-
lity 1.

Proof. Without loss of genera-
lity, we may assume

for every n

From (15), there exists a subse-
quence {T^i} °f integers and
constants <# , β such that

<tS) I <a £ lP^
t
/ $β ̂

On the other hand, from (17),

that is

n ϋ
Hence

Thus

Prom (18), the last term

where C is a constant which does
not depend on Π; . Thus by
Theorem 3, we get the proof.

When f>
n
 rapidly increasing

compared with Π,ffcβassumption (16)
is replaced by a milder one, that
is, we get the following result*

Theorem 5. Suppose that the
assumption (A) holds and

w Σ(fj
*-'

for some real
sequence

If the

US')
/

is bounded, then the sequence (6)
converges to zero with probability
1. As a special case of (D

n
 , if

P
n
 £ Ύt

c
 > n as 1.2, , where

C Is a constant which depends
only on % , then clearly the as-
sumption (B) is satisfied.

Proof. In the similar manner
in the proof of Theorem 3,
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