Let $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be a sequence of independent random variables and let the mean of X_{n}, $E\left(X_{n}\right)=0, n=1,2, \ldots$ If

$$
\text { (1) } \frac{S_{n}}{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

converges to zero with probability 1 , we say that the sequence $\left\{X_{n}\right\}$ obeys the strong law of large numbers.

Sufficient conditions for the vality of the strong law of large numbers were given by various authors. Recently H.D.Brunk (1) has given the extension of the Kolmogoroff's sufficient condition (${ }^{2}$) when each random variable X_{n} have higher moments than the second order and has proved that:

$$
\text { If } \quad E\left(X_{n}\right)=0,(n=1,2, \ldots)
$$

(2) $\sum_{n} b_{n}^{(2 q)} / n^{q+1}$
converges for some positive integer
q, then the sequence $\left\{X_{n}\right\}$ obeys the strong law, where

$$
b_{n}^{(2 q)}=E\left(X_{n}^{2 q}\right), n=1,2, \ldots
$$

More generally he has shown the following theorem.

Let $\left\{p_{n}\right\}$ be a sequence of positive constants, increasing to infinity such that
(3) $\quad \liminf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right)=h>0$,
and (4) $\quad p_{n+1} / p_{n}<R, \quad(n=1,2, \ldots)$
for some positive constant R, then if

$$
E\left(X_{n}\right)=0 \quad(n=1,2, \ldots)
$$

and
(5) $\sum b_{n}^{(2 q)} / p_{n}^{q+1}$
$\frac{\text { converges }}{q^{\prime}, \text { ther }}$ some positive integer
(6) $\frac{S_{n}}{p_{n}}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{p_{n}}$
converges to zero with probability
We shall give simple proof's and slight generalizations of these theorems appealing to an inequality theorem of Marcinkiewicz and Zygmund (3) ${ }^{4}$) and to a theorem due to one of the authors(5)which is quoted as:

Lemma 1. For any positive ε, let
(T) $\operatorname{Pr}\left\{\varepsilon>\frac{S_{n}}{n}>-\varepsilon\right\} \geqq 1-\delta_{n}(\varepsilon)$,

$$
\delta_{n}(\varepsilon) \rightarrow 0,(n \rightarrow \infty)
$$

and suppose that for any $\varepsilon>0$
(8) $\sum_{k=1}^{\infty} \delta_{2^{k}}(\varepsilon)<\infty$.

Then the sequence $\left\{X_{n}\right\}$ obeys the strong law of large numbers.

We restate the theorem, in which q does not need to be an integer.
Theorem 1. If $E\left(X_{n}\right)=0(n=1,2, \cdots)$ and
(q) $\sum_{n=1}^{\infty} \frac{b_{n}^{(q)}}{n^{\frac{q q}{2}+1}}$
converges for some real q, $q \geq 2$, then the sequence $\left\{X_{n}\right\}$ obeys the strong law of large numbers, where
$b_{n}^{(q)}=E\left(\left|x_{n}\right|^{q}\right), n=1,2, \ldots$.
Proof of Theorem 1. Let

$$
P_{n}\left\{\left|S_{n}\right|>n \varepsilon\right\}=\delta_{n}(\varepsilon)
$$

Then by Lemma l, it is sufficient to prove

$$
\sum_{k=1}^{\infty} \delta_{2^{k}}(\varepsilon)<\infty \text {, for anys } \varepsilon>0 \text {. }
$$

If we put $q=2 \pi$, then $r \geq 1$
By a theorem of Marcinkiewicz and Zygmund (3),

$$
E\left(|S|^{2 n}\right) \leqq A_{q} E\left(\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{r}\right)
$$

where $A q{ }_{i}^{\text {is absolute }}$ constant which depends only on q.

By Holder's inequality

$$
E\left(\left(x_{1}^{2}+x_{2}^{2}+\cdots \cdots+x_{n}^{2}\right)^{\tau}\right)
$$

$$
\begin{gathered}
\leqq n^{r / n^{\prime}} \sum_{k=1}^{n} b_{k,}^{(2 \pi)} \\
\frac{1}{n}+\frac{1}{r^{\prime}}=1 .
\end{gathered}
$$

Thus Tcheby cheff inequality shows

$$
\begin{aligned}
P_{r}\left\{\left|S_{n}\right|\right. & \geqq n \varepsilon\} \\
& \leqq(n \varepsilon)^{-2 / 2} E\left(\left|S_{n}\right|^{2 n}\right) \\
& \leqq A_{q}(n \varepsilon)^{-2 \pi} n^{\frac{n}{n}} \sum_{k=1}^{n} b_{k}^{(2 n)}
\end{aligned}
$$

Hence

$$
\delta_{2}(\varepsilon) \leqq A_{q} \varepsilon^{-2 \pi-k(r+1)} \sum_{i=1}^{2^{k}} b_{i}^{(2 \pi)}
$$

Thus

$$
\sum_{1}^{\infty} \delta_{2}(\varepsilon) \leqq A_{q} \varepsilon^{-2 \pi} \sum_{k=1}^{\infty} \frac{1}{2^{k(n+1)}} \sum_{i=1}^{2^{k}} b_{i}^{(2 n)}
$$

$$
\begin{aligned}
& \leqq A_{q} \varepsilon^{-2 n} \sum_{k=1}^{\infty} \sum_{j=k}^{\infty} \frac{1}{2^{d^{(n+1}} \sum_{i=2^{2 k-1}+1}^{2^{k}} b_{i}^{(2 n)}} \\
& \leqq B_{q} \varepsilon^{-q} \sum_{k=1}^{\infty} \frac{1}{2^{k(n+1)}} \sum_{i=2^{2 k-1}+1}^{2^{(2 n)}} b^{(2 n)} \\
& \leqq C_{q} \varepsilon^{-q} \sum_{n=1}^{\infty} b_{n}^{(q)} / n^{\frac{q}{2}+1} .
\end{aligned}
$$

Hence by the hypothesis of Theorem 1 , the last term is convergent. Thus our theorem is proved.

Next, to get the more general theorem of H.D.Brunk, we shall extend Lemma 1 as follows:

Let $\left\{P_{n}\right\}$ be a monotone increasing sequence of positive numbers. And we shall assume the following properties.
(A) ; There exist absolute constants $\alpha, \frac{\beta}{\alpha}$, and $\frac{a}{\alpha}$
sequence
integers such that

$$
1<\alpha \leq P_{n_{i+1} / P_{n_{i}}} \leq \beta .
$$

Theorem 2. Let $X_{1}, \quad X_{2}, \ldots$ be a sequence oi independent random variables and let the mean of X_{n}, $E\left[X_{n}\right]=0, n=1,2, \cdots$ Under the assumption (A), let

$$
\overline{P_{n}}\left\{\mid \overline{\left.S_{n} \mid>\varepsilon P_{n}\right\}}=\delta_{n}(\varepsilon),\right.
$$

$$
\delta_{n}(\varepsilon) \rightarrow 0, \text { as } n \rightarrow \infty
$$

and suppose that for any $\varepsilon>0$

$$
\sum_{i=1}^{\infty} \overline{\delta_{n_{i}}}(\varepsilon)<\infty .
$$

Then
(6)

$$
\frac{S_{n}}{P_{n}}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{P_{n}}
$$

converges to zero with probability 1.

The proof of this theorem is quitely similar as that of the Lemma 1. Instead of evaluation of the probability of $\left|S_{i}(t)\right|<\varepsilon_{i}$ ($n \leqq i \leqq 2 n$) in the proof of Lemma l, we only have to consider the probability of $\quad\left|\int_{i=1}\right|<\varepsilon p_{i}$ the details. We shall wish to this occasion to express our thanks to Dr. K.Kunisawa for his discussion of Theorem 2.

Theorem 3. Let $E\left[X_{n}\right]=0$
$n=1.2$.jj Suppose that the assumption (A) holds,

$$
\begin{equation*}
\sum_{n} b_{n}^{(n)} / p_{n}^{1+\frac{2}{2}}<\infty \tag{10}
\end{equation*}
$$

and
(11) $\sum_{j=i}^{\infty} P_{n_{j}}^{-q} n_{j}^{\frac{q}{2}-1} \leqslant C P_{n_{i}}^{-\left(\frac{q}{2}+1\right)}$,
where q is some real numbers
$\geqslant 2, \quad C$ being an absolute con-
stand. Then the sequence (6) con-
Proof. As in the proof of theorem 1, we have

$$
\begin{aligned}
E\left[\left|S_{n}\right|^{q}\right] & =E\left[\left|S_{n}^{2 i}\right|^{2 \pi} \quad(q=2 n .2 \geq 1)\right. \\
& \leqq A_{q} E\left[\left(\sum_{1}^{n} x_{k}^{2}\right)^{n}\right] \\
& \leqq A_{q} n^{\frac{n}{2}} \sum_{k=1}^{n} b_{k}^{(2 \pi)} \\
& \frac{1}{n}+\frac{1}{n^{\prime}}=1 .
\end{aligned}
$$

Hence

$$
P_{n}\left\{\left|S_{n}\right|>P_{n} \varepsilon\right\} \leqq A_{8}\left(P_{n} \varepsilon\right)^{-2 \eta} n^{n} \sum_{k=1}^{n} b_{k}^{(2 n)}
$$

which is

$$
\begin{aligned}
& \delta_{n_{i}}(\varepsilon) \leq A_{i} \varepsilon^{-8}{D_{n}}_{n_{i} 2} n_{i}^{7} \sum_{k=1}^{n_{i}} b_{k}^{(8)} \\
& =A_{g} \varepsilon^{-9} p_{i}^{-2 n} n_{i}^{n-1} \sum_{n=1}^{n-1} b_{k}^{(9)} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sum_{i=1}^{\infty} \delta_{n_{i}}(\varepsilon) \leqq A_{q} \varepsilon^{-q} \sum_{i=1}^{\infty} P_{n_{i}}^{-22} n_{i}^{2-1} \sum_{n=1}^{n_{i}} b_{k}^{(q)} \\
& =A_{q} \varepsilon^{-q} \sum_{i=1}^{1}\left(\sum_{j=i}^{\infty} \frac{n_{i}^{2-1}}{p_{j}^{2}}\right)_{n_{i=1}}^{\sum_{n}^{n}} b_{n}^{(4)}
\end{aligned}
$$

by the condition (11), which does not exceed
(12) $B_{q} \varepsilon^{-2} \sum_{i=1}^{\infty} \frac{1}{p_{n}^{(2 n}} \sum_{n_{i=1}}^{n_{i}} b_{k}^{(9)}$,
(B_{q} is a constant depending only on q and C).

By assumption (A), we have

$$
\leq A \sum_{k=1}^{\infty} b_{n}^{(8)} / p_{n}^{t+1},
$$

A being a constant depending on
$\alpha, \quad \beta$. Thus by (12), (13) and the hypothesis (10), we have

$$
\sum_{i=1}^{\infty} \delta_{n_{i}}(\varepsilon)<\infty
$$

Thus by Theorem 2, we get the proof of Theorem 3 .
$\frac{\text { Theorem 4. }}{n=1.2, \cdots}, \frac{\text { Let }}{\text { and }} \quad E\left[X_{n}\right]=0$, monotone increasing sequence sarisflying
(14) $\liminf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right)=h>0$ and
(4)

$$
P_{n+1} / p_{n} \leqq R,(n=l 2 \cdots) .
$$

If
(16)

$$
\sum_{n} b_{n}^{(q)} / p_{n}^{1+\frac{q}{2}}
$$

converges for some real q such that $q \geqq 2$, then the sequence (6) converges to zero with probabilaity 1 .

Proof. Without loss of generality, we may assume

> (17) $\quad P_{n+1}-p_{n}>h$, for every n

From (15), there exists a subsequince $\left\{n_{i}\right\}$ of integers and constants $\alpha, \boldsymbol{\beta}$ such that

$$
\text { 48) } \quad 1<\alpha \leqq P_{n_{i+1}} / p_{n_{i}} \leqq \beta \text {. }
$$

On the other hand, from (17),

$$
P_{n}>n h,
$$

that is

$$
n \leqq P / / h, \quad(n=1.2, \cdots)
$$

Hence

$$
n_{j} \leq P_{n_{j}} / h, \quad(j=1.2, \cdots)
$$

Thus

$$
\sum_{j=i}^{\infty} p_{n_{j}}^{-8} n_{j}^{\frac{q}{2}-1} \leqq \frac{1}{h^{\frac{q}{-1}}} \sum_{j=i}^{\infty} 1 / p_{n_{j}}^{\frac{q}{2}+1} .
$$

From (18), the last term

$$
\leqq \frac{1}{h^{\frac{2}{2}-1}} \cdot \frac{C_{1}}{P_{n_{1}}^{\frac{1}{2}+1}} \leqq \frac{C^{\frac{0}{2}+1}}{P_{n_{i}}^{\frac{1}{2}}}
$$

where C is a constant which does not depend on n_{i}. Thus by Theorem 3, we get the proof.

When P_{n} rapidly increasing compared with n, the as sumption (16) is replaced by a milder one, that is, we get the following result.

Theorem 5. Suppose that the assumption (A) holds and
(B)

$$
\sum_{i=1}^{\infty}\left(\frac{n_{i}}{P_{n_{i}}}\right)^{\frac{q}{2}-1}<\infty
$$

for some real $q>2$. If the sequence

$$
\text { (16) } \frac{l}{p_{n}^{\frac{1}{2}+1}} \sum_{k=1}^{n} b_{n}^{(q)}
$$

is bounded, then the sequence (6) converges to zero with probability 1. As a special case of P_{n}, if
$P_{n} \geqq n^{c}, n=1.2 . \ldots$, where C^{n} is a constant which depends only on q, then clearly the assumption (B) is satisfied.

Proof. In the similar manner as in the proof of Theorem 3,

$$
\begin{aligned}
\sum_{i=1}^{\infty} \delta_{n_{i}}(\varepsilon) & \leqq A_{q} \varepsilon^{-\varepsilon} \sum_{i=1}^{\infty} P_{n_{i}}^{-2 n} n_{i}^{n-1} \sum_{k=1}^{n_{i}} b_{r}(\varepsilon) \\
& \leqq A_{q} \varepsilon^{-q} \cdot M \sum_{i=1}^{\infty}\left(\frac{n_{i}}{P_{n_{i}}}\right)^{2-1}<\infty
\end{aligned}
$$

(*) Received August 29, 1951.
(1) H.D.Brunk, The strong law of large numbers, Duke Math. Journo. Vol. 15 (1948).
(2) A.Kolmogoroff, Sur la lois forte des grands nombres, Comptes Rendus, 191 (1930).
(3) J.Marcinkiewicz-A.Zygmund, Quelques theoremes sur les functions independantes, Studia Math. 7 (1937).
(4) J.Marcinkiewicz-A.Zygmund, Sur les fonctions independentes, Fund. Math. 29 (1937).
(5) ToKawata, On the strong law of large numbers, Proc. Imp. Acad. Tokyo, Vol.XVI (1940).

The Tokyo Institute of Technology
and the Tokyo University of Education.

