A REMARK ON THE DISPERSION

In a previous paper we intro-

duced the mean concentration func-
tion® ¥ A (f{) of a distribution

function Ftt) as follows:
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where F ¢x) is the symmetrized
distribution function of Fx» ,
o«

i.e. -
Fex) =J Fee-yd(1-FCY)

And we showed that this function
¥ (0) had almostly analogous
properties with P. Levy's maximal
concentration function ® . 1In
the following lines by the disper-
sion De(x) of F¢x)  for proba-
bility o we shall mean the in-
verse function of X =Y (f) .
The dispersion is known to serve
for the variance, specially in the
case of infinite variance. But
it is seemed to be unknown the re-
lation between the dispersion and
the variance of sums of indepen-
dent random variables each having
finite variance.

The object of this paper is to
note the following theorem,
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independent random variables each
having rinite variance o,> and
distribution function Fi.(") and

put
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condition for the exlstence of con-
stants K , K’ such__g
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are uniformly bounded for m=1, 2 -

For the proof, we need the fol-
lowing Lermsas.

Lemma 1. Let {R@, -, B o}
be an arbitrarx set of distribution
functionsand let { f,(&), - - fo&r}

be the set of corresponding charac-
teristic functiong. Then 1f there
exist 8> , p>yo and Tyo
such as for ostgeT

f | f (53] 2 8 >0,
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we have bat {1—5{;(0)}gd{1—%«~ng§°’}

k=1
where ¢ 1is a constant depending

only on T and § .and independent
from P , 7 and | Koo, -, F, f
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This Lemma 1s known 1).

Lemma 2. Let D, (0 be the
disgersion of Fe---%F.  fop
x (8/4< x<1) | then we have
& constant €’ independent from

such as
n
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Proof. Denote by f,;(f) the
characteristic function of F£ (x)
‘Fhen we consider for ogtg
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By the definition of dispersion,

we see
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Theréfore applying Lerma 1 we have
a constant € such as
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Proof of Theorem. The condition

is necessary. It is evident. By
partial integration, we have
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By Tchebychev's inequality,
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The condition is sullicient.
By partial integration
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Therefore from Lemma <, we have a
constant C’ 1independent from n»n
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Hence by (3) and (4) we see that
for 3/4 <x < { u2/D.& are
uniformly upper bounded for # =
L2 = .

On the other hand as
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Remark. As we notice from the
above proof, the necessary and
sufficient condition in Theorem
may be replaced with the condition
that
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