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In this paper we shall give
some properties ot an open Rlemann
surface. In 8§ 1 the maximum and
minimum principle is discussed.

8 2 concerns to a Riemann surface
with Iinite genus.

1.

1. Let F be an open abstract
Riemann surface and ]  Dbe its
ideal boundary. Suppose that
Fa (n=o.r, =) is a sequence of
compact subdomains of F' satis-
r'ying the following conditions:

1) F, is simply and Fa(n%o)
is finitely connected,

2 ) if T, 1is the boundary of
Fn s Iw consists of a finite
number oi analytic closed curves,

3 ) Fn C F“+| (n=o e ) and
@0
o) \JF - F,
Then we call the sequence

(1) FMF‘,'“';F'.\""
an exhaustion of F' .

Let @, = wa(p, To,F,-F. ) be the
harmonic measure of I, 1in the do-
main F, -k . If B, ,. wn=0 |,
then after Nevanlinna (5] we say
F~ has a null boundary.

fie denote by O} the class of
a non-compact domain G on ' such
that the complementary set F -
contains at least one domain and
the relative boundary C of G+
consists of an enumerable number of
analytic curves which are compact
or non-compact and do not cluster
in F' . We chcose an exhaustion
(1) of F* satisfying the condi-
tion:

FCF-G.

Putting anG- =Ga 5 AG=H,
and CAF, = C, , then G, is

not empty for sufficiently large
N and is bounded by Hn and

n e

Let ©n(p.Hn,Gn) be the harmonic
measure of H, in G. . If
limg.e Onl?, H,, G.)=0, we say that

G belongs to the class ¢, .

It 1s indepenaent of the choice
of an exhaustion of F that F
has a null boundary or G belongs
to the class ¢

- .
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2. Now we shall state the
following.

Theorem 1. Let G’ and G be
two domains on F belonging to
the class 0} ., If G'> G" and

G’ Dbelongs to the class ¢, ,
then (" belongs also tc the same
class.

Proof. On the boundary of G
it is immediate that

©a (b, Ha,Gn) 2 @, (b, Hye, G )

From the maximum and minimum
principle it holds good at any
point ¢ in G" Since Yim srt: 6l
= 0 by our assumption, we get
our theorem,

Corollary. If F has a null
bcundary, any domain G on W
belonging to o belongs to c, .

Proof., Supgose that F,C F-G
and put G'= F-F. . Then it is
easy to see that Gc G' . From
our theorem the assertion is ob-
vious.

Theorem 2. Let G be a domain
on F belonging to the class ¢, .
Then the uniform, bounded and har-
monic function in G , which
equals to zero on C , is identi-
cally equal to zero thrcughout

G . And its converse is also
true.

Proof. We shall prove the first
part.

(i) Suppose that the uniform,
bounded and harmonic function U
is positive, f.e. 0SETU ™M .
Then it is obvious that

02U ¢Mwn®, Ha, Gi)

1n G. . Since Lmase Wait HaG)=0
from our assumption, it follows
that =0 in G .

(1i1) In the case that U 1is
negative, -U is a uniform, boun-
ded and harmonic function. Hence
this case is reduced to the case
1).

(i11) Suppose that there exist
points Ff and P. such that
Uep> o and Ul(p,) <0 .

#e exclude the points such that
U@ <o . Then the remaining
open set ccnsists of an enumerable
number of non-compact domains each
belonging to G4 . Denote by G’

such a domain, In G’ , U is
uniform, bounded, positive and
harmonic and equals to zerc on its



relative bounacary. Thus this case
is alsoc reduced to the case 1).
Therefore, the first part of our
theorem has been proved,

The second part is trivial,
From Theorems 1 and 2, we have

Corollary 1 (Bader-Parreau [11).
Let G’ and G" be two domains on
F" belonging to 9 such that
G'D> G” . It there exist no uni-
form, bounded and harmonic function
in G which equals to zero on

C’ , then there exists no such a
function also in G’ .

Corcllary 2 (Bader-Parreau (1]).
Let @ and G’ be two domains on
E°  both belonging to ¢} such that

'~ G" =0 . If there exist
non-constant bounded harmonic func-
tions in G’ and G" such that they
equal to zero.on the relative boun-
dary of their exlstence domains,
then there exists a non-constant
bounded harmonic function on ¥ .,

Proof. From the assumption, G
and G" do not both belong to the
class C, . By Nevanlinna's theo-
rem [7] we get our assertion.

3. Concerning with the maximum
and minimum principle we
have

Theorem 3. Let G be any do-
main on [ belonging to the class
0} and U be any uniform, boun-
ded and harmonic function in G .
Then, if and only if ' has a
null boundary, the maximum and mi-
nimum principle holds gcod, i.e.,
Lo wg w2 Unm u .

Prcof. Suificiency is well-
known (cf. Sagawa [8] ). Necessity
is alsc obvious. For we choose (&
and U such that G= F- F, and
U= limy, o @nlp, O, FLo- ) . By
the maximum and minimum principle,
we have dim,,, Wn =0 , hence F°
has a null boundary. (q.e.d.)

We shall consider a Riemann sur-
face with (4, 'l )-removable bound-
ary, l.e., a Riemann surtface on
which there exists no uniform, boun-
ded and harmonic function. We shall
prove the tollowing

Theorem 4, Let I have (u,f1)-
removable boundary, &G be any do-
main on it pbelonging to the class

Oy and be any uniform, boun-
ded and harmonic function in G .
Then at least one of the maximum
principle and minimum principle
holds good, i.e., km U< U or
bm U 2 U .

Proof. Suppose that there exist
two points p and t. in G such
that U(p)> Um U = M and U(P)
<¥m U =wm , We can then find
two numbers M, and m, such that
Uwo>M, > M and Upd<m<m .
Denote by G’ the domain which is
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the set of the points ¢ : U(p
> M, and contains the point P,
and by G” the domain consisting
of the points + : U@ m,
and containing the point ¢, .
It is immediate that G’ and G'
belong both to the class % .
Since U equals to ™M, on the re-
lative boundary, C' of G’ and
U>M™M, in G , from Theorem 2
G’ does not belong to the class
C. .+ As the same, it is easily
seen that G" does not belong to
the class ¢, . From Nevanlinna's
theorem (7] there exists a uniform,
bounded, non-constant and harmonic
function on | , which contradicts
to the assumption. Thus our theo-
rem is established.

Ahlfors has shown that there
exists a Riemann surface with
(w, M )-removable and positive
bounddry. From Theorems 3 and 4
it follows that there exists a
Riemann surtace with (w, M )-
removable boundary such that the
maximum and minimum principle does
not hold good for any domain G
belonging tc the class ¢} and any
uniform, bounded and harmonic func-
tion.

Recently A.Mori [4] gave similar
results as in this paragraph. His
results contains ours.

Virtanen [9) proved that on a
Riemann surface with (u, M )-remo-
vable boundary there exists no uni-
form harmonic function whose Diri-
chlet integral taken over the sur-
face 1s finite.

The following problem is still
open:

Is the converse of above Virta-
nen's theorem true?

2,

4. Let us consider the case of
a Riemann surface [ with finite
genus ¢ . In this case the ideal
boundary of ' has the real sense.
Cutting F' along a non-decomposing
system of ¢ analytic loop-cuts
having no points in common, we
make B to F ¥ of planar charac-
ter and map F'* one to one confor-
mally on the domain D* in the z-
plane. The boundary of D* con-
sists of 2%  closed analytic
curves and the bounded closed set

corresponding to I . Now

the following theorem is obtained:

Theorem 5., Let us suppose that
F’ is of finite genus. Then F°
has a null boundary if and only if
the set B 1is of absolute harmonic
measure zero.

Proof. Let D’ be & simply
connected subdomain of D'V E such
that D’ contains the set B .
Denote by F' the domain on F
corresponding to D'= D/-E .

We construct an exhaustion (1) of



F* such that I, coincides to
the complementary set of F’/ ; Let
P, be the sub-domain of D
corresponding to ¥, and C. the
boundary of D, corresponding to
" . Then it is easy to see that

weo (¢, T, Fo-F, )= 0. (2, ¢, D= D,),

where the points p on F and 2
in D* correspond to each other.
From this equality our theorem is
obtained easily.

Without any restriction for the
genus thce following is well-known
(c.f. Kuroda [3] ).

Theorem. If E° has a null
boundary, the ideal boundary is
(«, M )-removable.

In the case of a Riemann surface
with finlte genus we can prove

Theorem 6. (Nevanlinna [6] ).
Let ' be a Riemann surface with
finite genus., If [ is (w, M )-
removable, F' has a null boundary.
Hence, in the case of [~ with
finite gépus, F' has a null boun-
dary if and only if 7 1is (u.M)-
removable,

Proof. We shall prove that there
exists a non-constant uniform har-
monic function on F* if F has a
positive boundary. As stated al-
ready, by 4 analytic loop-cuts
we make F' to F* of planaar cha-
racter. We map F* one to one con-
formally on the domain D* in the
z -plane. The boundary of D* con-
sists of 24 closed analytic curves
and the set [ corresponding to

I . From Theorem 5, the set

is of positive absolute harmonic
measure. Hence we can find two
closed subsets E, and B, of E
such that €, and £, are disjoint
each other and their absolute har-
monic measures are both positive,
Denote by [ and I, the subsets
of " corresponding to E, and E,
respectively. Using Theorem 5 again,
both Riemann surfaces F'\U['-T, and
Fyu -0, have positive boundary.
Hence by the well-known method we
can construct a non-constant func-
tion which is harmonic in (FUT)

— ([[VI.) and equals to zero on
[, and to unity on I, . This
function is non-constant bounded
harmonic in ' , which proves the
theorem.

Theorem 7. Let F* be a Riemann
surface with finite genus. If there
exlsts a uniform positive harmonic
function on [’ , then there exists
uniﬁgrm bounded harmonic function
on .

Proof. We suppose that there
exists a single-valued positive
harmonic function on E° . Then
by Myrberg's theorem [2] there
exists the Green function on F .
Hence - has a positive boundary
(c.f. Virtanen 19) , Kuroda [3] ).
From Theorem 8 there exists a non-

constant single-valued bounded
harmonic function on [

Moreover, we can prove the fol-
lowing

Theorem 8. If a Riemann surface
F' with finite genus has a null
boundary and the function U is
single-valued bounded harmonic in
G= F-F, , then U 1is also har-
monic on [~ .

Proof. We construct a uniform
harmonic function U, in GVYT[
such that U, equals to U on
the relative boundary [, of G .
Since the function U-U, is
single-valued bounded harmonic and
equals to zero on 1, , from Theo-
rem 3, U-U, must be the constant
zero, that is, U coincides with

U, in G and is harmonic also
on [T , which proves our assertion.
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