ON A THEOREM OF HARDY~LITTLEWOOD

By Gen-ichiro SUNOUCHI

(Communicated by T. Kawata)

The object of this note 1s to
give a proof of the following
theorem and certain of its appli-
cations.

Theorem., If S = 0(nbth)
>0 p>-/ , where sk de-
notes tbe n -th Cesaro sum of
order # for the series X a,, ,
then the series S nfa, is ei-
ther summable ((C.p) or not surmable
by any Cesaro means. Conversely if

the serles I n*¥qa, is summable
cp)y B9, P>l then
S = 04).

Hardy and Littlewcod (2] have
proved this theorem for & non-nega-
tive integer p . Prof. Bosanquet
kindly remarked me that the 1irst
part of the theorem is contained
in a paper by A. Zygurund (4] .
But it seems to me that this theo-
rem is not popular (see Hyslop (3]).
On the other hand Bosanquet (1) has
succeeded in completing the conver-
gence and summability factor theo-
rem. Following his method we can
prove the theorem. The method of
proof is different from that of
Zygmund. The converse part is also
well known, but we give a new proof
in the same idea.

Before going to the proof we need
some lemmas.

Lemma 1. If o+ p>-/, d>0,and

30 = 0(n™P) , then §5% =, (n*r)

Prcof. We have
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Lemma 2. (Bosanquet [1] ). If
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Where K 1is independent of _« ,
Y , and n .
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it o0fmscvsn ’

_F gt gw Bl aey
I %:v A*TAP >Z'4"'/’4F,«

s~ -
=An_/~ Z-K,(n-/u/)""'

[\

~K(nous )P (s i)™

s~/ -

—K A‘n,« Vepa -

v

Tkus (1) holds, with K =mex(/ 4,) -

Proof of the first part of Theo-
rem. The thesis is eg}xivalent to
the problem that if 8 =0(nPB ,

B>0 p> 1 %hen the se-
ries X #u¥gq, is summable(C(. p),
provided that it is summable ( (y

p+/ ). We divide the proof intc
the case n ¢ p( nt) (11=-/,0/2)
¥e give the proof for the case z=zo
and 1, since that or the remaining
cases is quitely similar.

Case 1. Suppose that @>0 ,
~{<p<co .

For the convenience we replace

pby -p , then p<p</ and
5= 0(a*) “)
Since Z n%a. is (€. p+1)

summable, the necessary and sulii-
clent condition that it is summable

(C.p)1is
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By Abel's transformation we have
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Hence by (4)
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Secondly
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Thus by (6), (7), (8) and (9), we

have 4
To=0(nlt),

Case 2. Suppose that B >0
/1 2p>0

’
It is sufticlent to prove
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Since -/<p-/ <0 and ~2<-~P-I<-/,
is analogous to
I in Case 1, and we get
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Next
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Estimating similarly as I in
Case 1, we have
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Collecting the estimations (11),
(12),

Proof or the second part of
Theorem. If

gpﬂ"'d =4 (Cp),

then

But

\L"'(f)=/l,’f= 0 (nh/’), f’%

and

(13) and (14), we get (10).

@-f+5 e =00 Cp).

S may= S+ 8 g ).

Hence we can suppose without
loss of generality

gon"a.. =0(C.p)
Now
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Thus we can now fcllow the line
of proof of the first part to reach

the result.

Ve will now give some applica-

tions to the theory of Fourier
series.

Let f(x) be a function abso-

lutely integrable in (0,277 ) and
of period 2 T and let its Fourier

series be

fo) ~Z a Z (Aueoonti + 4, #innx)
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Then we have

Theorem. If

¢
/ | Fpsr|du =o(t),
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then the series g Aa ’*’%gi (0 d</)

is summable ( C,
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Proof. By a theorem of Jacob
(4] , (15) implles
-5
A th} ;"0(11")
that 1is,
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By a well known theorem, since

=0
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is convergent at that point,. we
get the required result by the
theorem already proved.
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Jacob (4) proved the,following
theorem: If [ 1 914) | g =op

then .,.
,4,:1%, (0<a</)

1s ( C -§) summable where

Y42} 1s a convex sequence
tending to zero. He says
that "Der Faktor 1/, kann
nicht weggelassen werden"
but this is incorrect as the
theorem shows,
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