In the present note we shall show an application of Hadamard's variational method to conformal mappings of multiply-connected domains, but we confine ourselves to the case of the lower connectivities than those of four. It seems to me that the result obtained here is also true for the case of higher connectivities.

In preparation to this note, we shall first state some definitions, notations and well-known theorems.
D_{n} is a schlicht, $n-p l y$ connected domain whose boundaries consist of n regular-analytic curves $\Gamma^{(\nu)}\left(\Gamma=\sum_{v=1}^{n} \Gamma^{(v)}\right) \quad$ • z_{1} and z_{2} are two points lying on the same boundary $\Gamma^{(1)}$, and we set arc $\overparen{z_{1} z_{2}}=\Gamma^{\prime}$ with its positive direction being identified to that of $\Gamma^{(1)}$. Moreover
$\Gamma^{(1)}=\Gamma^{\prime}+\Gamma^{\prime \prime}$ - The following theorem due to P. Koebe (1) is well-known:

Dn can be conformally mapped onto a schlicht parallel straight line strip domain S_{n} with $n-1$ parallel segment slits. The conformal mapping function $\Phi_{D_{n}}(x)$ has the following form:
(A) $\Phi_{D_{n}}(z)=\Omega_{1^{\prime}}(z)+\sum_{k=2}^{n} c_{k} \Omega_{k}(z)$,

In which C_{k} satisfy

$$
\begin{equation*}
\sum_{k=2}^{n} c_{k} p_{k \nu}=-p_{1^{\prime}, \nu} \tag{B}
\end{equation*}
$$

and, moreover, $J_{m} \Phi_{D_{n}}\left(z_{1}\right)=-\infty$ and $\tilde{J}_{m} \Phi_{D_{n}}\left(z_{2}\right)=+\infty$, where the notations are defined below:
$R_{e} \Omega_{1^{\prime}}(z)=\omega\left(z, \Gamma^{\prime}, D_{n}\right)=$ harmonic measure at a point Z of Γ^{\prime} with respect to D_{n},
$R_{l} \Omega_{k}(z)=\omega\left(z, \Gamma^{(k)}, D_{n}\right)=\omega_{k}(z)=$
harmonic measure of $\Gamma^{(k)}$ with
respect to D_{n},
P_{1}, v and $P_{k, v}(k=2, \ldots, n)$ are
the periodicity moduli of the
imaginary parts of $\Omega_{i,}(z)$ and
$\Omega_{k}(z)$ with respect to
$\Gamma^{(v)}$, respectively.

This form of the mapping function was recently found by T. Kubo (2). Making use of Y. Komatu's (3) extension of Lowner's theorem to the doubly-connected domain, T. Kubo (2) established the following theorem, of which we aim at the exten-
sion to the domain of higher connectivities than those of his case.

Let D_{2}^{*} be a doubly-connected domain, which contains the preasigned doubly-connected domain D_{2} and whose boundaries Γ_{2}^{*} and $\Gamma_{1}{ }^{*}$ consist of $\Gamma^{(2)}$ and $\Gamma_{1}^{\prime}+\Gamma^{\prime \prime}$, respectively. Then

$$
\mathcal{R}_{x \in \Gamma^{(2)}} \Phi_{D_{2}}(z) \leqq R_{z \in \Gamma^{(2)}} \Phi_{D_{2}^{*}}^{*}(z)
$$

The equality holds if and only if $D_{2}^{*}=D_{2}$

As Hadamard's variation formula of periodicity-moduli $p_{k, v}$ and $p_{1 ; y}$ of $\omega_{k}(z)$ and $\omega\left(z, \Gamma^{\prime}, D_{n}\right)$ with respect to $\Gamma^{(v)}$, the following formulas are known (Bergman (4)):
(C) $\delta p_{\mu, v}=\int_{\Gamma} \frac{\partial \omega_{\mu}(t)}{\partial n_{t}} \frac{\partial \omega_{\mu}(t)}{\partial n_{t}} \delta n d \lambda_{t}$
and
(C') $\delta p_{t, v}=\delta p_{v, 1^{\prime}}=\int_{\Gamma} \frac{\partial \omega_{y}(t)}{\partial n_{t}} \frac{\partial \omega\left(t, \Gamma_{1}^{\prime}, D_{n}\right)}{\partial n_{t}} \delta n d s_{t}$,
where $\frac{\partial}{\partial n}$ means the inner
normal derivative, and δn is
the inner normal. displacement of
$\Gamma^{\prime \prime *}$ from $\Gamma^{\prime \prime}=\Gamma^{(1)}-\Gamma^{\prime}$ and is a very small quantity.

> Now we shall state our theorem:

Theorem. If $n=2,3$ or 4 , then

$$
\operatorname{Re}_{z \in \Gamma^{(0)}} \Phi_{D_{n}^{*}}^{*}(z) \geqq \operatorname{R}_{z \in \Gamma^{(v)}} \Phi_{D_{n}}(z), v \neq 1
$$

Proof. We shall first prove the theorem in the case of triplyconnected domain. Let T ' be any quantity defined with respect to D_{n} and T^{*} the corresponding quantity with respect to D_{n}^{*} and $\delta T=T^{*}-T$ the variation of T and so δT corresponds to the variation δn.

From (B) we have

$$
\left\{\begin{array}{l}
-P_{1, v}=c_{2} P_{2, v}+c_{3} P_{s, \nu}, \\
-P_{v^{\prime}, \nu}^{*}=c_{2}^{*} P_{2, v}^{*}+c_{3}^{*} P_{3, \nu}^{*}, \quad(\nu=2,3),
\end{array}\right.
$$

$$
\begin{aligned}
& \text { thus we have } \\
& \qquad \begin{aligned}
\delta p_{1, v} & =p_{1, v}^{*}-p_{1, v} \\
& =p_{2, v} \cdot \delta c_{2}+c_{2} \cdot \delta p_{2, v}+\delta c_{2} \cdot \delta p_{2, v} \\
& +c_{3} \cdot \delta p_{3, v}+p_{3, v} \delta c_{3}+\delta c_{3} \cdot \delta p_{3, v} .
\end{aligned}
\end{aligned}
$$

Then we may neglect the quantities $\delta c_{2} \cdot \delta p_{2, \nu}$ and $\delta c_{3} \cdot \delta p_{2}, \nu$
because these are of the higher order concerning δn. Therefore we obtain

$$
\begin{aligned}
& p_{2,2} \cdot \delta c_{2}+p_{2,4} \cdot \delta c_{3}=-\delta p_{3^{\prime}, 2}-c_{2} \cdot \delta p_{2,2}-c_{3} \cdot \delta p_{3,2}, \\
& \cdot p_{2,3} \delta c_{2}+p_{3,3} \cdot \delta c_{3}=-\delta p_{1^{\prime}, 3}-c_{1} \cdot \delta p_{2,3}-c_{3} \cdot \delta p_{3,3} .
\end{aligned}
$$

On the other hand, the folloring fact is evident
(a) $\Delta=\left|\begin{array}{ll}p_{2,2} & p_{2,2} \\ p_{9,2} & p_{3,3}\end{array}\right| \neq 0$,
then we can slove the above simultaneous and obtain

$$
\begin{aligned}
\delta c_{2}=\frac{1}{\Delta} & \left\{-p_{2,3}\left(\delta p_{1,2}+c_{2} \delta p_{1,2}+c_{3} \cdot \delta p_{3,2}\right)\right. \\
& \left.+p_{2,3}\left(\delta p_{1,3}+c_{2} \delta p_{2,3}+c_{3} \cdot \delta p_{3,3}\right)\right\}
\end{aligned}
$$

Considering (C) and (C') and $\delta n=0$
for $z \in \Gamma^{(2)}, \Gamma^{(1)}$ and $\Gamma^{,}$, we have the following relation' from the last one:

$$
\begin{aligned}
\delta c_{2} & =\frac{1}{\Delta}\left\{-P_{2,3} \int_{\Gamma^{\prime}}\left(\frac{\partial \omega_{1}(t)}{\partial n_{t}} \cdot \frac{\partial}{\partial n_{t}} \omega\left(z, \Gamma^{\prime}, D_{3}\right)\right.\right. \\
(f) \quad & \left.+c_{i} \frac{\partial \omega_{2}(t)}{\partial n_{t}} \frac{\partial \omega_{2}(t)}{\partial n_{t}}+c_{3} \frac{\partial \omega_{0}(t)}{\partial n_{t}} \cdot \frac{\partial \omega_{2}(t)}{\partial n_{t}}\right) \delta n d s_{t} \\
& +p_{2,3} \int\left(\frac{\partial \omega_{2}(t)}{\partial n_{t}} \frac{1}{\partial n_{t}} \omega\left(x, \Gamma^{\prime}, D_{3}\right)+c_{2} \cdot \frac{\partial \omega_{2}(t)}{\partial n_{t}} \cdot \frac{\partial \omega_{4}(t)}{\partial n_{t}}\right. \\
& \left.\left.+c_{3} \frac{\partial \omega_{2}(t)}{\partial n_{t}} \cdot \frac{\partial \omega_{1}(t)}{\partial n_{t}}\right) \delta n d s_{t}\right\}
\end{aligned}
$$

Corresponding to the rotation in the positive sense of a point t on $\Gamma^{\prime \prime}$, an inequality

$$
d \mathcal{I}_{m} \Phi_{D_{1}}(t)<0
$$

holds, and then we have
(C) $-\frac{\partial}{\partial n_{t}} \omega\left(t, \Gamma^{\prime}, D_{i}\right)-c_{2} \cdot \frac{\partial}{\partial n_{t}} \omega_{2}(t)-c_{3} \cdot \frac{\partial}{\partial n_{t}} \omega_{3}(t)<0$
on $\Gamma^{\prime \prime}$. The rollowing relations are evident:
(d) $\frac{\partial \omega_{2}(t)}{\partial n_{t}}>0, \frac{\partial \omega_{1}(t)}{\partial n_{t}}>0$ on $\Gamma^{\prime \prime}$,
and
(e) $\quad p_{3,3}>0, \quad P_{2,3}<0$.

From the assumption $D_{3}^{*} \supset D_{3}$, we have
(f) $\quad \delta_{n} \leqq 0$.

Making use of the inequalities $(a),(c),(d),(e),(f)$ ad equality (b), we have

$$
\delta c_{2} \geqq 0
$$

This means that C_{2} is a monotone
increasing quantity of the basic domain D_{3}. Considering the fact that

$$
\mathcal{S}_{2}=\mathcal{R}_{z \rightarrow \Gamma^{(a)}} \Phi_{D_{3}}(z)
$$

we obtain the desired result. The similar consideration leads us to another result:

$$
\operatorname{Re}_{z \rightarrow \Gamma^{(3)}} \Phi_{D_{3}^{*}}^{*}(z) \geqq \mathcal{R e}_{z \rightarrow \Gamma^{(3)}} \Phi_{D_{3}}(z)
$$

Thus we have proved the theorem in the case of triply-connected domain.

To the $4-\mathrm{ply}$-connected case, the similar consideration can be applied, but in this case we have only to replace (e) by the ficllowing facts:
(e) $\left|\begin{array}{ll}P_{2,3} & P_{2,4} \\ P_{3,2} & P_{2,4}\end{array}\right|>0,\left|\begin{array}{ll}P_{2,2} & P_{2,4} \\ P_{3,2} & P_{3,4}\end{array}\right|<0$ and $\left|\begin{array}{ll}P_{2,2} & P_{2,3} \\ P_{3,2} & P_{1,3}\end{array}\right|>0$

The last determinant is a cofactor of $P_{4,4}$ and

$$
\left(P_{t, j}\right)_{j=2,3,4}^{i=2,3,4}
$$

Is a positive delinite matrix, where $\Delta=\left|\left(p_{i, d}\right)\right| \nsucceq 0$ - q.e.d.

Remark 1. In $n-p l y$ connected case the problem reduces to the study of the positive definite matrix

$$
\left(p_{i, j}\right)_{j=2, \cdots, n}^{1=2, \cdots} .
$$

2. The similar problem for the other canonical conformal maps can be treated by the analogous considerations, e.g., mapping function which maps D_{n} onto the schlicht circular disc or concentric circular ring with $n-1$ or $n-2$ concentric circular slits, respectively.
(*) Recelved May 17, 1951。
(1) PoKoebe: Abhandlungen zur

Theorie der konformen $A b-$ bildung, IV. Acta Math. 41, (1918), 305-344.
(2) T.Kubo: On the conformal mapping of multiply connected domains, Mem. Coll. Sci. Kyoto (Shortly appear).
(3) Y.Komatu: Untersuchungen über kontorme Abbildung von zweifach zusammenhängenden Gebieten. Proc. Phys.Math. Soc. Japan. V. 25 (1943).
(4) S.Bergman: Complex Orthogonal Functions and Conformal Mapping.

Tokyo Institute of Technology.

