
EXAMPLES OF ERGODIC DYNAMICAL SYSTEMS

By Toshiya SAITO

INTRODUCTION, Recently the author
has established the following crite-
rion for ergodicity of the measure-
preserving flow on the torus*.
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Let Su be a torus whose points
can be represented by the coordina-
tes Cκ

t
y)

 t
 o έ *, y < ZK . Let <$t

be a one-parameter stationary flow
on 52, defined by

where X and Ύ are one-valued
real functions on S& having conti-
nuous first derivatives. If

- + £ = <
&t is measure-preserving, or, in

other words, differential equations
(1) admit an Integral invariant

if **<$-.
In this case, $t is ergodic

if and only if

1) X and Y have no common zero
points, and

2) J j x ^ Vί, j JY**^ *«,

and Ϋ*C*k***ϊ /f*Cγ &*}
 is an lr

~

rational number.

This criterion can be immediate-
ly generalized to the case when $

%

admits an Integral Invariant

where f<*,}) is a positive
definite function on Si having con-
tinuous first derivatives. In such
a case, we have

Hence by the similar discussion,
we can easily show that St ίa
ergodic if and only if

1) X and Y have no common zero
points, and

t
2κ

r

2) 1 J
and J

aβ
J

irrational number.

i s a n

In this paper, we apply this
criterion to several dynamical sys-
tems of two degrees of freedom and
prove the existence of ergodic or-
bits.

EXAMPLE 1. Combination of two
simple harmonic motions*

Consider the particle of unit
mass on (\jf) -plane moving under
the force (-«**> -£**-) In this
case, the particle generally des-
cribes a complicated path known as
Llssajous* figure.

If we write

the Hamiltonian of the system is
given by

AS is well known, this system ad-
mits two independent integrals

where c,>o , c
Λ
>o are integration

constants. The integral surface
defined by the above formulae is
evidently homeomorphic to the torus.
If we put

- c
f e

 t

the position of a point on this sur-
face is represented by Cβ, j) ,o^θ ,
y < Z% Equations of motion
are

Hence the system is ergodic if and
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only if tf/β is an irrational num-
ber

o
 '

EXAMPLE 2. Planetary motion in
special relativity theory.

In Newtonian dynamics, compact
planetary orbit is always an ellip-
se a Therefore every motion is non-
ergodic But if we treat the pro-
blem relativistically, this is not
the case. So let us consider the
planetary motion in special rela-
tivity theory.

Let a particle of rest mass M
be fixed at the origin. We consider
the motion of another particle of
rest mass wυ moving around the
first particle under the Newton's
law of universsl attraction.

Using polar coordinates on the
plane, its Hamiltonian is given by

where κ > o is a gravitational con-
stant and c is the velocity of
light in vacuoβ

Since

the integral surface is given by

If we put

{ ft-*,

the above formulae are written in
the Γorm

To consider the ergodic orbit, we
must restrict ourselves to the case

i.e
o < T < +oo^

Therefore following inequalities
must hold.

From these inequalities we have

E < l n
s

1

Under these conditions, the integral
surface determined by (3) is evi-
dently a torus in fp p

 u
 *)

space* I
T
*»«J > ^

Putting

we have following equations of
notion.

if. «-Y05 ).

As X and Y have no common zero
points and

is a positive definite function
satisfying

our system is ergoαic if ana only

if is an irrational

number, Non-ergodic initial con-
ditions are represented by the set
of first category in C £, -ft)-space„

EXAMPLE 3. A particle constrained
on a paraboloid in gravita-

tional field.

We consider the particle of unit
mass constrained on the paraboloid
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moving under the gravitational force
given by the potential function gz*
where J is the gravity constant*
If we use the cylindrical coordi-
nates

AT
4t

have no common

4t

Since X and
zero points, and fi C 5̂  Q)~J~Ί
is a positive definite function sa-
tisfying

the Lagrangian of the system is

Hence,

and the Hamiltonian is

Since

the integral surface is given by

α>

To avoid the singular case Y
we assume

the system is ergodic if and only
if

is an irrational number Non-
βrgodic initial conditions are re-
presented by the set of first ca-
tegory in the domain determined by
(7) in (Έ

t
4t) -space*

EXAMPLE 4o A particle attracted
by two centres of gravitation.

A particle of unit mass is mov-
ing on the C*, «j) -plane attracted
by two fixed particles whose masses
are /• and )*' respectively under
the Newton's law of universal at-
traction* Let us call these two
centres of gravitation A and B
respectively* Let ^ be situated
at C*,«) and β at <-t, o) . More-
over we make an assumption

We then change the variables from
CtV, T) to Cv, -ur) by the follow-
ing one-to-one transformation

Then (6) is transformed into

Then the Lagrangian is

If we put,

Thus, if

the integral surface determined by
(5) and (6*) is a torus in

-space. If we put

equations of motion are

f
4
*' Jf J -plane is in one-to-one

correspondence with the half-
cylinder

• In theseexcept the segment
new variables,
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Hence

>o

and the Hamiltonian is

By a simple calculation, we have

<%) . *£ ij - E «*^ ξ + c f*« f*') « siιj + y

(<υ TΓ^-E.«A-<f*-H)e m γ

where £ is the energy constant
and tf is another integration con-
stant.

(θ) and (9) determine the inte-
gral surface of the system The
topological character of this sur-
face changes according to the values
of E. and γ « We must search
for the values of E and tf which
make our integral surface homeomor-
phic to torus

As we must exclude the case
when the particle goes to infinity,
E must be negative* So let us
put

Then (6) is written in the form

If

the above equation defines an
ellipse on £"f> c*sl>|) -plane•
Since e »l, % ̂  ± , and e*«t,t
is a monotone increasing function
of I for I % o , this equa-
tion determines on Cp|, |) -plane
a simple closed curve if c «h| £ 1
everywhere on this ellipse. To
avoid the singularity of the map-
ping Γx,$)-* <l, ΐ> , we omit the
case when { becomes zero on this
curve. Thus, if

the curve defined by the equation
(8) is homeomorphic to a circle on
the half-plane Cf>

ξ/
 $), |>o

Simplifying these inequalities we
obtain

at)

(These inequalities are mutually
consistent as

Now let us consider the curve
(9) on the cylindrical surface

Cf
7 /
 7) . If the right hand mem-

ber is always positive for oζi[<λκ
9

(9) gives two separate closed cur-
ves on the cylinder. Thus ( 8 ) , (9),
(10), (11) determine two separate
tori. On the other hand, if the
right hand member is not positive
definite, (8), (9), (10), (11) de-
termine the surface of more compli-
cated topological character. So we
restrict ourselves to the simple

case

- K

As we have assumed μ > f* , /
must satisfy tne following inequa
lity.

r< t
k
-<p-r')

This is consistent with (11), be-
cause the expression

is always positive* Thus the re-
striction on y is given by

Ox)

If we put



equations of motion on the torus
corresponαing to the positive value
of M are

^ and Y have no common zero
points under the condition (12;,

c.sfc'g - c»s
a
7

and
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is a positive definite function sa-
tisfying

Hence the system is ergodic if and
only if

. \/ik ale
is an irrational number. There-
fore* in the domain (10) and (12)
in CB,Y) -space, non-ergodic ini-
tial conditions form the set of
first category.
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